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Parton Model: Short Range Factorizes from the Long Range
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Differential Cross Section: Analytic Structure

* Theoretical separation
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* Good news: singular contributions are of infrared (soft and collinear) origin. Hence, they have some degree of universality

that leads to Resummation of these terms.




Why Resummation? Fixed Order Vs Resummed Predictions
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* Low transverse momentum region: while the FO results are not reliable, the resummed results are smooth.

* High transverse momentum region: significant contributions are from the regular parts, making resummation ineffective.



Resummed Prediction Vs Data
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Torrielli (2203.01565); Camarda, Cieri, Ferrera
(2103.04974) :
How are these large logarithms resummed ?
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Transverse Momentum Resummation

* Using the formalism of qT-resummation [1], singular part of the differential cross section i b-space has the

following structure o
Born contribution Sudakov soft contribution
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* Other equivalent formulations do exist in the literature that are based either on TMD factorisation or on SCET methods [2]

'1] Collins, Soper, Sterman (1985); Catani, Cier1, de Florian, Ferrera, Grazzini (1311.1654)

2] J Collins, Foundations of perturbative QCD; Becher, Neubert (1007.4005); Echevarria, Idilbi, Scimemi (1111.4996); Chiu, Jain, Neill,
Rothstein (1202.0814)
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Hard Collinear Factor: Structure

* For the gluon gluon fusion channel
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* For the quark anti-quark annihilation channel, it has a relatively simple structure.

R

. . No tensor structure
[1] Catani, Grazzini (1011.3918)



Collinear Functions: Review from Literature

* Azimuthally independent collinear functions are recently known to N3LO 1n QCD coupling

[1] [2] [3]

* Azimuthally dependent collinear functions are recently known to NNLO 1n perturbation series

[4] [5]

* Similar functions do exist for the processes related by crossing such as SIDIS and production of hadrons from
a pair of leptons and they are called Time-Like collinear functions or Fragmenting Jet functions.

[1] de Florian, Grazzini (0108273); [4] Catani, Grazzini (1011.3918)
[2] Catani, Grazzini (1106.4652); Catani, Cier1, de Florian, Ferrera, Grazzini (1209.0158); Gehrmann, Lubbert, Yang (1209.0682, 1403.6451);
Echevarria, Scimemi, Vladimirov (1604.07869); Luo, Wang, Xu, Yang, Yang, Zhu (1908.03831); Luo, Yang, Zhu, Zhu (1909.13820)

[3] Luo, Yang, Zhu, Zhu (1912.05778); Ebert, Mistlberger, Vita (2006.05329); Luo, Yang, Zhu, Zhu (2012.03256)

[5] Luo, Yang, Zhu, Zhu (1909.13820); Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov (1907.03780)
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Our Novel Computational Method

Scattering matrix element

Collinear factorisation (
\4

Singular elements: splitting kernels

Integrate over radiated
momenta keeping their sum

. Differential collinear functions
Transverse momentum "-?; @ Time-like auxiliary vector
distribution ‘ ~ implies no rapidity divergences

Integrated collinear functions

GOAL!

Stefano Catani + PKD (2208.05840)
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QCD Factorization 1n the Collinear Limit

* The collinear factorisation of hard scattering matrix element having N collinear partons 1n 1ts most general form 1s given by

. Xir veetor Reduced ME

IM({gi}; ki k) [* = <M({Qi};k)|P({Qi};kla-- kN, ) M ({g:}; k) +

Dependence on non- Collinear limit of )k Collinear splitting kernel Non-singular terms
collinear partons -

* The TL collinear region is defined by - , * The SL collinear region 1s detined by f k? < 0

F

* The splitting kernel 1s process independent and this :
property of factorisation is called strict collinear Wd Collinear partons

factorisation. # Strict collinear factorisation is instead violated in SL

collinear region [1].

[1] Catani, de Florian, Rodrigo (1112.4405)
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Comments on the Use of Auxiliary Vector

* In addition to 1ts dependence on spin and colour indices, the splitting kernel depends on scalar functions of collinear
momenta of the form [1]

* In the literature, the splitting kernels are usually calculated using a light-like auxiliary vector. Indeed this choice 1s very
convenient for direct computations of the splitting kernels. However, we emphasise that one can also set

- This work —Time-like (TL2 > O)

* The change only affects the non-singular/power-suppressed terms 1n the collinear limit, and hence neglected.

