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Pictorial infrared
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A diagram contributing a double-virtual NNLO correction to t-tbar-jet production
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A diagram contributing a double-virtual NNLO correction to t-tbar-jet production



Pictorial infrared
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A diagram contributing a real-virtual NNLO correction to t-tbar-jet production
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A diagram contributing a real-virtual NNLO correction to t-tbar-jet production
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A diagram contributing a real-virtual NNLO correction to t-tbar-jet production



Pictorial infrared

A diagram contributing a double-real NNLO correction to t-tbar-jet production
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A diagram contributing a double-real NNLO correction to t-tbar-jet production



A shopping list

What do we wish for an optimal subtraction algorithm at NkLO?

Here is a possible shopping list

- Complete generality across all IR-safe observables with arbitrary
numbers of final state partons.

“€c

Exact locality of the IR and collinear counterterms.
& Exact independence on external slicing parameters.

& Complete analytical results for all integrated counterterms.

€c

€ Opverall computational efficiency, including interfacing with MC codes.

Such an algorithm would allow a user to input a process and an observable, and get out a
prediction at the available order. The only external inputs would be the matrix elements.

This wish list has essentially been accomplished at NLO (CS, FKS, NS+, CKR, LASS, ...)



Decades of effort at NNLO

The subtraction problem at NLO is completely solved, with efficient algorithms applicable
to any process for which matrix elements are known.

At NNLO after twenty years of efforts several groups have working algorithms, successfully
applied to processes with up to four legs. Five legs imply heavy computational costs.

€c

& Antenna Subtraction

“€c

Sector-Improved Residue Subtraction

“€c

Nested Soft-Collinear Subtraction

ColourfulNNLO

€ €0

N-Jettiness Slicing
Qr Slicing

Geometric Slicing

‘€0 %60 €0

Unsubtraction

“€c

Projection to Born

€c

Local Unitarity

€c

Local Analytic Sector Subtraction ......



1806.09570 - 2010.14493 - 2209.09123 - 2212.11190 LASS Status

& So far the formalism is developed for massless partons.
& At NLO we have a full-fledged subtraction formalism, and simple integrals.
& NLO numerical implementation is under way.

& At NNLO Local Analytic Subtraction has been achieved for final state radiation.

A complete set of NNLO sector functions with the desired sum rules is available.

Flexible phase space mappings for single and double unresolved limits exist.

Phase space mappings have been checked not to misalign nested limits.

All integrals for final state radiation are done analytically, without IBP techniques.

€c

& The numerical implementation at NNLO is the natural next step, also soon under way.

“€c

Generalisation to initial state radiation requires work but no new concepts.

& More ‘interesting’ integrals may arise with massive partons.
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NLO Subtraction

The computation of a generic IR-safe observable at NLO requires the combination

do NLO

dX — él_I}I}l{/d(I)n Vn 6n(X) -+ /d(bn—l—l R.n_|_1 5n+1(X)}’

The necessary numerical integrations require finite ingredients in d=4. Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finite.

do NLO

= /d(I)n(Vn +I,§1)) 0n(X) + /d(anrl (Rn+1 Sn1(X) = K}y O (X)) ;

dX

Search for the simplest fully local integrand K+ with the correct singular limits.
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Defining L with sectors

Minimize complexity: split phase space in sectors with sector function W in order to have
at most one soft (i) and one collinear (ij) singularity in each sector (FKS).

& Sector functions must form a partition of unity.

€ In order not to appear in analytic integrations, sector functions must obey sum rules.
Denoting with S; the soft limit for parton i and C;; the collinear limit for the ij pair,

S, E Wi = 1, C;; E Woa = 1, +— sum rules
k1 ab € perm(ij)

¢ Sector functions are defined in terms of Lorentz invariants before choosing an explicit
parametrisation of phase space. A possible choice is

, Tij . 1 Sqi ° iy

, _ _ .
Y. Okl e; Wi S Sqi Sqj

€ With the help of sector functions, one can now define a candidate counterterm

LY Rt = ZZ (S + C;j — Sicij)Rn—l—lwij-
JF#




Phase-space mappings at NLO

In order to factorise a Born matrix element B, with n on-shell particles conserving momentum,
we need a mapping from the (n+1)-particle to the Born phase spaces. We use (CYS)

E{Eabc) — L

El()abC) = ka ‘|’kb .

if 2 #a,b,c,
Sab ~(abe Sabe
kc 3 kg: ) — kc 3
Sac + SbC Sac _|— Sbc

Si R({k})

Ci; R (k)

S: Cij R({k})

Slm

Sil Sim

—N1 > b B ({£}))
I, m

M

[Pz'j B({;}}(ij?‘)) + Q;" B ({;}}(ﬂij-r))] ’

Sjr B ({;}}(Tij'r}) ’

8ij Sir

2N1 ij 6fi§




Far from trivial beyond NLO!

