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A shopping list

  Complete generality across all IR-safe observables with arbitrary 
     numbers of final state partons. 

  Exact locality of the IR and collinear counterterms.

  Exact independence on external slicing parameters.
 

  Complete analytical results for all integrated counterterms. 

  Overall computational efficiency, including interfacing with MC codes.

What do we wish for an optimal subtraction algorithm at NkLO?

Here is a possible shopping list

Such an algorithm would allow a user to input a process and an observable, and get out a 
prediction at the available order.  The only external inputs would be the matrix elements.

This wish list has essentially been accomplished at NLO (CS, FKS, NS+, CKR, LASS, …)



Decades of effort at NNLO

  Antenna Subtraction

  Sector-Improved Residue Subtraction 

  Nested Soft-Collinear Subtraction

  ColourfulNNLO

  N-Jettiness Slicing

  QT Slicing

  Geometric Slicing

  Unsubtraction

  Projection to Born
 
  Local Unitarity

  Local Analytic Sector Subtraction   ……

The subtraction problem at NLO is completely solved, with efficient algorithms applicable
to any process for which matrix elements are known.

At NNLO after twenty years of efforts several groups have working algorithms, successfully 
applied to processes with up to four legs.  Five legs imply heavy computational costs.



  So far the formalism is developed for massless partons.

  At NLO we have a full-fledged subtraction formalism, and simple integrals.

  NLO numerical implementation is under way.

  At NNLO Local Analytic Subtraction has been achieved for final state radiation.

•  A complete set of NNLO sector functions with the desired sum rules is available.

•  Flexible phase space mappings for single and double unresolved limits exist.   

•  Phase space mappings have been checked not to misalign nested limits.

•  All integrals for final state radiation are done analytically,  without IBP techniques.

  The numerical implementation at NNLO is the natural next step, also soon under way.

  Generalisation to initial state radiation requires work but no new concepts.

  More `interesting’ integrals may arise with massive partons. 

LASS status1806.09570 - 2010.14493 - 2209.09123 - 2212.11190
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NLO Subtraction

The computation of a generic IR-safe observable at NLO requires the combination

The necessary numerical integrations require finite ingredients in d=4.  Define counterterms

Add and subtract the same quantity to the observable: each contribution is now finite.

Search for the simplest fully local integrand  Kn+1 with the correct singular limits.
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NLO Subtraction



 Sector functions must form a partition of unity.

 In order not to appear in analytic integrations, sector functions must obey sum rules.
    Denoting with Si the soft limit for parton i and Cij the collinear limit for the ij pair,

 Sector functions are defined in terms of Lorentz invariants before choosing an explicit  
 parametrisation of phase space.  A possible choice is 

 With the help of sector functions, one can now define a candidate counterterm 

Minimize complexity: split phase space in sectors with sector function Wij  in order to have
at most one soft (i) and one collinear (ij) singularity in each sector (FKS).

Defining  L(1) with sectors



Phase-space mappings at NLO
In order to factorise a Born matrix element Bn with n on-shell particles conserving momentum, 
we need a mapping from the (n+1)-particle to the Born phase spaces.  We use (CS) 

We can now redefine soft and collinear limits to include the re-parametrisation. Explicitly 

Note that we have assigned parametrisation triplets differently in different terms. Then



Phase-space mappings at NLO
In order to factorise a Born matrix element Bn with n on-shell particles conserving momentum, 
we need a mapping from the (n+1)-particle to the Born phase spaces.  We use (CS) 

We can now redefine soft and collinear limits to include the re-parametrisation. Explicitly 

Note that we have assigned parametrisation triplets differently in different terms. Then

Far from trivial beyond NLO!
Systematics needed. 

