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Structure of loop corrections and the concept of renormalization

General procedure in higher-order calculations

Formulate theory:

Perturbative evaluation:

Define input parameters:

Theoretical predictions:

Lagrangian
I
quantization — gauge fixing, Faddeev—Popov ghosts
4
Feynman rules
4
Feynman graphs
I
loop integrals — technical problem: divergences (UV, IR)
4
regularization — divergences mathematically meaningful
4
renormalization — eliminates UV divergences
I
calculation of observables (cross sections, decay widths, etc.)
— IR divergences cancel for sufficiently inclusive
quantities by virtue of KLN theorem
(e.g. inclusion of photon bremsstrahlung)
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Green functions, transition amplitudes, and observables
("Reducible™) Green functions G#1+%":
Time-ordered vacuum expectation values of field correlators:

67131, x0) = (0 T )+ 6o2) [0)

— central objects of QFT, directly derivable from functional integral,
systematic perturbative expansion via Feynman diagrams

Example:

)
GP*¢ = - +><+ O

“Connected” Green functions:

GC¢1»-»¢n — G¢1-»-¢n

only connected graphs

— relevant for genuine scattering processes

Example:

GIPe = +>~<+ O+ I + ..

Physialsches Inst
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“Amputated” Green functions G4, "
calculated as sum of all connected Feynman diagrams with n external legs
@1, ..., ¢n with external propagators (and propagator corrections) discarded:

R R

Transition amplitude My for |i) — |f):

calculated from amputated Green functions Gfg;l;% by “LSZ reduction”:

» put external momenta to their mass shell, pJ-2 = mf

» contract with wave functions of external particles
(Dirac spinors, polarization vectors)

Note: fields must be normalized: Ry, = 1 (= residue of propagator pole),
otherwise multiply by /R, for each external leg

Cross section for transition |i) — |f):

o = flux x /dLIPS |Mg|?
——"

Lorentz-invariant phase space
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“Vertex functions” 't as irreducible building blocks:

» Convenient choice for 1-point functions (“tadpoles”):
]
& -rto

» automatically fulfilled if ¢ carries a conserved quantum number
(spin, charge, colour)

> condition can be enforced by “tadpole renormalization”
> % =0 assumed below (otherwise relation between 192 and G%1%2 modified)
» 2-point functions and propagators:
irt?2 = _(G*%2)=! = _(inverse propagator)
Example:  scalar 2-point function  (momentum transfer p)
ir*e(p) = i(p? — m?) +ix(p?), ¥ = self-energy = sum of 1PI graphs
. _ . 1Pl = 1-particle-irreducible
- + (graph cannot be disconnected by cutting one line)
_ i i oo i
G"(p) = p27m2+p27m2 1Z(p)p27m2

(- = +- @ +- Q@@ ...
N p2fm2l+2(p2) - _(irw(p))i - - (@)

+... (Dyson series)

Physialsches Inst
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» n-point functions with n > 2:

ir‘fbl-~-(f5n = G.““bl""“‘"”
amp only 1Pl graphs
Example:
><;< = )< + )—O—( + two permutations
G;‘)n(;);))@ ir@o‘qﬁ@ ir¢>¢¢> G¢¢ ir@@@

General idea:
Control/cancel UV divergences in building blocks %1%
— Gfr},};'d’" and Mg become UV finite
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Loop integrals and regularization
Regularization of divergences
Observation: loop integrals involve divergences

» UV divergences for g — oo, e.g.:

1 dq . .
d*q ~ /— for g - co — logarithmic divergence
IR q

» IR divergences for g — qo, e.g.:

1 dg .
d* ~ [ = f log. d
/ T@(P + 2ap) (& + 2ap) / g o190 = log divergence

“Regularization”: extension of theory by free parameter ¢ such that

» integrals (and thus the theory) become finite, i.e. well defined

» original theory is obtained as limiting case § — do
< fix input parameters x;o of regularized theory (§ # do) by experiment
But:  Limit lims_s, Xi,0(0) might not exist!