Systematics needed.
(Del Duca and Lionetti 1910.01024)
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NNLO Subtraction

The pattern of cancellations is more intricate at higher orders

dX d—4

dUNNLO — lim {/ d(];)n VVn 571 (X) + /d(I)n+1 RVn+1 5n+1(X)

+ f d®pi2 RRpt20n42(X )} ’

More counterterm functions need to be defined

KEY, =LWRR,,, K% =L®RR,, K2 =LOL®RR,,, K =1LORY,,,.

n

@ = / dort? kY, 1% — / o2 (12 () _ / o2 K2, [®V) / a1 K (B

n

A finite expression for the observable in d=4 must combine several ingredients

donnLo _ /d(I)n [an 4+ 1752) . I(RV)] 5n(X)

dX

+ fd(pn+1 (Rvn—l—l I,n(,_1|_)1 5n—l—1(X) o (K'rg—lf—vlf) R Iﬂrg—zl)) 671 (X)]

f 0

RRnt20n12(X) = KDy 001 (X) — (K3, - K03

) 6n(1)]




N3LO Subtraction

A systematic generalisation to higher orders is possible. At three loops one finds

dUNmm)

dX

/ d®,, [VVVn T P RNV ERRY, 2>] Sn(X)

+ / AP 41 [ (BVVasr + L+ I8V ) G (X)

RVV 23 RRV, 12
- (K7(7,+1 R el ve )) 5n(X)]

+ / A1 { (BRVoiz + 1155 nra(X) = (KT + 115 601 (X)
RRV, 2 13 RRV,12 123
- [ (K7(z+2 )+ I’l(z-l-Q)) - (K'r(z+2 )+ I'r(z—|—2 )) ] 5n(X)}
+ / d®, . 3 [RRRn+3 Snas(X) — KB 6pa(X) — (Kﬁg _ Kéﬁ}) 51 (X)

3 13 23 123
- (2~ K3 - K+ K2R 5.0) |

A general formula for NkLO subtraction is available, involving p = 2(k*1) - 2 - k counterterms.
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A.Sen, A.H. Mueller, . Collins, G. Sterman, . Botts, LM, S. Catani, L. Dixon,

E. Gardi, M. Neubert, T. Becher, I. Feige, M. Schwartz, O. Erdogan,Y. Ma, ... T h e VI rtu al a. m P I Itu d e

Infrared divergences in fixed-angle multi-particle scattering amplitudes factorise

«An(&as 21): n(ﬁa»s Qa)fn(p% )-.
sl e sk e . ,

—, (g (IU’Q): €
The infrared factor is a colour operator determined by a finite anomalous dimension matrix

1
1 [H d\2 .
(HQ)sf) = Pexp [2/(; N2 Ly (p~fl’s()\2ae))] )

For massless theories, the all-order structure of the anomalous dimension in known, up to
corrections due to higher-order Casimir operators of the gauge algebra

Pi ip [ Sij
Fn (—,QS(MQ)) — Fglp (”_;‘GS(HQ)) + An (Pz’jklaas(ﬂg)) ’

/1.




Operator Definitions

The precise functional form of this graphical factorisation is

N (p> 5 Ti((ps-mi)?/ (nn?))

M. )2
Su (Bi- B;) Ha (pzuff, (p;%Z’;) )

i=1 | jE,i((ﬁz"ni)2/"z2> _

Here we introduced dimensionless four-velocities i = pi/Q, and factorisation vectors n#,
ni2 # 0 to define the jets in a gauge-invariant way. For outgoing quarks

T. Becher, G. Bell.



Wilson line correlators

The soft function S is a color operator, mixing the available
color tensors. It is defined by a correlator of Wilson lines.

The soft jet function J£ contains soft-collinear poles: it is defined by replacing the field in
the ordinary jet J with a Wilson line in the appropriate color representation.

Wilson-line matrix elements exponentiate non-trivially and have tightly constrained
functional dependence on their arguments. They are known to three loops.



Soft cross sections: pictorial

Consider first the (academic) case of purely soft final state divergences.
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Soft cross sections: pictorial

Consider first the (academic) case of purely soft final state divergences.

At amplitude
level poles
factorise and
exponentiate.

We need to build
cross-section
level quantities.