(Del Duca and Lionetti 1910.01024)



NNLO Subtraction
The pattern of cancellations is more intricate at higher orders

More counterterm functions need to be defined

A finite expression for the observable in d=4 must combine several ingredients



N3LO Subtraction
A systematic generalisation to higher orders is possible.  At three loops one finds

A general formula for NkLO subtraction is available, involving   p = 2(k+1) - 2 - k  counterterms.
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The virtual amplitude
Infrared divergences in fixed-angle multi-particle scattering amplitudes factorise

The infrared factor is a colour operator determined by a finite anomalous dimension matrix

All infrared poles arise from the scale integration, through the d-dimensional running coupling

For massless theories, the all-order structure of the anomalous dimension in known, up to
corrections due to higher-order Casimir operators of the gauge algebra

A. Sen,  A.H. Mueller, J. Collins, G. Sterman, J. Botts, LM, S. Catani, L. Dixon,  
E. Gardi, M. Neubert,  T. Becher, I. Feige, M. Schwartz, O. Erdogan, Y. Ma, …



Here we introduced dimensionless four-velocities  βi  = pi/Q, and factorisation vectors  niμ ,  
ni2 ≠ 0  to define the jets in a gauge-invariant way.   For outgoing quarks

Operator Definitions
The precise functional form of this graphical factorisation is 

where  Φn  is the Wilson line operator along the direction n.   For outgoing gluons

T. Becher, G. Bell.



Wilson line correlators

The soft jet function JE  contains soft-collinear poles: it is defined by replacing the field in 
the ordinary jet J  with a Wilson line in the appropriate color representation.

The soft function  S  is a color operator, mixing the available 
color tensors.  It is defined by a correlator of  Wilson lines.

Wilson-line matrix elements exponentiate non-trivially and have tightly constrained 
functional dependence on their arguments.  They are known to three loops.



Soft cross sections: pictorial

Consider first the (academic) case of purely soft final state divergences.
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We need to build 
cross-section 
level quantities.

• Inclusive eikonal cross sections are finite.

• They are building blocks for threshold and QT

resummations.

• They are defined by gauge-invariant operator 
matrix elements.

• Fixing the quantum numbers of particles crossing 
the cut one obtains local soft counterterms.
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Collinear cross sections: pictorial
Consider next collinear final state divergences.  They are associated with individual partons.

At amplitude 
level poles 
factorise and 
exponentiate.

• Inclusive `jet cross sections’ are finite.
• They are building blocks for threshold

and QT resummations.
• They are defined by gauge-invariant

operator matrix elements.
• Fixing the quantum numbers of particles

crossing the cut one obtains local
collinear counterterms.

• Eikonal jet cross sections subtract the 
soft-collinear double counting.

Soft-collinear 
poles can be 
subtracted



Soft counterterms: all orders

Introduce  eikonal form factors  for the emission of m soft partons from n hard ones.

These matrix elements define soft gluon multiple emission currents. They are gauge invariant 
and they contain loop corrections to all orders.

Existing finite order calculations and all-order arguments are consistent with the factorisation

with corrections that are finite in dimensional regularisation, and integrable in the soft gluon 
phase space.  It is a working assumption: a formal all-order proof is still lacking.

See also Feige, Schwartz 2014



Soft counterterms: all orders
The factorisation is reflected at cross-section level, for fixed final state quantum numbers.

The cross-section level  “radiative soft functions” are Wilson-line squared matrix elements

These functions provide a complete list of local soft subtraction counterterms, to all orders.
Indeed, summing over particle numbers and integrating over the soft phase space one finds 

This is a finite fully inclusive soft cross section, order by order in perturbation theory.

“Completeness 
relation”



Collinear counterterms: all orders
For collinear poles, introduce jet matrix elements for the emission of m partons. For quarks

At cross-section level,  “radiative jet functions” can be defined as Fourier transforms of squared 
matrix elements, to account for the non-trivial momentum flow.  We propose

These functions provide a complete list of local collinear counterterms, to all orders.
Summing over particle numbers and integrating over the collinear phase space one finds 

A “two-point function”, finite order by order in perturbation theory.  Note however

• The collinear limit must still be taken (as l2→0), unlike the case of radiative soft functions.

• n2 ≠ 0 avoids spurious collinear poles, but is cumbersome ➔ use SCET-like anti-collinear nμ.

“Completeness 
relation”



NLO subtraction
The outlines of a subtraction procedure emerge. Begin by expanding the virtual matrix element

From the master formula, get the virtual poles of the cross section in terms of virtual kernels 

Go through the list of proposed soft and collinear counterterms to collect the relevant ones

Construct the appropriate local functions. 

with a similar expression for the anti-subtraction of the soft-collinear region in terms of JE .