— Split xj 0 into divergent and finite parts, xj0 = Xx; + dxo,
and reparametrize theory by finite part x; (=“renormalization”, discussed later)
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Convenient regularization schemes:
» Dimensional regularization: switch to D # 4 space-time dimensions
> regularizes UV (and IR) divergences, gauge invariant, easy to use

> prescription: (p = arbitrary reference mass, drops out in observables)

/d4q — (27T[L)47D/qu

and D-dim. momenta, metric, Dirac algebra
and analytic continuation to complex D =4 — 2¢ !

. 1.
> divergences appear as poles — in results
€
. 1 1
< define A = = — g + In(47) = = + const.
€ €

» Mass regularization for IR singularities:
infinitesimal photon mass m, and (if relevant) by small fermion masses ms
» photon propagator pole iz — %
q q- — my
< In(m,) terms at one-loop (appearing as A + In u in dim. reg.)
» small fermion masses kept only in propagator denominators
and asymptotic limit ms — 0 taken in integrals
< In(my¢) and In?(my) terms at one loop

Physikalische:
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Standard one-loop integrals: o

» 2-point integrals: %
(27.”1’)2E / D 17 Qu; QuQu;s - - -
Bo.jpw....(p, Mo, m) = - d - -
0,p, v, (P 0 1) 2 q (q2 — mg ¥ 10)[(q ¥ p)2 — m% ¥ 10]

scalar integral By = logarithmically UV divergent = A + finite,

vector integral B, = —1p,A + finite, etc.
» 3-point integrals: /:2

—
Co,p,uv,...(P1, P2, Mo, M1, M2) P
(2mp)** L, G, 9uqv; - -

_ D
in? / T —m3 +10)[(q + pr)? — m +10][(q + p2)2 — m3 + 0]

Co, Cu = UV finite,
Cuv = logarithmically UV divergent = %gm,A + finite, etc.

» 4-point integrals: D.., already cumbersome integrals for multiple scales

» n-point integrals with n > 4: algebraically reducible to D... functions for € — 0
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Features of one-loop integrals:

» sign of infinitesimally small imaginary part i0 in mass terms reflects causality
» general results for one-loop integrals known
(complicated but straightforward calculation)

»> momentum integrals can be carried out after “Feynman parametrization”
< (n — 1)-dimensional integrals for n-point functions

» B functions — can be expressed in terms of log's

. . . . *dt
> C, D, etc. — involve dilogarithms Lix(x) = f/ + In(1—1t)
» tensor integrals can be decomposed into Lorentz covariants:

B* = p*Bu, B" = g""Boo + p*p” B,
Ct = pfG+phG, C* = pi'pi G+ phps Co + (pi'ps + prpy) + & Goo,
— tensor coefficients By, Bjj, C;, etc. can be obtained as

linear combinations of scalar integrals By, Co, etc.

(e.g. by “Passarino—Veltman reduction™)
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Renormalization at the one-loop level (“next-to-leading order”, NLO)
Propagators and 2-point functions:
Structure of one-loop self-energies (scalar case as example):

Y(p’) = GPPA + GA + Thnire(p®) = UV divergent
Behaviour of propagator near pole for free propagation at NLO:

. 1 .
G = T -
p2*m2+Z(P2) p-—m 1+Z/(m2) p27m2+z(m2)

< higher-order corrections change location and residue of propagator pole

Interaction vertices:

Example: scalar 4-point interaction L = Ao /4!
ir*?%(py, p2, ps) = + A (p1, P2, p3)

P

momentum-dependent one-loop correction:
A(p1, p2, p3) = GA + Agnite (p1, P2, p3) = UV divergent
< higher-order corrections change coupling strengths

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023
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Structure of UV divergences:
» Renormalizable field theories:

UV divergences in vertex functions have analytical form of
elementary vertex structures (directly related to £)

< idea: absorb divergences in free parameters
= Reparametrization of theory (=renormalization)
Different types of renormalizable theories:
» theories with unrelated couplings of non-negative mass dimensions
— renormalizability proven by power counting and “BPHZ procedure”

> gauge theories (couplings unified by gauge invariance)

< renormalizability non-trivial consequence of gauge symmetry
't Hooft '71

» Non-renormalizable field theories:
typically theories with couplings of negative mass dimensions (e.g. Fermi model)
Operators of higher and higher mass dimensions needed to absorb
UV divergences in higher loop orders
» infinitely many free parameters, i.e. less predictive power
» only finitely many counterterms and free parameters per loop order
— basis of effective field theories
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Practical procedure for renormalization:

