Lecture 1 – Introduction to the Standard Model

Stefan Dittmaier

universität freiburg

Table of contents

Electroweak phenomenology before the GSW model The principle of local gauge invariance The Standard Model of electroweak interaction Electroweak precision physics before the LHC era

Table of contents

Electroweak phenomenology before the GSW model

- The principle of local gauge invariance
- The Standard Model of electroweak interaction
- Electroweak precision physics before the LHC era

Electroweak (EW) phenomenology before the GSW model

Some phenomenological facts:

- $\label{eq:score} \bullet \mbox{ discovery of the weak interaction via radioactive $$\beta$-decay of nuclei: $$n \to p + e^- + $$\overline{ν_e}$, $$p \to n + e^+ + $$\nu_e$ (not possible for free protons) }$
- ▶ terminology "weak":

interaction at low energy has very short range \hookrightarrow long life time of weakly decaying particles:

strong int.:	$ ho ightarrow 2\pi$,	$ au \sim 10^{-22} { m s}$
elmg. int.:	$\pi ightarrow 2\gamma$,	$ au \sim 10^{-16}$ s
weak int.:	$\pi^- o \mu^- + \bar{ u}_\mu$	$ au \sim 10^{-8}$ s
	$\mu^- \rightarrow \mathrm{e}^- + \bar{\nu}_\mathrm{e} + \nu_\mu$,	$ au \sim 10^{-6}$ s

▶ lepton-number conservation: $\mu^- \not\rightarrow e^- + \gamma$ (BR $\lesssim 4 \cdot 10^{-13}$)

 $\label{eq:Le} \begin{array}{l} \Rightarrow \ \ L_{\rm e}, L_{\mu}, L_{\tau} \ \mbox{individually conserved:} \\ L_{\rm e} = +1 \ \mbox{for ${\rm e}^-$}, \nu_{\rm e}, \qquad L_{\rm e} = -1 \ \mbox{for ${\rm e}^+$}, \bar{\nu}_{\rm e}, \quad \mbox{etc.} \end{array}$

(For massive ν 's with different Dirac masses, only $L_{\rm e} + L_{\mu} + L_{\tau}$ is conserved.)

parity violation (Wu et al. 1957):

e.g.: K⁺

$$ightarrow 2\pi, 3\pi$$

final states of different parity

 ${}^{60}\mathrm{Co} \rightarrow {}^{60}\mathrm{Ni}^* + \mathrm{e}^- + \bar{\nu}_\mathrm{e}$

↔ polarization inversion does not yield inversion of spectra

The Fermi model

(Fermi 1933, further developed by Feynman, Gell-Mann and others after 1958) Lagrangian for "current-current interaction" of four fermions:

 ${\cal L}_{
m Fermi}(x) = -2\sqrt{2}G_{\mu}J^{\dagger}_{
ho}(x)J^{
ho}(x), \qquad G_{\mu} = 1.16639 imes 10^{-5}\,{
m GeV}^{-2}$

with $J_{\rho}(x) = J_{\rho}^{\mathrm{lep}}(x) + J_{\rho}^{\mathrm{had}}(x) = \mathsf{charged}$ weak current

- ► Leptonic part J_{ρ}^{lep} of J_{ρ} : $J_{\rho}^{\text{lep}} = \overline{\psi_{\nu_{e}}} \gamma_{\rho} \omega_{-} \psi_{e} + \overline{\psi_{\nu_{\mu}}} \gamma_{\rho} \omega_{-} \psi_{\mu}$ $\omega_{\pm} = \frac{1}{2} (1 \pm \gamma_{5}) = \text{chirality projectors}$
 - ▶ only left-handed fermions $(\omega_{-}\psi)$, right-handed anti-fermions $(\overline{\psi}\omega_{+})$ feel (charged-current) weak interactions \Rightarrow maximal P-violation
 - doublet structure: $\begin{pmatrix} \nu_{e} \\ e^{-} \end{pmatrix}$, $\begin{pmatrix} \nu_{\mu} \\ \mu^{-} \end{pmatrix}$, later completed by $\begin{pmatrix} \nu_{\tau} \\ \tau^{-} \end{pmatrix}$

• $(J^{\text{lep},\rho})^{\dagger} J^{\text{lep}}_{\rho}$ induces muon decay: μ^{-} • • • • e^{-}

S.Dittmaier

• Hadronic part J_{ρ}^{had} of J_{ρ} :

Question: doublet structure $\begin{pmatrix} u \\ d \end{pmatrix}$, $\begin{pmatrix} c \\ s \end{pmatrix}$?

Problem: e.g. annihilation of us pair would not be allowed, but is observed: $K^+ \rightarrow \mu^+ \nu_\mu$

 $\mathrm{u}\overline{\mathrm{s}}$ pair in quark model

Solution (Cabibbo 1963):

 $\operatorname{u-c-mixing}$ and $\operatorname{d-s-mixing}$ in weak interaction

$$\hookrightarrow \text{ doublets } \begin{pmatrix} u \\ d' \end{pmatrix}, \begin{pmatrix} c \\ s' \end{pmatrix} \text{ with } \begin{pmatrix} d' \\ s' \end{pmatrix} = U_C \begin{pmatrix} d \\ s \end{pmatrix},$$
orthogonal Cabbibo matrix $U_C = \begin{pmatrix} \cos \theta_C & \sin \theta_C \\ -\sin \theta_C & \cos \theta_C \end{pmatrix},$
empirical result: $\theta_C \approx 13^\circ$

 $J_{\rho}^{\rm had} = \overline{\psi_{\rm u}} \gamma_{\rho} \omega_{-} \psi_{\rm d'} + \overline{\psi_{\rm c}} \gamma_{\rho} \omega_{-} \psi_{\rm s'}$

Remarks on the Fermi model:

- universal coupling G_{μ} for all transitions $(U_{\rm C}^{\dagger}U_{\rm C} = \mathbf{1}$ is part of universality)
- no (pseudo-)scalar or tensor couplings, such as (ψψ)(ψψ), (ψψ)(ψψ), etc., necessary to describe low-energy experiments (E ≤ 1 GeV)
- Problems:
 - ► cross sections for $\nu_{\mu} e \rightarrow \nu_{e} \mu$, etc., grow for energy $E \rightarrow \infty$ as E^{2} \hookrightarrow unitarity violation !
 - no consistent evaluation of higher perturbative orders possible (no cancellation of UV divergences)

 $\, \hookrightarrow \, \text{ non-renormalizability } !$

S.Dittmaier

"Intermediate-vector-boson (IVB) model"

Idea: "resolution" of four-fermion interaction by vector-boson exchange Lagrangian:

 W^{\pm} are vector bosons with electric charge $\pm e$ and mass M_{W} .