* |nclusive eikonal cross sections are finite.

* They are building blocks for threshold and Qr
resummations.

* They are defined by gauge-invariant operator
matrix elements.

* Fixing the quantum numbers of particles crossing
the cut one obtains local soft counterterms.




Collinear cross sections: pictorial

Consider next collinear final state divergences. They are associated with individual partons.



Collinear cross sections: pictorial

Consider next collinear final state divergences. They are associated with individual partons.

At amplitude
level poles
factorise and
exponentiate.




Collinear cross sections: pictorial

Consider next collinear final state divergences. They are associated with individual partons.

At amplitude .
Soft-collinear
level poles J
: poles can be £
factorise and
. subtracted
exponentiate.




Collinear cross sections: pictorial

Consider next collinear final state divergences. They are associated with individual partons.

At amplitude
level poles
factorise and
exponentiate.

Soft-collinear
poles can be
subtracted

* Inclusive ‘jet cross sections’ are finite.

* They are building blocks for threshold
and Q1 resummations.

* They are defined by gauge-invariant
operator matrix elements.

* Fixing the quantum numbers of particles
crossing the cut one obtains local
collinear counterterms.

* Eikonal jet cross sections subtract the
soft-collinear double counting.




P Schwarts 2014 Soft counterterms: all orders

Introduce eikonal form factors for the emission of m soft partons from n hard ones.

Sn,m (kla I kmaﬁz)

(k1 AL ks Aml| | | @4.(00,0) [0)
1=1

e A () e Om) (k) Jg' (ks ks Bi)

,Lbl Hm

ZS(I)) k177k‘m752)

These matrix elements define soft gluon multiple emission currents. They are gauge invariant
and they contain loop corrections to all orders.

Existing finite order calculations and all-order arguments are consistent with the factorisation

An,m(kb)km)pz) — Sn,m(kla 7km75’b) Hn(pz) + Rn,m(k177km7pz)

with corrections that are finite in dimensional regularisation, and integrable in the soft gluon
phase space. It is a working assumption: a formal all-order proof is still lacking.



Soft counterterms: all orders

The factorisation is reflected at cross-section level, for fixed final state quantum numbers.

Z|An,m(k17---akm;pi)|2 = Hiz(pz) Sn,m(kla---akm;ﬁi) Hn(pz)

The cross-section level “radiative soft functions” are Wilson-line squared matrix elements

S SO (U (5

p=0

Sy ({km}, {51})

= Z<O|T

{Ai}

H P, (00, 0)

=1

HCI)B,L.(O,OO)] |]€1, /\1; ce ;km, /\m> <k1, )\1; cees km, /\m| T

1=1

]|O>7

These functions provide a complete list of local soft subtraction counterterms, to all orders.
Indeed, summing over particle numbers and integrating over the soft phase space one finds

T

= “Completeness
Hwoo,m] 0) . P

: relation”
1=1

f: / Arn Sy, ({km}i {8:}) = (0| T ﬁ@ﬂi(o,oo)
m=0 i=1

This is a finite fully inclusive soft cross section, order by order in perturbation theory.



Collinear counterterms: all orders

For collinear poles, introduce jet matrix elements for the emission of m partons. For quarks

Ty(p) Tavm (k- i i) = (y 53 K1, At - Ky Al $(0) @4(0, 50) [0)

At cross-section level, “radiative jet functions” can be defined as Fourier transforms of squared
matrix elements, to account for the non-trivial momentum flow. We propose

oo

Jaom({km}ilpyn) =Y JE) ({km}:l.p,n)

p=0

= [ alod 3 (01T [@u(000) 6(a)] 1o Lhms A} (953 L A 7 [150) @1(0.00)] [0}
{Am}

These functions provide a complete list of local collinear counterterms, to all orders.
Summing over particle numbers and integrating over the collinear phase space one finds

relation”

- : n) = Disc dg oil (00, 2)0(z) % (0, 00 ' “Completeness
3 [ i dum({nlilopon) = Dise| [ atzet 017 (o0, 2@ O)2000,00)] 0)

A “two-point function”, finite order by order in perturbation theory. Note however

* The collinear limit must still be taken (as [2—0), unlike the case of radiative soft functions.

* n2 # 0 avoids spurious collinear poles, but is cumbersome => use SCET-like anti-collinear nH.