Consider original (“bare”) parameters and fields as preliminary
(denoted with subscripts “0” in the following)
— Switch to new “renormalized” parameters and fields obeying certain conditions

Propagators and 2-point functions:

» mass renormalization: m3 = m? + ém?,

! . “ H "
m? = location of propagator pole = “physical mass

» wave-function ren.: rescale fields ¢g = \/Zy ¢, Gf:id> = qulG‘ﬁOg{’0

fix Zy = 1+ 8Zs such that residue of G at p> = m” equals 1

= Renormalized propagator G¢?:  G2?(p?) = S
propag R r (P°) e <y )

Yr(p®) = X(p°) — 6m® + 6Z4(p* — m’) = ren. self-energy
Sr(m?) =0 = 6m? =35(m?)
TR(m’) =0 = 0Z, = —X'(m’)
= Tr(p%) = £(p*) — £(m?) — (p* — m*)T'(m*)
= Thinite(P?) = Tainite(m?) — (p* — m?)Tfinize(m®) = UV finite
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Vertex functions for interactions:
Unrenormalized vertex function:

ir#09090%0 (b1 ) ps) = ido + iA (p1, P2, p3)
N——

= unrenormalized vertex correction,
contains UV-divergent constant

Coupling renormalization:  XAg = A+ A

Fix A, e.g., by “momentum subtraction”

such that \ assumes a measured value for special kinematics p;"

= Renormalized vertex function I'5*%?:

iTR°%% (p1, p2, ps) = ZGir ™™™ (p1, pa, ps)

= I\ + 10N + 216 Z4\ + 1A (p1, p2, p3) + - - -

=iAR(p1,P2,P3)
rPodd exp _exp _expy ! : _ exp exp exp
FR”7 (P Py ps ™t ) = iA = 0A=—=20Z,A = Np;",p; ", p5")
A§¢¢¢' (pla P2, P3) - /\ﬁnitc (Pl, P2, p3) - Aﬁnitc(pfxpv pgxpv p?e,xp) = UV finite

An alternative:  “MS prescription”, which keeps only contributions oc A at NLO
and interprets p as “renormalization scale”

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023 16



Table of contents

Electroweak renormalization at next-to-leading order

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023 17



Electroweak renormalization at NLO

Loop corrections

Recapitulation of elementary SM couplings (vertices)

gauge-boson self-couplings: Higgs self-couplings:
gauge-boson—Higgs couplings: fermion couplings:

s s
e e
, ,
- - = ANNNNS - - =
N N
N N
N N

Faddeev—Popov couplings:

4 4 = Large variety of loop diagrams !
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Examples for 2-point functions at one loop: ("t Hooft-Feynman gauge)
Electron self-energy:
iree(p) = i(p — me) + 1w+ T (p?) + ipw_To"(p?) + imeZ°5(p%)

Hx

W-boson self-energy:

YT (k) = i (K = M) =i (g — 2 ) EY () — ik 5 ()

H,x ¢ v, 4

‘ L4 ! d
W W
T WWQW“WQWWQMWQM

W W@M wmm wxm
¢

; W
U~y UZ u.y,uz
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Examples for 3-point functions at one loop:

Wev, vertex correction:
Hox = ey ¢ 4* Hy5 2% 1225w .t
¢\Ve Ve N Z 5 W S ¢ W S Z 5

H~~ vertex (loop induced):

Physikalische:
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Renormalization

Bare input parameters: eo, Mw 0, Mz,0, Mu 0, mr o, Vijo

Renormalization transformation:
» Parameter renormalization:
e = (1+6Z)e,
Mo = My + My, Mz, = M3+ M3, Miio = M + Mg,

mro = myf +5mf, V,'j,o = V,j +(5V,'j, (both V,:,',o7 V,j unitary)
Note:
L . . Mw
renormalization of cw, sw fixed by on-shell condition cw = W
7

(sw is not a free parameter if Myw and My are used as input parameters)