Propagator:
$$G_{\mu\nu}^{WW}(k) = \frac{-i}{k^2 - M_W^2} \left(g_{\mu\nu} - \frac{k_\mu k_\nu}{M_W^2} \right), \quad k = momentum$$

Interaction Lagrangian: $\mathcal{L}_{int} = \frac{g_W}{\sqrt{2}} \left(J^{\rho} W_{\rho}^+ + J^{\rho \dagger} W_{\rho}^- \right),$
 $J^{\rho} = charged weak current as in Fermi model$

Four-fermion interaction in process $\nu_{\mu} e^- \rightarrow \mu^- \nu_e$

IVB model:

$$\Rightarrow$$
 identification for $|k| \ll M_{
m W}$: $2\sqrt{2}G_{\mu} ~=~ rac{g_{
m W}^2}{2M_{
m W}^2}$

Consequences for the high-energy behaviour:

- k^{ρ} terms: $\bar{u}_{\nu_{0}} k \omega_{-} u_{\rho^{-}} = \bar{u}_{\nu_{0}} (p_{e} p_{\nu_{0}}) \omega_{-} u_{\rho^{-}} = m_{e} \bar{u}_{\nu_{0}} \omega_{-} u_{\rho^{-}}$ \hookrightarrow no extra factors of scattering energy E
- propagator $1/(k^2 M_W^2) \sim 1/E^2$ for $|k| \sim E \gg M_W$ \hookrightarrow damping of amplitude in high-energy limit by factor $1/E^2$
- \Rightarrow cross section $\underset{E \to \infty}{\sim}$ const/ E^2 , \Rightarrow No unitarity violation !

Comments on the IVB model:

► Formal similarity with QED interaction: $J^{\rho}W^{+}_{\rho} + \text{h.c.} \iff j^{\rho}_{\text{elm}\sigma}A_{\rho}$

Intermediate vector bosons can be produced, e.g.

 $\underbrace{\mathrm{u}\bar{\mathrm{d}}}_{\text{in pp collision}} \longrightarrow \underbrace{\mathrm{W}^+ \to f\bar{f}'}_{\mathrm{W}^\pm \text{ unstable}} \qquad \text{(discovery 1983 at CERN)}$

Problems:

unitarity violations in cross sections with longitudinal W bosons, e.g.

 non-renormalizability (no consistent treatment of higher perturbative orders)

 $\,\hookrightarrow\,$ Solution by spontaneously broken gauge theories !

Table of contents

Electroweak phenomenology before the GSW model

The principle of local gauge invariance

The Standard Model of electroweak interaction

Electroweak precision physics before the LHC era

The principle of local gauge invariance

QED as U(1) gauge theory:

Lagrangian
$$\mathcal{L}_{0,\text{ferm}} = \overline{\psi_f}(i\partial \!\!\!/ - m_f)\psi_f$$
 has global phase symmetry:
 $\psi_f \to \psi'_f = \exp\{-iQ_fe\theta\}\psi_f, \quad \overline{\psi_f} \to \overline{\psi'_f} = \overline{\psi_f}\exp\{+iQ_fe\theta\}$

with space-time-independent group parameter $\boldsymbol{\theta}$

"Gauging the symmetry": demand local symmetry, heta
ightarrow heta(x)

To maintain local symmetry, extend theory by "minimal substitution":

 $\partial^\mu o D^\mu = \partial^\mu + \mathrm{i} {\it Q}_{\it f} {\it e} {\it A}^\mu(x) =$ "covariant derivative",

 $A^{\mu}(x) =$ spin-1 gauge field (photon).

Transformation property of photon $A_\mu(x) o A'_\mu(x) = A_\mu(x) + \partial_\mu \theta(x)$ ensures

$$\blacktriangleright D_{\mu}\psi_{f} \rightarrow (D_{\mu}\psi_{f})' = D'_{\mu}\psi'_{f} = \exp\{-\mathrm{i}Q_{f}e\theta\}(D_{\mu}\psi_{f})$$

▶ gauge invariance of field-strength tensor $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$

Gauge-invariant Lagrangian of QED:

$$\mathcal{L}_{ ext{QED}} = \overline{\psi_f} (\mathrm{i} \partial \!\!\!/ - Q_f e \!\!\!/ \!\!\!/ - m_f) \psi_f - rac{1}{4} F_{\mu
u} F^{\mu
u}$$

Non-Abelian gauge theory (Yang-Mills theory):

Starting point:

Lagrangian $\mathcal{L}_{\Phi}(\Phi, \partial_{\mu}\Phi)$ of free or self-interacting fields with "internal symmetry":

•
$$\Phi = \begin{pmatrix} \phi_1 \\ \vdots \\ \phi_n \end{pmatrix}$$
 = multiplet of a compact Lie group G:
• $\Phi \rightarrow \Phi' = U(\theta)\Phi, \quad U(\theta) = \exp\{-igT^a\theta^a\}$ = unitary,
 T^a = group generators, $[T^a, T^b] = iC^{abc}T^c, \quad Tr(T^aT^b) = \frac{1}{2}\delta^{ab}$
• \mathcal{L}_{Φ} is invariant under G: $\mathcal{L}_{\Phi}(\Phi, \partial_{\mu}\Phi) = \mathcal{L}_{\Phi}(\Phi', \partial_{\mu}\Phi')$

Example: self-interacting (complex) boson multiplet

 $\mathcal{L}_{\Phi} = (\partial_{\mu} \Phi)^{\dagger} (\partial^{\mu} \Phi) - m^{2} \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^{2} \quad (m = \text{common boson mass, } \lambda = \text{coupling strength})$

Gauging the symmetry by minimal substitution:

$$\begin{array}{lll} \mathcal{L}_{\Phi}(\Phi,\partial_{\mu}\Phi) & \rightarrow & \mathcal{L}_{\Phi}(\Phi,D_{\mu}\Phi) & \text{with } D_{\mu}=\partial_{\mu}+\mathrm{i}gT^{a}A_{\mu}^{a}(x), \\ & g= \text{gauge coupling,} \\ T^{a}= \text{generator of G in } \Phi \text{ representation,} \\ A^{a}_{\mu}(x)= \text{gauge fields} \end{array}$$