A “top-down” approach | A = H[J fﬁn))]S(ﬂj)Hn(m) NLO SLIth”aCtiOn

The outlines of a subtraction procedure emerge. Begin by expanding the virtual matrix element

From the master formula, get the virtual poles of the cross section in terms of virtual kernels

2

Vo = 2Re | AD"AD| = 1O () S EIHD () + D (I 00) = I 0(8)) [AL (i)

JE(pyn) + / d®y J\°) (k;1,p,n) = finite

Construct the appropriate local functions.

n
K7 = Zji(,ol)(ki;l,pi,ni)
i=1

2

KNS = 1O () SO (k, 8) HO (p:)

Y

A(O) (pl, ce ey Pi—1, lapi+1’ Tt 7pn)

with a similar expression for the anti-subtraction of the soft-collinear region in terms of J£ .



A “top-down” approach

- T[22 s NLO subtraction

1 LIei(Bi, mi)

The outlines of a subtraction procedure emerge. Begin by expanding the virtual matrix element

Ay (pi) — [ng> (BIHO () + SPOGIHO () + SO (BIHD ()

+ Z (ji(l)(pi) - Jé,li)(ﬁz')) S (8:) HY (pi)] (1 o (O@)

From the master formula, get the virtual poles of the cross section in terms of virtual kernels

Vo = 2Re| A AD| = HOT(p) ST BIHD (1) + D (000 = I 0(8)) [ AL (1)

Construct the appropriate local functions.

2

KNS = 1O () SO (k, 8) HO (p:)

Y

1=1

with a similar expression for the anti-subtraction of the soft-collinear region in terms of J£ .

K, " 0¢ = ZJi(,Ol)(ki;l,pi,m) AD (p1, .. pic1, L pist, - - Pn)

2
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S. Catani, M. Ciafaloni 1984

L chosin 1985 Soft refactorisation: tree level

The tree-level double soft-gluon current simplifies considerably in the strong-ordering limit

S.O.ala2 a a1 a : aaak,Q
0] () = (190 k)5 g e ) 5O ),

k1 - ko

K12

One may define a strongly-ordered soft form factor by contracting with physical polarisations

aia9

[37(1?)1,1} (K1, ko Bi) = €77 (k1) €72 (k2) [Jé%)’s'o'} (F1, k2; Bi) -

K1 pe2

The form factor is given by an interesting “re-factorisation” of the double-radiative soft function

n

S| (bkaiB) = (haaa] @20(0,00) [] 5, 45(0,00) [0)

=1
X <k17b| H(I)/Bmciei(o’oo) |O>

i=1

= [t Gt [o

Notice the non-trivial
colour structure: the
product is ordered.

tree

}b,{ciei}(kl;ﬁi) ,

The original system of n Wilson
lines radiates the harder gluon,
which then “Wilsonises”. The

augmented system of (n+1) Wilson
lines radiates the softer gluon

L
\




Soft refactorisation: tree level

This framework generalises to arbitrary patterns of strong ordering for multiple soft radiation
at tree level. For example for strongly-ordered triple radiation one can define

St

aijaz2as

{fiei}

(K1, ko, k33 5;)

[82?2’1}:;@},@1)1,@21)2 [S’g(lzl’l}zici},blgl [Sﬁf’)iﬁ;ei}

a a id;
= (ks, a3 @57 (0, 00) D5 (0,00) [ [ #%:%(0, 00)(0)

=1

n

% {k2, ba| @57 (0, 00) [ T ©5: (0, 00)[0)
i=1

x (k1, 91| | ©5°(0,00)]0)

=1

9
tree

Computing the form factors, one reproduces the strongly-ordered limit of (Catani et al. 2019).

0
{é;ég%,l,l

i| aipazas

= k) €5, (k) €, ()

X

b b b b k'lljl3 b b kgs
JUS k 5CL1 1 6a2 2 ] s a1a301 50,2 2 ] s a2a302 5@1 1
as ( 3) + lg f kl . k3 + lg f kz . k3

M2

- | )
Jg;Q <k2) 5blcl —|— lgs fbleCl k]_ % k2 ngl <k1) Y

* Generalising to strongly-ordered soft radiation of m gluons is natural (and tested for m=3).

* Similar definitions hold for soft form factors for multiple ordered subsets of several gluons.

* Preliminary evidence suggests that similar soft re-factorisations may hold to higher orders.



Strongly-ordered soft counterterms

The top-down approach suggests an expression for the soft real-virtual counterterm

KWY)S = 1015 4O 4 finite Collinear poles?