» Field renormalization

v =vmw (3) = (V2 vza) () o= v

L L R R
77Z’f,0 = Z}F/ Y, ?/)f,o = Z,?, e

Note:
matrix renormalization well suited to account for loop-induced mixing

Physialsches Inst
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On-shell (OS) renormalization conditions:

» Mass renormalization:

on-shell definition: mass? tied to location of pole in propagator,
i.e. to the zero of the 2-point vertex function

=0, V=W,ZA

22
k _MV

[Re LY (k)] £ ()

+ similarly for the Higgs bosons and fermions
= Mass renormalization constants:
o T . - -
My = Re{ZX Y (MY}, V=WwW,Z (similarly for M7 and dmy)

Comments:
> “Re” in the renormalization condition defines the “real OS scheme”
— “running widths" in propagators, mostly used in exp. analyses
(but problem with gauge dependences at two loops)
> Condition without “Re” defines the “(complex) pole scheme”
— “constant widths” in propagators,
(sauge-independent) complex masses for unstable particles

» other definitions of quark masses often more appropriate
(running masses, masses in effective field theories)

S f S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023
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» On-shell field renormalization:
“Diagonal parts of propagators”:

residues of propagators (physical parts) normalized to 1

1 i v
A T [Rerg,,)’y(—k,k)}s (k)= —eu(k), V=W,Z A

= Diagonal field renormalization constants:

§Zw = —Re{Z¥/ (M%)} (similarly for 6Zan, 6777, 714,625 "™)
“Non-diagonal parts of propagators”:
suppression of mixing propagators on particle poles

[Re r% Y (—k, k)] (k) —0, VV=AZ ZA

—M?2
K2=M2,
+ similarly for fermions

= Non-diagonal field renormalization constants:

ZAZ M2 ZAZ
8Zx7 = —2Re Lﬁ, 80Zza = 2T7g0) (similarly for <SZH,/I f#£f)
M; Mz

Note:  problems for unstables particles beyond one loop
(field-renormalization constants become complex)
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» Mixing-angle renormalization:
Recall:  If My and Mz are taken as free parameters, then cy is fixed!
Relation between My, Mz, cw holds for bare and renormalized quantities:
(otherwise problems with self-consistency/gauge invariance)
M o - My
’ W — Ty
Mz.0 Mz

Cwo =

= Renormalization constant §c3, in ce\w = 2 +6c% fixed by 6M%,, 6M3:

et OMiy  0M7 _ Re{Zi™(Mi)}  Re{Zf’(M7)}

2 2 2 2 2
Cw My M; M3y M,

Note also:

Stuo -+ Ciuo = Say + c& = 1 with s3,, = s3, + §s3, implies

5s3, _ 756\2;\/
2SW 2Sw

Physialisches Inst
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» Charge renormalization: define e in Thomson limit

e k
- k—0 low-energy interaction of photons

Aw = lew with physical (on-shelll) e*
e

= e = elementary charge of classical electrodynamics

2
fine-structure constant «(0) = l%r = 1/137.03599976

Gauge invariance relates §Z. to photon wave-function renormalization:
. 1 - Sw <
0Ze = —=0Zan — —0Z
04An = 5 04za
» Quark-field and CKM-matrix renormalization — fixes 62;7/,“, oV
<> rotation to mass eigenstates

CKM part requires a careful (non-trivial) investigation
of mixing self-energies, mass eigenstates, LSZ reduction, etc.

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023
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» Tadpole renormalization:

tadpole diagrams unavoidable: M= H * # 0

Very convenient:
. H !
cancel tadpoles against counterterm: I'g = H —. + H—x =0

= 6t = "

Comments:

> 0t can be introduced in the course of parameter and/or field
renormalization ~— different “tadpole schemes” (TS)

» predictions for observables
¢ do not depend on the TS in OS renormalization schemes
¢ depend on the TS in MS renormalization schemes

> several vertex counterterms receive §t terms, depending on the TS

> §t is gauge dependent
< care required to avoid gauge dependences in MS renormalization