Transformation property of gauge fields:

L_Φ(Φ, D_μΦ) local invariant if D_μΦ → (D_μΦ)' = D'_μΦ' = U(θ)(D_μΦ)
 ⇒ T^aA'^a_μ = UT^aA^a_μU[†] - ⁱ/_gU(∂_μU[†]), A^a_μA^{a,μ} = not gauge invariant infinitesimal form: δA^a_μ = gC^{abc}δθ^bA^c_μ + ∂_μδθ^a
 covariant definition of field strength: [D_μ, D_ν] = igT^aF^a_{μν}
 ⇒ T^aF^a_{μν} → T^aF'^a_{μν} = UT^aF^a_{μν}U[†], F^a_{μν}F^{a,μν} = gauge invariant explicit form: F^a_{μν} = ∂_μA^a_ν - ∂_νA^a_μ - gC^{abc}A^b_μA^b_ν

Yang-Mills Lagrangian for gauge and matter fields:

$$\mathcal{L}_{\mathrm{YM}} = -rac{1}{4} F^a_{\mu
u} F^{a,\mu
u} + \mathcal{L}_{\Phi}(\Phi, D_{\mu}\Phi)$$

- ► Lagrangian contains terms of order (∂A)A², A⁴ in F² part
 → cubic and quartic gauge-boson self-interactions
- ▶ gauge coupling determines gauge-boson-matter and gauge-boson self-interaction → unification of interactions
- ▶ mass term $M^2(A^a_\mu A^{a,\mu})$ for gauge bosons forbidden by gauge invariance
 - $\,\hookrightarrow\,$ gauge bosons of unbroken Yang–Mills theory are massless

Quantum chromodynamics — gauge theory of strong interactions

► Gauge group: SU(3)_c, dim. = 8
structure constants
$$f^{abc}$$
, gauge coupling g_s , $\alpha_s = \frac{g_s^2}{4\pi}$
► Gauge bosons: 8 massless gluons g with fields $A_{\mu}^a(x)$, $a = 1, ..., 8$
► Matter fermions: quarks q (spin- $\frac{1}{2}$) with flavours $q = d$, u, s, c, b, t
in fundamental representation:
 $\psi_q(x) \equiv q(x) = \begin{pmatrix} q_r(x) \\ q_g(x) \\ q_b(x) \end{pmatrix} = \text{colour triplet}$
 $T^a = \frac{\lambda^a}{2}$, Gell-Mann matrices $\lambda^1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, etc.
► Lagrangian:
 $\mathcal{L}_{QCD} = -\frac{1}{4}F_{\mu\nu}^a F^{a,\mu\nu} + \sum_q \overline{\psi_q}(i\mathcal{D} - m_q)\psi_q$
 $= -\frac{1}{4}(\partial_{\mu}A_{\nu}^a - \partial_{\nu}A_{\mu}^a - g_s f^{abc}A_{\mu}^bA_{\nu}^c)^2 + \sum_q \overline{\psi_q}\left(i\mathcal{P} - g_s\frac{\lambda^a}{2}A^a - m_q\right)\psi_q$
 $g = \frac{g}{g} \int_{g} \frac{g}{\sqrt{g}} \int_{g} \frac{g}{\sqrt{$

Table of contents

Electroweak phenomenology before the GSW model The principle of local gauge invariance The Standard Model of electroweak interaction

Electroweak precision physics before the LHC era

The Standard Model (SM) of electroweak interaction (Glashow–Salam–Weinberg model)

The gauge group for EW interaction

Why unification of weak and elmg. interaction ?

- **•** similiarity: spin-1 fields couple to matter currents formed by spin- $\frac{1}{2}$ fields
- elmg. coupling of charged W^{\pm} bosons

$\gamma, \mathrm{W}^+, \mathrm{W}^-$ as gauge bosons of group SU(2) ? – No!

Reasons:

► charge operator
$$Q$$
 cannot be SU(2) generator, since $\operatorname{Tr} Q \neq 0$
for fermion doublets: $Q = \begin{pmatrix} 0 & 0 \\ 0 & -1 \end{pmatrix}$ for $\begin{pmatrix} \nu_{\mathrm{e}} \\ \mathrm{e}^{-} \end{pmatrix}$, etc.

Possible way out: additional heavy fermions like E^+ as partner to ${\rm e}^-$? \hookrightarrow no experimental confirmation !

 $\blacktriangleright~{\rm W}^{\pm}$ couplings parity violating, but γ coupling parity invariant

Minimal solution: $SU(2)_{I} \times U(1)_{Y}$

- ▶ $SU(2)_I$ → weak isospin group with gauge fields W^+, W^-, W^0
- $U(1)_{Y} \rightarrow$ weak hypercharge with gauge field B

 W^0 and B carry identical quantum numbers

 $\,\hookrightarrow\,$ two neutral gauge bosons $\gamma,~Z$ as mixed states

Fermion sector and minimal substitution

Multiplet structure:

Distinguish between left-/right-handed parts of fermions: $\psi^{L} = \omega_{-}\psi$, $\psi^{R} = \omega_{+}\psi$

- $\psi^{\rm L}$ couple to ${\rm W}^{\pm} \rightarrow {\rm group} \ \psi^{\rm L}$ into SU(2)_I doublets, weak isospin $T_{\rm I}^a = \frac{\sigma^a}{2}$
- $\psi^{\rm R}$ do not couple to ${\rm W}^{\pm} \rightarrow \psi^{\rm R}$ are SU(2)_I singlets, weak isospin $T_{\rm I}^a = 0$

 $\blacktriangleright \psi^{L/R}$ couple to γ in the same way

 \hookrightarrow adjust coupling to U(1)_Y (i.e. fix weak hypercharges $Y^{L/R}$ for $\psi^{L/R}$) such that elmg. coupling results: $\mathcal{L}_{int,QED} = -Q_f e \overline{\psi_f} A \psi_f$

 $\Psi_L^{\rm L} = \begin{pmatrix} \nu_{\rm e}^{\rm L} \\ e^{\rm L} \end{pmatrix}, \quad \begin{pmatrix} \nu_{\mu}^{\rm L} \\ \mu^{\rm L} \end{pmatrix}, \quad \begin{pmatrix} \nu_{\tau}^{\rm L} \\ \tau^{\rm L} \end{pmatrix}, \quad +\frac{1}{2} \qquad 0$

Fermion content of the SM:

(ignoring possible right-handed neutrinos)

leptons:

quarks: (Each guark exists in 3 colours!)