A “top-down” approach
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BUILDING STRONG ORDERING



Soft refactorisation: tree level
The tree-level double soft-gluon current simplifies considerably in the strong-ordering limit

One may define a strongly-ordered soft form factor by contracting with physical polarisations

The form factor is given by an interesting “re-factorisation” of the double-radiative soft function

Notice the non-trivial
colour structure: the 
product is ordered.

The original system of  n  Wilson 
lines radiates the harder gluon, 
which then  “Wilsonises”.  The 

augmented system of  (n+1) Wilson 
lines radiates the softer gluon

S. Catani, M. Ciafaloni 1984  
S. Catani, M. Ciafaloni, G. Marchesini 1985



Soft refactorisation: tree level
This framework generalises to arbitrary patterns of strong ordering for multiple soft radiation 
at tree level.  For example for strongly-ordered triple radiation one can define

Computing the form factors, one reproduces the strongly-ordered limit of (Catani et al. 2019).

• Generalising to strongly-ordered soft radiation of m gluons is natural (and tested for m=3).
• Similar definitions hold for soft form factors for multiple ordered subsets of several gluons.
• Preliminary evidence suggests that similar soft re-factorisations may hold to higher orders.



Strongly-ordered soft counterterms
The top-down approach suggests an expression for the soft real-virtual counterterm

The refactorisation of strongly-ordered soft radiation suggests an expression for the soft K(12)

One can now use the finiteness of inclusive soft cross sections to cancel soft poles arising 
from the phase-space integration of K(12), using 

This gives a new expression for the real-virtual soft counterterm

The two definitions have identical soft poles, which was checked with a non-trivial calculation.

Collinear poles?

“Completeness 
relation”

A “bottom-up” 
approach



A top-down approach
This result is better understood by taking more seriously the idea of refactorisation

• The radiative soft function is not a pure counterterm: it has IR poles and finite contributions.
• It can be considered as an amplitude in the presence of sources: virtual IR poles will factorise. 

Applying the standard soft-jet-hard factorisation for scattering amplitudes we write

Expanding to one-loop order, the terms containing IR poles are

We recognise (upon squaring) the soft contribution to K(RV), plus hard collinear corrections.

This can be explicitly checked against the general expression for the soft limit of RV

To match the two calculations, one must subtract the hard-collinear poles of the virtual part.



Collinear refactorisation
The top-down approach suggests an expression for the collinear real-virtual counterterm

Soft poles?

In the bottom-up approach one starts with strongly-ordered collinear kernels, for example

q → q q q
_

This can be directly translated in the language of jet functions.  At cross-section level

q → q g g ,  abelian 

One can now use the finiteness of inclusive collinear cross sections to cancel collinear poles 
arising from the phase-space integration of K(12), using 

This gives a new expression for the real-virtual collinear counterterm

The two definitions have identical collinear poles, which again calls for an explanation.

“Completeness 
relation”

Bottom-up
approach



Top-down collinear

Once again, the result is better understood by means of a refactorisation of the radiative jet

• The radiative jet function has both UV and IR poles, as well as phase-space singularities.
• As before, it is an amplitude in the presence of sources: virtual IR poles will factorise. 

Applying the standard soft-jet-hard factorisation for amplitudes we write

Expanding to one-loop order, the terms containing IR poles are

One reconstructs (upon squaring) the collinear contribution to K(RV), plus soft corrections.

• For gg radiation, hard collinear terms are identical and phase space provides a factor 1/2.
• The three-point soft function does not affect collinear factorisation: it simplifies to a singlet 

quantity when the collinear limit is taken.

The cancellation of poles between K(RV) and the integral of K(12) is now built in the definitions.



OUTLOOK



  Infrared subtraction beyond NLO requires understanding all strongly-ordered IR limits.

  Factorisation provides definitions for local soft and collinear kernels to all orders.

  Soft and collinear kernels are expressed by matrix elements of fields and Wilson lines.

  In strongly ordered limits the kernels re-factorise into lower-order matrix elements.

  Known strongly ordered IR limits at NNLO and N3LO are reproduced by factorisation.

  “Completeness relations” link strongly-ordered kernels and real-virtual counterterms.

  Upon implementing phase-space mappings, the cancellation of RV poles can be checked.

  The refactorisation approach to strong-ordering generalises smoothly to higher orders.

  The architecture of infrared subtraction is becoming clear to all orders.

Outlook
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