Physialsches Inst
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» Tadpole renormalization: (continued)
Bare Lagrangian contains tyHy term with to = %V0(4/J,§‘0 - /\270v§).
Schemes for introducing §t:

e.g. Bohm/Hollik/Spiesberger '86

Parameter-Renormalized Tadpole Scheme (PRTS): 52 = %04

ot =ty

— expansion of H field about corrected minimum of effective potential
@ moderate corrections in MS schemes
© gauge-dependent terms o §t enter relations

between renormalized parameters and predicted observables

Fleischer—Jegerlehner Tadpole Scheme (FJTS): igf;girgﬁe,goeglehner 80
to =0, Ot generated via field shift Hy — Ho+ Av with Av = fdt/MIZ{
@ no gauge dependences (field shift just redistributes terms)

© MS predictions prone to very large corrections

“Gauge-invariant tadpole scheme” (GIVS):
hybrid scheme of PRTS and FJTS

@ no gauge dependences

S.D., Rzehak, arXiv:2203.07236

© perturbative stability in MS schemes
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Renormalization of the unphysical sector:

< refers to unphysical fields (Goldstone fields, ghosts) and gauge parameters
> irrelevant for S-matrix elements
» required to render all Green functions UV finite

» can be adjusted to maintain form of Slavnov—Taylor identities after
renormalization

Overall result:
All renormalization constants obtained from self-energies (non-trivial for §Z.!).

Physikalische:

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023 28



Table of contents

Charge renormalization to all orders

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023 29



Charge renormalization to all orders

Renormalization of e:

> renormalization condition in Thomson limit
< no corrections in the low-energy limit for on-shell (OS) electrons

fos 7
¥ ¥ fos
—
VN o /vvvu<
K Fos fos
a(p) PR (k=P p)ulp)  — — Qred(p)yuu(p)

» renormalization transformation: e = Z.e = (14 0Z.)e
bare ren.

< charge ren. constant Z. fixed by vertex correction rfff(o, —p,p)
» QED: Z. derived from 7~ self-energy ¥4 via QED Ward identity

» SM(+beyond): Z. calculable from YAAYAZ  but underlying gauge-
invariance arguments much more complicated!

Relevance of relating Z. to (f-independent) self-energies YAANAZY
< General understanding, proving theorems, technical simplifications, ...

Physialisches I
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On the history of charge renormalization in the SM
Charge renormalization at NLO:
» pioneering works on electroweak renormalization:
Ross, Taylor '73; Sirlin '80; Bardin et al. '80;

> §Z. from eXpliCit One-|00p calculations Aoki et al. '82; Fleischer, Jegerlehner '81;
Bohm et al. '86; Hollik '90; Denner '93

» more recently: derivation of §Z. via Lee identities ..., sp. '19

Charge renormalization at NNLO:

» §Z. from explicit 2-loop calculations Degrassi, Vicini '03; Actis et al. '06

Charge renormalization to all orders:

» Background-Field Method (BFM): — backup slides
generalization of QED-like result to SM Denner, S.D., Weiglein '04

< in particular proves “charge universality”
= renormalization of e does not depend on charged particle,
so that any charged particle can be used for renormalization of e

> conventional R: gauge:

. . B '97:
» correct conjecture, but incorrect proofs Ff;gir%iraﬁ?bz. Awramik et al. 02

» new approach via charge universality ¢ 5
— confirmation of previous conjecture ~— explained below!

Physikalisches Institut__;
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Charge renormalization in QED

Ward identity for the unrenormalized Aff vertex function:
kurﬁ”’(’ﬂ .53 p) = - Qf&o [rff(ﬁ7 _ﬁ) - rff(_pa P):|
— - 1/2 w 1/2 I3
Renormalization transformation: g f(x) = Pr(x), AS(x) = AF(x)

GAfF(k, p,p) = 1/2 Zr GAff(k P, Pp) (full, reducible Green function)

I—ﬁfft(k, p,p) = Z;/z rAff(k P, p) (amputated, 1PI vertex function)

= Ward identity for the renormalized Aff vertex function:

KT Lk Bop) = — Qre 2.2 [T (5, ~B) — TH(~p, p)]
— Expansion for k — 0 yields
— fi - or )
() L0, —p.p)ulp) = — Qre 2. 73 (p) PHC ) )
é*Qfe a(p)yp u(p) = L_I(P) Y u(p)

(wave-fct. ren. of 1r)

= Ze= Z;Al/z = independent of f = Charge universality of QED!