 $\psi_{\ell}^{\mathrm{R}} = \mathrm{e}^{\mathrm{R}}, \qquad \mu^{\mathrm{R}}, \qquad \tau^{\mathrm{R}},$

Q

-1

 $T_{\rm T}^3$

Free Lagrangian of (still massless) fermions:

$$\mathcal{L}_{0,\text{ferm}} = i\overline{\psi_{t}}\partial\!\!\!/\psi_{t} = i\overline{\Psi_{L}^{\text{L}}}\partial\!\!\!/\Psi_{L}^{\text{L}} + i\overline{\Psi_{Q}^{\text{L}}}\partial\!\!\!/\Psi_{Q}^{\text{L}} + i\overline{\psi_{\ell}^{\text{R}}}\partial\!\!\!/\psi_{\ell}^{\text{R}} + i\overline{\psi_{u}^{\text{R}}}\partial\!\!\!/\psi_{d}^{\text{R}} + i\overline{\psi_{d}^{\text{R}}}\partial\!\!\!/\psi_{d}^{\text{R}}$$

Minimal substitution:

$$\begin{array}{lll} \partial_{\mu} \ \rightarrow \ D_{\mu} = \partial_{\mu} - \mathrm{i}g_{2}\,T_{1}^{a}W_{\mu}^{a} + \mathrm{i}g_{1}\frac{1}{2}\,YB_{\mu} \ = \ D_{\mu}^{\mathrm{L}}\omega_{-} + D_{\mu}^{\mathrm{R}}\omega_{+}, \\ \\ D_{\mu}^{\mathrm{L}} = \partial_{\mu} - \frac{\mathrm{i}g_{2}}{\sqrt{2}} \begin{pmatrix} 0 & W_{\mu}^{+} \\ W_{\mu}^{-} & 0 \end{pmatrix} - \frac{\mathrm{i}}{2} \begin{pmatrix} g_{2}W_{\mu}^{3} - g_{1}Y^{\mathrm{L}}B_{\mu} & 0 \\ 0 & -g_{2}W_{\mu}^{3} - g_{1}Y^{\mathrm{L}}B_{\mu} \end{pmatrix} + \\ \\ D_{\mu}^{\mathrm{R}} = \partial_{\mu} + \mathrm{i}g_{1}\frac{1}{2}Y^{\mathrm{R}}B_{\mu} \end{array}$$

Photon identification:

"Weinberg rotation": $\begin{pmatrix} Z_{\mu} \\ A_{\mu} \end{pmatrix} = \begin{pmatrix} c_{W} & s_{W} \\ -s_{W} & c_{W} \end{pmatrix} \begin{pmatrix} W_{\mu}^{3} \\ B_{\mu} \end{pmatrix}$, $c_{W} = \cos \theta_{W}, s_{W} = \sin \theta_{W}$, $\theta_{W} = \text{weak mixing angle}$

$$D^{\mathrm{L}}_{\mu}\big|_{A_{\mu}} = -\frac{\mathrm{i}}{2}A_{\mu}\begin{pmatrix} -g_{2}s_{\mathrm{W}} - g_{1}c_{\mathrm{W}}Y^{\mathrm{L}} & 0\\ 0 & g_{2}s_{\mathrm{W}} - g_{1}c_{\mathrm{W}}Y^{\mathrm{L}} \end{pmatrix} \stackrel{!}{=} \mathrm{i}eA_{\mu}\begin{pmatrix} Q_{1} & 0\\ 0 & Q_{2} \end{pmatrix}$$

• charged difference in doublet $Q_1 - Q_2 = 1 \rightarrow g_2 = \frac{e}{S_W}$

► normalize $Y^{L/R}$ such that $g_1 = \frac{e}{c_W}$ \hookrightarrow Y fixed by "Gell-Mann-Nishijima relation": $Q = T_I^3 + \frac{Y}{2}$

Fermion-gauge-boson interaction:

$$\mathcal{L}_{\rm ferm, YM} = \frac{e}{\sqrt{2}s_{\rm W}} \overline{\Psi_F^{\rm L}} \begin{pmatrix} 0 & W^+ \\ W^- & 0 \end{pmatrix} \Psi_F^{\rm L} + \frac{e}{2c_{\rm W}s_{\rm W}} \overline{\Psi_F^{\rm L}} \sigma^3 \vec{Z} \Psi_F^{\rm L} \\ - e \frac{s_{\rm W}}{c_{\rm W}} Q_f \overline{\psi_f} \vec{Z} \psi_f - e Q_f \overline{\psi_f} A \psi_f \qquad (f = \text{all fermions, } F = \text{all doublets})$$

Feynman rules:

Gauge-boson sector

Yang-Mills Lagrangian for gauge fields:

$$\mathcal{L}_{\rm YM} = -\frac{1}{4} W^{a}_{\mu\nu} W^{a,\mu\nu} - \frac{1}{4} B_{\mu\nu} B^{\mu\nu}$$

Field-strength tensors:

 $W^{a}_{\mu\nu} = \partial_{\mu}W^{a}_{\nu} - \partial_{\nu}W^{a}_{\mu} + g_{2}\epsilon^{abc}W^{b}_{\mu}W^{c}_{\nu}, \qquad B_{\mu\nu} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$

Lagrangian in terms of "physical" fields:

$$\begin{split} \mathcal{L}_{\mathrm{YM}} &= -\frac{1}{2} (\partial_{\mu} W^{+}_{\nu} - \partial_{\nu} W^{+}_{\mu}) (\partial^{\mu} W^{-,\nu} - \partial^{\nu} W^{-,\mu}) \\ &- \frac{1}{4} (\partial_{\mu} Z_{\nu} - \partial_{\nu} Z_{\mu}) (\partial^{\mu} Z^{\nu} - \partial^{\nu} Z^{\mu}) - \frac{1}{4} (\partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu}) (\partial^{\mu} A^{\nu} - \partial^{\nu} A^{\mu}) \end{split}$$

+ (trilinear interaction terms involving AW^+W^- , ZW^+W^-)

Feynman rules for gauge-boson self-interactions:

(fields and momenta incoming)