[1] Catani, Grazzini (9908523)
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Ditferential Collinear Functions

* We define the differential collinear functions for the gluon channel in the TL region as follows [1]
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* TL splitting kernels for various splitting processes are fully known to second [2] and third order [3] in QCD.
* SL Splitting kernels for various splitting processes are fully known to second order and partially known to third order
[4] 1n the QCD strong coupling.

1] Stetano Catani + PKD; [4] Catani, de Florian, Rodrigo, Forshaw, Seymour, Siodmok, Dixon, Herrmann, Yan, Zhu
2] Bern, Del Duca, Kilgore, Schmidt, Catani, Grazzini, Campbell, Glover, Kosower, Uwer, Sborlini, de Florian, Rodrigo

3] Catani, de Florian, Rodrigo, Del Duca, Frizzo, Maltoni, Birthwright, Glover, Khoze, Marquard, Duhr, Haindl, Lazopoulos, Michel, Sborlini,
Rodrigo, Badger Buc1un1 Peraro, Bern, DIXOII Kosower Gehrmann Jaquier, Czakon, Sapeta



Integrated Collinear Functions: Time-Like Region

* We define the transverse momentum dependent collinear functions for the gluon case as follows

g B
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* For the quark channel, we have only the azimuthal-independent type contributions.

Stefano Catani + PKD (2208.05840)



Integrated Collinear Functions: Space-Like Region

* We define the transverse momentum dependent collinear functions for both quark and gluon splitting as follows
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% Note that until now our framework 1s quite general 1.e. without restricting to any perturbative order.

* Up to NNLO, SL collinear functions are also process independent. Hence, like TL region the functions we will be

dealing with are as follows

.
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Stefano Catani + PKD (2208.05840)
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Other Applications: Zero Jettiness Beam Functions

* Our method of computing collinear functions can be extended and applied to other observables of interest.

* For example, we can define the zero-jettiness partonic beam functions for both quark and gluon splitting in the SL region
as follows

o> = o P e NP DR SO 27 ey o o Lo o oL m a7 oo e o Py e T

Bu({a:}; 2 2p,tm) = 16(1— 2) 6(t) buq

vz [ d% 6(t —22pk) 6( ~r —1+2) Feul{ai};p,k;n),

Transverse virtuality ~ Zero-jettiness

Stewart, Tackmann, Waalewiyn (1002.2213); Berger, Marcantonini, Stewart, Tackmann, Waalewin (1012.4480); Ritzmann, Waalew1n

(1407.3272); Gaunt, Stahlhofen, Tackmann (1401.5478); Gaunt, Stahlhofen, Tackmann (1405.1044); Ebert, Mistlberger, Vita (2006.03056);
Baranowski, Behring, Melnikov, Tancredi, Wever (2211.05722)
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Comments on Collinear Functions in SCET

* There are related definitions of TMD collinear functions from SCET. These functions are defined 1n a process independent
way using auxiliary Wilson line operators along light-like directions.

* For TL case at the partonic level, SCET functions are equivalent to our collinear functions by using a light-like auxiliary
vector [1].

* Same equivalence holds true for the SL region 1s only up to second order 1n strong coupling. This 1s due to the fact that ours
results are 1n general process dependent and this dependency goes away 1f we are within NNLO 1n perturbation theory.

[1] Ritzmann, Waalew1jn (1407.3272)

15



TMD Functions & Rapidity Divergences

* Order-by-order perturbative computations of qT differential distributions at any values of qT can be carried out in exact
form without encountering rapidity divergences and small-qT behaviour can be obtained by simply neglecting sub-dominant

terms.

* Rapidity divergences are artefact of a priori approximations that are introduced 1in matrix element and qT dependent phase
space to evaluate only the dominant terms of the cross section in the small gT-region.

Phase space 1n the collinear limit . e

(s ME 1n the collinear limit

dy s(d—2) k™ 1-—2 TLW

<

A ’kpdktdk™

Liditv of coll; Phase space | | Only 1f the differential
Vali ity ot collinear | f= 5 (’)(k+) . . . 0 < k < +00 collinear function is well
factorisation formula -' Simplification behaved in the limit k2~ — oo

* For the computation of individual components such as soft functions, collinear functions etc. there are many rapidity
regulators that exist in the literature and they are introduced at the integrated level.

* We avoid rapidity divergences in our computation by itroducing a time-like auxiliary vector at the matrix element level.
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No Rapidity Divergent Terms!