The refactorisation of strongly-ordered soft radiation suggests an expression for the soft K(12)

12),s
K,

= HO1SO  HO
= U0 s (ﬁz,kl)] (52 O B Brgska)]| SO B By k) 820 (B k) HO

O[S 1 (Bisk)]| SE0) (B, By k) 5,1 (Bis k) RO

One can now use the finiteness of inclusive soft cross sections to cancel soft poles arising
from the phase-space integration of K(l2), using

be, ( “Completeness

Sn+1 0(/627/6]€1) /dq’l(l@) n+1 1(ﬂz,ﬂk1,k2) — finite

relation”
This gives a new expression for the real-virtual soft counterterm
s f c, c, A “bottom-up”
K5 = w0t sy @skn)| 5,500 80 81) 87 (B k) WY+ finite >
approach

The two definitions have identical soft poles, which was checked with a non-trivial calculation.



A top-down approach

This result is better understood by taking more seriously the idea of refactorisation

* The radiative soft function is not a pure counterterm: it has IR poles and finite contributions.
* |t can be considered as an amplitude in the presence of sources: virtual IR poles will factorise.

Applying the standard soft-jet-hard factorisation for scattering amplitudes we write

jg(ka n)

N ofin/z.. 2.
jE,g(Bka ’I’L) STH—l,O(ﬁk‘a ﬁz) Sn,l(ky ﬁz)

}sn(ﬂj)wp@-) S Sua(kiB) =

A/n(z')_H

JIE,i(Bi, i)

1

Expanding to one-loop order, the terms containing IR poles are

)

Sk B) = S\10(Bes B SSL (ks Bi) + (TS0 (k) = TS (Besm) ) S (ks B5)

We recognise (upon squaring) the soft contribution to KRV), plus hard collinear corrections.

This can be explicitly checked against the general expression for the soft limit of RV

To match the two calculations, one must subtract the hard-collinear poles of the virtual part.



Collinear refactorisation

The top-down approach suggests an expression for the collinear real-virtual counterterm

K0 = 3O 7 91O + finite Soft poles!?

In the bottom-up approach one starts with strongly-ordered collinear kernels, for example

21

P;Zﬂ (2[12], q_L) dap, (k[12]7 ’n,) P;'qy (— k_L) dV,B (k[12],n) )

?[12]

: N2
lim RR, 2
012<013<K1 812 S[12]3

94999

This can be directly translated in the language of jet functions. At cross-section level

q—qgg, abelian

One can now use the finiteness of inclusive collinear cross sections to cancel collinear poles
arising from the phase-space integration of K(!2), using

K(lz),cq 2Ot 70 HO . J(l)(k23,n) + [ d®y(ks) T (0)(k2,k3’ n) = finite Completeness
n+2 n Yq,1,1tn q,0 \[23]

relation”
This gives a new expression for the real-virtual collinear counterterm
(RV),c,q _ Ok (0) 0 : Bottom-up

The two definitions have identical collinear poles, which again calls for an explanation.



Top-down collinear

Once again, the result is better understood by means of a refactorisation of the radiative jet

* The radiative jet function has both UV and IR poles, as well as phase-space singularities.
* As before, it is an amplitude in the presence of sources: virtual IR poles will factorise.

Applying the standard soft-jet-hard factorisation for amplitudes we write

J(k, i) T (p,np)

jf,l(k;pan) — [ 83(/Bk7ﬁpa/8n) jff,i{l(kapan)

JTE(Br, i) TE(Bp, np)

Expanding to one-loop order, the terms containing IR poles are

TN kpn) = [TO k) = T Beora) + TO0,19) = TS (Bps ) + S5 (B B ) | T {3 (0, )

One reconstructs (upon squaring) the collinear contribution to KRVY), plus soft corrections.

* For gg radiation, hard collinear terms are identical and phase space provides a factor 1/2.

* The three-point soft function does not affect collinear factorisation: it simplifies to a singlet
quantity when the collinear limit is taken.

The cancellation of poles between K®V) and the integral of K(12) is now built in the definitions.
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Outlook

€c

® Infrared subtraction beyond NLO requires understanding all strongly-ordered IR limits.
& Factorisation provides definitions for local soft and collinear kernels to all orders.
& Soft and collinear kernels are expressed by matrix elements of fields and Wilson lines.

& In strongly ordered limits the kernels re-factorise into lower-order matrix elements.

& Known strongly ordered IR limits at NNLO and N3LO are reproduced by factorisation.
& “Completeness relations” link strongly-ordered kernels and real-virtual counterterms.
& Upon implementing phase-space mappings, the cancellation of RV poles can be checked.

& The refactorisation approach to strong-ordering generalises smoothly to higher orders.

& The architecture of infrared subtraction is becoming clear to all orders.
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