141+

$$W_{\mu}^{-} \qquad W_{\nu}^{-} \qquad \text{ie}C_{WWV} \begin{bmatrix} g_{\mu\nu}(k_{+}-k_{-})_{\rho} + g_{\nu\rho}(k_{-}-k_{V})_{\mu} \\ + g_{\rho\mu}(k_{V}-k_{+})_{\nu} \end{bmatrix}$$
with $C_{WW\gamma} = 1$, $C_{WWZ} = -\frac{c_{W}}{s_{W}}$

$$\begin{array}{cccc} W^+_{\mu} & & & & V_{\rho} \\ & & & & & ie^2 C_{WWVV'} \left[2g_{\mu\nu}g_{\rho\sigma} - g_{\mu\rho}g_{\sigma\nu} - g_{\mu\sigma}g_{\nu\rho} \right] \\ W^-_{\nu} & & & V'_{\sigma} \end{array} \\ & & & & & \text{with } C_{WW\gamma\gamma} = -1, \qquad C_{WW\gammaZ} = \frac{c_{W}}{s_{W}}, \\ & & & C_{WWZZ} = -\frac{c_{W}^2}{s_{W}^2}, \quad C_{WWWW} = \frac{1}{s_{W}^2} \end{array}$$

Higgs sector and spontaneous symmetry breaking

- Idea: spontaneous breakdown of SU(2)_I × U(1)_Y symmetry \rightarrow U(1)_{elmg} symmetry \hookrightarrow masses for W^{\pm} and Z bosons, but γ remains massless
- Note: choice of scalar extension of massless model involves freedom

GSW model:

Minimal scalar sector with complex scalar doublet $\Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}$, $Y_{\Phi} = 1$

Scalar self-interaction via Higgs potential:

$$egin{aligned} V(\Phi) &= -\mu^2 \Phi^\dagger \Phi + rac{\lambda}{4} (\Phi^\dagger \Phi)^2, & \mu^2, \lambda > 0, \ &= \mathrm{SU}(2)_\mathrm{I} imes \mathrm{U}(1)_\mathrm{Y} \ \mathrm{symmetric} \end{aligned}$$

$$V(\Phi) = \text{minimal for} \quad |\Phi| = \sqrt{\frac{2\mu^2}{\lambda}} \equiv \frac{v}{\sqrt{2}} > 0$$

Ground state Φ_0 (=vacuum expectation value of $\Phi)$ not unique,

specific choice $\Phi_0 = \begin{pmatrix} 0 \\ \frac{\nu}{\sqrt{2}} \end{pmatrix}$ not gauge invariant \Rightarrow spontaneous symmetry breaking! Elmg. gauge invariance unbroken, since $Q\Phi_0 = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Phi_0 = 0$

Field excitations in Φ :

$$\Phi(x) = \begin{pmatrix} \phi^+(x) \\ \frac{1}{\sqrt{2}} (\nu + H(x) + i\chi(x)) \end{pmatrix}$$

Gauge-invariant Lagrangian of Higgs sector: $(\phi^{-} = (\phi^{+})^{\dagger})$ $\mathcal{L}_{\mathrm{H}} = (D_{\mu}\Phi)^{\dagger}(D^{\mu}\Phi) - V(\Phi) \qquad ext{with } D_{\mu} = \partial_{\mu} - \mathrm{i}g_{2}rac{\sigma^{a}}{2}W_{\mu}^{a} + \mathrm{i}rac{g_{1}}{2}B_{\mu}$ $= (\partial_{\mu}\phi^{+})(\partial^{\mu}\phi^{-}) - \frac{\mathrm{i}ev}{2\epsilon_{\mu\nu}}(W^{+}_{\mu}\partial^{\mu}\phi^{-} - W^{-}_{\mu}\partial^{\mu}\phi^{+}) + \frac{e^{2}v^{2}}{4\epsilon^{2}}W^{+}_{\mu}W^{-,\mu}$ $+\frac{1}{2}(\partial\chi)^{2}+\frac{ev}{2c_{\rm V}s_{\rm V}}Z_{\mu}\partial^{\mu}\chi+\frac{e^{2}v^{2}}{4c_{\rm V}^{2}s_{\rm V}^{2}}Z^{2}+\frac{1}{2}(\partial H)^{2}-\mu^{2}H^{2}$ + (trilinear SSS, SSV, SVV interactions) + (quadrilinear SSSS, SSVV interactions)

Implications:

► gauge-boson masses: $M_{\rm W} = \frac{ev}{2s_{\rm W}}$, $M_{\rm Z} = \frac{ev}{2c_{\rm W}s_{\rm W}} = \frac{M_{\rm W}}{c_{\rm W}}$, $M_{\gamma} = 0$

▶ physical Higgs boson H: $M_{\rm H} = \sqrt{2\mu^2}$ = free parameter

• would-be Goldstone bosons ϕ^{\pm} , χ : unphysical degrees of freedom

Fermion masses and Yukawa couplings

Ordinary Dirac mass terms $m_f \overline{\psi_f} \psi_f = m_f (\overline{\psi_f^L} \psi_f^R + \overline{\psi_f^R} \psi_f^L)$ not gauge invariant \hookrightarrow introduce fermion masses by (gauge-invariant) Yukawa interaction

Lagrangian for Yukawa couplings:

$$\mathcal{L}_{\mathrm{Yuk}} = -\overline{\Psi_{L}^{\mathrm{L}}} \underline{G}_{\ell} \psi_{\ell}^{\mathrm{R}} \Phi - \overline{\Psi_{Q}^{\mathrm{L}}} \underline{G}_{u} \psi_{u}^{\mathrm{R}} \tilde{\Phi} - \overline{\Psi_{Q}^{\mathrm{L}}} \underline{G}_{d} \psi_{d}^{\mathrm{R}} \Phi + \mathrm{h.c.}$$

• $G_{\ell}, G_u, G_d = 3 \times 3$ matrices in 3-dim. space of generations (ν masses ignored)

•
$$\tilde{\Phi} = i\sigma^2 \Phi^* = \begin{pmatrix} \phi^{0^*} \\ -\phi^- \end{pmatrix}$$
 = charge conjugate Higgs doublet, $Y_{\tilde{\Phi}} = -1$

Fermion mass terms:

mass terms = bilinear terms in $\mathcal{L}_{\mathrm{Yuk}},$ obtained by setting $\Phi \to \Phi_0:$

$$\mathcal{L}_{m_f} = -\frac{v}{\sqrt{2}} \overline{\psi_{\ell}^{\mathrm{L}}} G_{\ell} \psi_{\ell}^{\mathrm{R}} - \frac{v}{\sqrt{2}} \overline{\psi_{u}^{\mathrm{L}}} G_{u} \psi_{u}^{\mathrm{R}} - \frac{v}{\sqrt{2}} \overline{\psi_{d}^{\mathrm{L}}} G_{d} \psi_{d}^{\mathrm{R}} + \text{h.c.}$$