* Consider the singular term

. . . . Divergent for 2 — 1
* Using a time-like auxiliary vector 5

B 1 — 2 1 1—2
= 1 — /
e = (amn), 09 [
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k N ar -

A = )’ Sub-dominant in the limit 9T — 0

Stefano Catani + PKD (2208.05840)



Ditferential Collinear Functions

* SL differential collinear functions up to NNLO have the following perturbative expansion

F(p, k;n) = FOB (p, k;n) + [ FER(p, k;n) + FORY) (p, k;n) | + O(ad) |

. . J .
Single real radiation Double real radiation One-loop real-virtual

* Azimuthally independent contributions @ () (OKS) g _ (47T 6_7E)€ . n(p — k)
& — n

np

Real contributions to LO

* Azimuthally dependent contributions @ () ((XS) AP splitting functions
2
FUR () fopy = — B0 S €7 0 (K°) Ca 1— 2
gg,corr.\t’s vy - e pk ZT% ;
2 2
F(R) (p, k;n) = ag pry° Se €7 6,4(k°)Cr 1 -2, 6=q,q
; ATy TV T — y e &
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Collinear Functions in Momentum Space

* At the bare level, azimuthally independent collinear functions at NLO are obtained as follows
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* Azimuthally correlated collinear functions at O (ag) are obtained as follows

* Formulae for the Fourier transformation from momentum space to conjugate impact parameter space
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Factorisation of IR Divergences

* Infrared factorisation in b-space
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% Infrared factorisation factors for both gluon and quark are as follows
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Perturbative Results at NLO

* Collinear functions 1n the Space-Like Region [ 1]

* Collinear functions 1n the Time-Like Region [2]

* Our results are 1n full agreement with those in the literature.

1] de Florian, Grazzini (0108273); Catani, Grazzini (1106.4652)
2] Luo et al. (1908.03831,1909.13820); Echevarria et al. (1604. 07869); Nadolsky et al. (9906280)
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Perturbative Results at NNLO: Space-Like Region

* Azimuthally correlated collinear functions are obtained as follows
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% Our results are 1n full agreement with those 1n the literature [1].

[1] Luo, Yang, Zhu, Zhu (1909.13820); Gutierrez-Reyes, Leal-Gomez, Scimemi, Vladimirov (1907.03780)




Perturbative Results at NNLO: Time-Like Region

* Azimuthally correlated collinear functions are obtained as follows
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% Our results are 1n full agreement with those 1n the literature [1].

[1] Luo, Yang, Zhu, Zhu (1909.13820)



Summary

Fixed order predictions can be plagued with large logarithmic corrections stemming from soft and collinear regions of the
phase space.

For better prediction, one needs to resum these large logarithms systematically to all orders 1n the perturbation theory.

Large logarithmic contributions to an observable can be obtained from the singular elements associated with the QCD
factorisation of scattering matrix elements 1n soft and collinear limits.

Singular terms associated with the QCD factorisation and the corresponding integrated functions are important elements
for various algorithms which aim to compute fully differential cross sections for various observables.
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Summary

I presented our method to compute both SL and TL collinear functions for QCD resummations using respective splitting
kernels for the scattering matrix element.

To compute these functions, we defined a differential version at the intermediate level and integrated them using proper
observable definition to obtain specific collinear functions for transverse momentum resummation.

For the azimuthally independent collinear functions, we have presented results up to NLO and for the azimuthally
correlated case, we have results up to NNLO 1n perturbation theory.

In our computation, we have stressed on the point that SL collinear functions, in general, can be process dependent and this
dependency comes from splitting kernels to collinear functions.

Instead of using a regulator to cure rapidity divergences those are present in the transverse momentum case, we use a time-
like auxiliary vector to avoid them at the matrix element level.
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Summary

I presented our method to compute both SL and TL collinear functions for QCD resummations using respective splitting
kernels for the scattering matrix element.

To compute these functions, we defined a differential version at the intermediate level and integrated them using proper
observable definition to obtain specific collinear functions for transverse momentum resummation.

For the azimuthally independent collinear functions, we have presented results up to NLO and for the azimuthally
correlated case, we have results up to NNLO 1n perturbation theory.

In our computation, we have stressed on the point that SL collinear functions, in general, can be process dependent and this
dependency comes from splitting kernels to collinear functions.

Instead of using a regulator to cure rapidity divergences those are present in the transverse momentum case, we use a time-
like auxiliary vector to avoid them at the matrix element level.

Thank You !