 $\begin{array}{l} \hookrightarrow \mbox{ diagonalization by unitary field transformations } (f = I, u, d) \\ & \hat{\psi}_{f}^{\rm L/R} \equiv U_{f}^{\rm L/R} \psi_{f}^{\rm L/R} \mbox{ such that } \frac{v}{\sqrt{2}} U_{f}^{\rm L} G_{f} (U_{f}^{\rm R})^{\dagger} = {\rm diag}(m_{f}) \\ & \Rightarrow \mbox{ standard form: } \mathcal{L}_{m_{f}} = -m_{f} \overline{\psi}_{f}^{\rm L} \psi_{f}^{\rm R} + {\rm h.c.} = -m_{f} \overline{\psi}_{f} \widehat{\psi}_{f} \end{array}$

Quark mixing:

• $\psi_{\rm f}$ correspond to eigenstates of the gauge interaction

▶ $\hat{\psi}_f$ correspond to mass eigenstates, for massless neutrinos define $\hat{\psi}_{\nu}^{L} \equiv U_{\ell}^{L} \psi_{\nu}^{L} \rightarrow$ no lepton-flavour changing

Yukawa and gauge interactions in terms of mass eigenstates:

$$\begin{aligned} \mathcal{L}_{\mathrm{Yuk}} &= -\frac{\sqrt{2}m_{\ell}}{v} \left(\phi^{+} \overline{\psi_{\nu_{\ell}}^{\mathrm{L}}} \widehat{\psi}_{\ell}^{\mathrm{R}} + \phi^{-} \overline{\psi_{\ell}^{\mathrm{R}}} \widehat{\psi}_{\nu_{\ell}}^{\mathrm{L}} \right) + \frac{\sqrt{2}m_{u}}{v} \left(\phi^{+} \overline{\psi_{u}^{\mathrm{R}}} \mathbf{V} \widehat{\psi}_{d}^{\mathrm{L}} + \phi^{-} \overline{\psi_{d}^{\mathrm{L}}} \mathbf{V}^{\dagger} \widehat{\psi}_{u}^{\mathrm{R}} \right) \\ &- \frac{\sqrt{2}m_{d}}{v} \left(\phi^{+} \overline{\psi_{u}^{\mathrm{L}}} \mathbf{V} \widehat{\psi}_{d}^{\mathrm{R}} + \phi^{-} \overline{\psi}_{d}^{\mathrm{R}} \mathbf{V}^{\dagger} \widehat{\psi}_{u}^{\mathrm{L}} \right) - \frac{m_{f}}{v} \mathrm{i} \operatorname{sgn}(T_{\mathrm{I},f}^{3}) \chi \, \overline{\psi}_{f} \gamma_{5} \widehat{\psi}_{f} \\ &- \frac{m_{f}}{v} (v + H) \, \overline{\psi}_{f} \widehat{\psi}_{f}, \end{aligned}$$
$$\\ \mathcal{L}_{\mathrm{ferm},\mathrm{YM}} &= \frac{e}{\sqrt{2}s_{\mathrm{W}}} \overline{\psi}_{L}^{\mathrm{L}} \begin{pmatrix} 0 & \psi^{+} \\ \psi^{-} & 0 \end{pmatrix} \widehat{\psi}_{L}^{\mathrm{L}} + \frac{e}{\sqrt{2}s_{\mathrm{W}}} \overline{\psi}_{Q}^{\mathrm{L}} \begin{pmatrix} 0 & \mathbf{V} \psi^{+} \\ \mathbf{V}^{+} & 0 \end{pmatrix} \widehat{\psi}_{Q}^{\mathrm{L}} \\ &+ \frac{e}{2c_{\mathrm{W}}s_{\mathrm{W}}} \overline{\psi}_{F}^{\mathrm{L}} \sigma^{3} \mathcal{Z} \widehat{\psi}_{F}^{\mathrm{L}} - e \frac{s_{\mathrm{W}}}{c_{\mathrm{W}}} Q_{f} \overline{\psi}_{f} \mathcal{Z} \widehat{\psi}_{f} - e Q_{f} \overline{\psi}_{f} \mathcal{A} \widehat{\psi}_{f} \end{aligned}$$

• only charged-current coupling of quarks modified by $V = U_u^L (U_d^L)^{\dagger} = unitary$ (Cabibbo–Kobayashi–Maskawa (CKM) matrix)

• Higgs-fermion coupling strength = $\frac{m_f}{V}$

Features of the CKM mixing:

- V = 3-dim. generalization of Cabibbo matrix $U_{\rm C}$
- V is parametrized by 4 free parameters: 3 real angles, 1 complex phase

 complex phase is the only source of CP violation in SM
 Counting of physical parameters:

$$= 18 - 9 - 2 - 2 - 1 = 4$$

no flavour-changing neutral currents in lowest order,

flavour-changing suppressed by factors $G_{\mu}(m_{q_1}^2 - m_{q_2}^2)$ in higher orders ("Glashow–Iliopoulos–Maiani mechanism")

Quantization of the EW SM

- describes particle creation and annihilation
- requires gauge-fixing for perturbation theory (existence of propagators)

Common approach: Faddeev–Popov method with R_{ξ} gauge-fixing

• R_{ξ} gauge-fixing Lagrangian: $(\xi_V^{(\prime)} = \text{arbitrary gauge parameters})$

$$\begin{split} \mathcal{L}_{\mathrm{fix}} &= -\frac{1}{2\xi_A} (C^A)^2 - \frac{1}{2\xi_Z} (C^Z)^2 - \frac{1}{\xi_W} C^+ C^- \\ C^\pm &= \partial^\mu W^\pm_\mu \mp \mathrm{i} M_W \xi'_W \phi^\pm, \quad C^Z = \partial^\mu Z_\mu - M_Z \xi'_Z \chi, \quad C^A = \partial^\mu A_\mu \end{split}$$

 \hookrightarrow elimination of ϕW and χZ mixing for $\xi'_V = \xi_V$ (propagator decoupling), simple vector propagators in 't Hooft–Feynman gauge ($\xi_V^{(\prime)} = 1$):

$$V_{\mu} \bullet V_{\nu}^{\dagger} = G_{\mu\nu}^{VV^{\dagger}}(k) = \frac{-\mathrm{i}g_{\mu\nu}}{k^2 - M_V^2}, \quad V = W, A, Z$$

▶ Faddeev–Popov Lagrangian with unphysical ghost fields u^a , \bar{u}^a ($a = \pm, A, Z$)

$$\mathcal{L}_{\mathrm{FP}} = -\int \mathrm{d}^4 y \ ar{u}^a(x) rac{\delta \mathcal{C}^a(x)}{\delta heta^b(y)} u^b(y), \qquad (heta^a = ext{gauge group parameters})$$

 Green functions obey Slavnov–Taylor identities (from BRS symmetry), involving ghost contributions

Perturbative evaluation of the EW SM

• Input parameters: $\alpha = e^2/(4\pi), M_W, M_Z, M_H, m_f, V$

 $\hookrightarrow \ \mathsf{non-trivial} \ \mathsf{issue} \ \mathsf{to} \ \mathsf{find}$

- appropriate field-theoretical definitions ("renormalization scheme")
- appropriate phenomenological input ("input parameter scheme")

Renormalizability:

- UV finiteness guaranteed
- perturbative approximation controllable (all orders defined)

Complications:

- almost all particles unstable
- many mass scales in amplitudes and loop integrals
- IR (soft and/or collinear) singularities

EW corrections:

generic size $O(\alpha) \sim O(\alpha_s^2)$ suggests NLO EW \sim NNLO QCD, but systematic enhancements possible, e.g.

- by photon emission
 - $\,\,\hookrightarrow\,\,$ kinematical effects, mass-singular log's $\propto lpha \ln(m_\ell/Q)$
- at high energies

 \hookrightarrow EW Sudakov log's $\propto (lpha/s_{
m W}^2) \ln^2(M_{
m W}/Q)$ and subleading log's

Table of contents

Electroweak phenomenology before the GSW model

- The principle of local gauge invariance
- The Standard Model of electroweak interaction

Electroweak precision physics before the LHC era

Electroweak precision physics before the LHC era

Key experiments for EW precision physics

Muon decay:

• Z production (LEP1/SLC): e^+ $e^ \gamma, Z$

$$\mu^- \rightarrow \nu_\mu \mathrm{e}^- \bar{\nu}_\mathrm{e}$$

determination of the Fermi constant

$$G_{\mu} = \frac{\pi lpha M_{\rm Z}^2}{\sqrt{2} M_{\rm W}^2 (M_{\rm Z}^2 - M_{\rm W}^2)} + \dots$$

$$e^+e^- \rightarrow Z \rightarrow f\bar{f}$$

various precision measurements at the Z resonance: $M_{\rm Z}, \Gamma_{\rm Z}, \sigma_{\rm had}, A_{\rm FB}, A_{\rm LR}, {\rm etc.}$ \Rightarrow good knowledge of the $Zf\bar{f}$ sector

W-pair production (LEP2):

$${
m e^+e^-}
ightarrow {
m WW}
ightarrow 4f(+\gamma)$$

- measurement of $M_{\rm W}$
- $-\gamma WW/ZWW$ couplings
- quartic couplings: $\gamma\gamma WW$, γZWW

Key experiments for EW precision physics (continued)

► W/Z production (Tevatron/LHC):

D

p, p =

- $pp, p\bar{p} \to W \to \ell \nu_{\ell}(+\gamma)$ $pp, p\bar{p} \to Z \to \ell^{+} \ell^{-}$
- measurement of $M_{\rm W}$
- bounds on γWW coupling
- measurement of $\sin^2 \theta_{\rm eff}^{\rm lept}$

top-quark production (Tevatron/LHC):

$$\mathrm{pp},\mathrm{p}ar{\mathrm{p}}
ightarrow \mathrm{t}ar{\mathrm{t}}
ightarrow \mathrm{6}$$

– measurement of $m_{\rm t}$

gauge-boson scattering (LHC)

 $\sim \frac{W/Z/\gamma}{W/Z/\gamma}$ – measurement of couplings $\sim \frac{W/Z/\gamma}{W/Z/\gamma}$ WWWW, ZZWW, etc.

- sensitivity to EW symmetry breaking

+ much more @ LHC ! (Higgs physics, WWW production, etc.)

Precision study of the Z line shape

Unfolded resonance:

$$\sigma_{\rm res}(s) = \sigma^0 \frac{s \, \Gamma_{\rm Z}^2}{\left|s - M_{\rm Z}^2 + {\rm i} M_{\rm Z} \Gamma_{\rm Z} \frac{s}{M_{\rm Z}^2}\right|^2}$$

Resonance observables:

- \blacktriangleright Z massand width: $M_{\rm Z}, \Gamma_{\rm Z}$
- peak cross section: σ_{had}^{0}
- various asymmetries: $A_{\rm FB}, A_{\rm LR}$, etc.

• ratios of decay widths:
$$R_{\ell} = \frac{\Gamma_{had}}{\Gamma_{\ell}}$$
, etc.

Effective Z-boson-fermion couplings

$$\bar{f} = ie\gamma_{\mu}(g_{Vf} - g_{Af}\gamma_5)$$

LEPEWWG '04

Leptonic couplings from LEP1 asymmetry measurements:

e.g.
$$A_{\text{FB}}^{0,f} = \frac{3}{4} \mathcal{A}_{e} \mathcal{A}_{f}$$

 $\mathcal{A}_{f} = \frac{2g_{Vf}g_{Af}}{g_{Vf}^{2} + g_{Af}^{2}}$

Good agreement with SM

- lepton universality confirmed
- \blacktriangleright constraints on $m_{
 m t}$ and $M_{
 m H}$

Translation of effective couplings into effective weak mixing angle

$$\sin^2\theta_{\rm eff}^{\rm lept} = \frac{1}{4} \left(1 - {\rm Re}\left\{ \frac{g_{VI}}{g_{AI}} \right\} \right)$$

Important features:

- combination of very different observables
- $\sim 3\sigma$ difference between $A_{\rm FB}^{0,b}({\sf LEP})$ and $A_{\ell}({\sf SLD})$
- ▶ high sensitivity to $M_{\rm H}$

S.Dittmaier

W-pair production $e^+e^- \rightarrow WW \rightarrow 4f(+\gamma)$

dominates near W-pair threshold

Physics goals:

- non-abelian gauge-boson self-interactions
 - \hookrightarrow constrain non-standard $\gamma WW/ZWW$ couplings
- W-pair cross section $\sigma_{\rm WW}$
- precision measurement of W mass $M_{
 m W}$
- $\Rightarrow~$ Theoretical requirement: understand 2 \rightarrow 4 process with 0.5% precision

A typical 4-jet event observed at ALEPH

GENTLE (Bardin et al.) only universal EW corrections \hookrightarrow theoretical uncertainty $\sim \pm 2\%$ YFSWW (Jadach et al.) / RacoonWW (Denner et al.) non-universal corrections included \hookrightarrow th. uncertainty $\sim \pm 0.5\%$ for $\sqrt{s} > 170 \,\mathrm{GeV}$ (Non-)standard TGCs

Gaemers, Gounaris '79; Hagiwara, Hikasa, Peccei, Zeppenfeld '87; Bilenky, Kneur, Renard, Schildknecht '93; etc.

General parametrization (C- and P-conserving): $\rm W^{+}$

$$\mathcal{L}_{VWW} = -ieg_{VWW} \left\{ g_{1}^{V} (W_{\mu\nu}^{+} W^{-,\mu} V^{\nu} - W^{-,\mu\nu} W_{\mu}^{+} V_{\nu}) + \kappa_{V} W_{\mu}^{+} W_{\nu}^{-} V^{\mu\nu} + \frac{\lambda_{V}}{M_{W}^{2}} W_{\rho\mu}^{+} W_{\nu}^{-,\mu} V^{\nu\rho} \right\}$$

W⁻

Meaning for static W^+ bosons:

SM values:

$$g_1^V = \kappa_V = 1, \quad \lambda_V = 0$$

Restriction to $SU(2) \times U(1)$ -symmetric dim-6 operators:

$$\kappa_{\mathrm{Z}} = oldsymbol{g}_{1}^{\mathrm{Z}} - (\kappa_{\gamma} - 1) an^{2} heta_{\mathrm{w}}, \qquad \lambda_{\mathrm{Z}} = \lambda_{\gamma}$$

LEP2 constraints on charged TGCs

LEPEWWG '04

Global status of the SM before Summer 2012

- SM fit yields very good agreement (all "pulls" $\leq 2\sigma$)
- ► Tension between $A_{\ell}(\text{SLD}) = A_{\text{LR}}^{\ell}(\text{SLD})$ and $A_{\text{FB}}^{0,b}(\text{LEP})$
 - $\hookrightarrow A^\ell_{\mathrm{FB}}(\mathrm{LHC})$ will be interesting!
- > SM fit predicts a light Higgs boson with $M_{
 m H} \sim 100 \, {
 m GeV}$

Status Summer 1997

 $M_{\rm H} > 114.4\,{\rm GeV}$ (LEPHIGGS '02) ${\rm e^+e^-} \longrightarrow {\rm ZH}$ at LEP2

SM fit favours perturbative regime for $M_{\rm H}$

LEPEWWG '97-'12

43

 $m_{\rm t}$, $M_{\rm W}$, $\sin^2 \theta_{\rm eff}^{\rm lept}$, etc.

 $M_{
m H} > 114.4\,{
m GeV}$ (LEPHIGGS '02) ${
m e^+e^-} \longrightarrow {
m ZH}$ at LEP2

SM fit favours $M_{
m H} \lesssim 200 \, {
m GeV}$

45

LEPEWWG '97-'12

$$\label{eq:masses} \begin{split} M_{\rm H} > 114.4\,{\rm GeV} & (\mbox{LEPHIGGS '02}) \\ {\rm e^+e^-} & \bub{\rightarrow} {\rm ZH} \text{ at LEP2} \end{split}$$

SM fit favours $M_{
m H} < 166 \, {
m GeV}$

46

LEPEWWG '97-'12

 $M_{
m H} > 114.4\,{
m GeV}$ (LEPHIGGS '02) ${
m e^+e^-} \longrightarrow {
m ZH}$ at LEP2

SM fit favours $M_{
m H} < 157\,{
m GeV}$

LEPEWWG '97-'12

 $M_{
m H} > 114.4\,{
m GeV}$ (LEPHIGGS '02) ${
m e^+e^-} \longrightarrow {
m ZH}$ at LEP2

SM fit favours $M_{
m H} < 161\,{
m GeV}$

Bounds on $M_{\rm H}$ (95% C.L.) – a brief history

Open window not excluded by the LHC: $122\,{\rm GeV} < \textit{M}_{\rm H} < 127\,{\rm GeV}$

LEPEWWG '97-'12

 $M_{
m H} > 114.4\,{
m GeV}$ (LEPHIGGS '02) ${
m e^+e^-} \longrightarrow {
m ZH}$ at LEP2

SM fit favours $M_{
m H} < 152\,{
m GeV}$

Bounds on $M_{\rm H}$ (95% C.L.) – a brief history

LEPEWWG '97-'12

$$\label{eq:masses} \begin{split} M_{\rm H} > 114.4\,{\rm GeV} & (\mbox{LEPHIGGS '02}) \\ {\rm e^+e^-} & \bub{\rightarrow} {\rm ZH} \text{ at LEP2} \end{split}$$

SM fit favours $M_{
m H} < 152\,{
m GeV}$

Status of the SM after 2012

- SM particle content experimentally completely established
- Collider data in very good agreement with SM predictions (radiative corrections essential)
 - \Rightarrow SM confirmed as Quantum Field Theory!
- Successful constraints of respective mass ranges before top-quark and Higgs-boson discoveries
 - \Rightarrow Major triumph of EW precision physics!

Upcoming lectures:

- theoretical background of EW higher-order calculations
- salient features of EW corrections
- EW phenomenology and EW precision physics at the LHC

Literature

Textbooks:

- M. Böhm, A. Denner, H. Joos, "Gauge Theories of the Strong and Electroweak Interaction"
- M.E. Peskin, D.V. Schroeder, "An Introduction to Quantum Field Theory"
- M.D. Schwartz, "Quantum Field Theory and the Standard Model"
- G. Sterman, "Quantum Field Theory"
- ▶ S. Weinberg, "The Quantum theory of fields. Vol. 1: Foundations"
- S. Weinberg, "The Quantum Theory of Fields, Vol. 2: Modern Applications"

Reviews on electroweak corrections: (for original papers see references therein)

- A. Denner, "Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200," Fortsch. Phys. 41 (1993), 307-420 [arXiv:0709.1075 [hep-ph]].
- A. Denner, S. Dittmaier, "Electroweak Radiative Corrections for Collider Physics", Phys.Rept. 864 (2020) 1-163, arXiv:1912.06823 [hep-ph].