S.Dittmaier Electroweak Precision Physics — Lecture 2 GGl, Florence, Sep 2023
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From QED to the SM

Charge renormalization in the SM @ NLO

QED

SM

Gauge symmetry:
U(1)em exact

Neutral gauge bosons:

photon field A,

BRS symmetry:

fully decoupling FP ghost fields
— ghost-free Ward identities

U(1)y spontaneously broken,
U(1)em mixes SU(2); and U(1)y trafos

2 neutral gauge fields W3, B,,,
mass basis via Weinberg rotation:

()= (2 =) ()

— mixing of Ay, Z, in higher orders

FP ghosts non-decoupling
— ghost contributions in
Slavnov—Taylor (ST) ids.
for Green fcts. G¥1Y2 and

Lee ids. for 1Pl vertex fcts. [V1V2-

S.Dittmaier

Electroweak Precision Physics — Lecture 2

GGl, Florence, Sep 2023
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Charge renormalization in the SM @ NLO in R, gauge

One-loop Ward identity: derived via Lee identities or ST identities
(Denner, S.D., 1912.06823)

_ ff(—
()P0, 5. p) ) = — Qrev(p) L) () "
3
0 HEO) G o ulp), k= 0k )

Sw,0Cw,0 M%

Generalization beyond one-loop level not available!

7 Z1/2 F1/2 7
Renormalization: 0) = (7% ZA L wefy= £ = (Z77) V27
Ao 712 F1/2 A 0
AZ AA

a(p) TR (0, —p, p) u(p) = a(p) A7 (0, —p, p) u(p) + 16Zza a(p) T2 u(p)

L —Qre(p) vy ulp) + 2 (0Zaa+06Z0F +625-) a(p) TA u(p)

1 5
= — Qe (1 +06Ze+ 26Zpa+ lazZA) i(p) v u(p)
2 2CW

3 ,e /1 YAZ(0
i (EézZA - ’;\1/12( )> i(p) Yuw— u(p)

Z

Sw Cw

=0 (OS renormalization)

1
= 0Ze = —
2

Sw
2cw
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Charge renormalization in the SM to all orders in Re gauge g . xiv:2101.05154

Idea: exploit charge universality and
introduce fake fermion 7 with infinitesimal weak hypercharge:

%yw,n =Q, =0, Iy, =0, m,, = arbitrary
Lagrangian:
_ Sw
Ly = (9?9 2g1y B — m,,) id— Qe A+ az —my|n
Charge renormalization condition for #:

i(p) FR™(0, —p, p) u(p)

P2 = —Qued(p)vuu(p)

Renormalization transformation: 1o = Z%/Qn
Mk B.p) = ZuZ3)* T07" (k. B, p) + 2,27 T27 (k. B, p)
— —/—’

=— h.o.
Qneoyuth.o Qqeo CWO mﬁ*

But: higher-order contributions to Z, and I}/ are of O(Q;)!
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Some sample diagrams for corrections to Z, and I')fﬁ":

= Direct calculation of r;‘jg(o, —p, p) (without Ward identities, etc.):

7 S p)
0. ~pp) = = Quen, 2. |22+ 22 2| L o(a)

— Qnevu
-1

2 S -2
Sw — OCGw

712 | 7172 )
Lz ¢ +och

4
N

-1
1/2 1/2 Sw,o
= |:ZAA +ZZ£‘ CT\/J -

= function of gauge-boson self-energies only

and in agreement with previously “conjectured” results of
Bauberger '97; Freitas et al. '02; Awramik et al. '02
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Literature

< See Lecture 1!
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Basics of the Background-Field Method (BFM)
DeWitt '67,80; 't Hooft '75; Boulware '81; Abbott '81  SM: Denner, S.D., Weiglein '94

Renormalization in the background-field method
Fields W split into background and quantum parts: ¥V — WV + V¥

» Background fields U

> sources of the BFM effective action V]
> external and tree lines in Feynman diagrams
> gauge of background gauge fields A7, not fixed in ['[W]

» Quantum fields V:

> integration variables of the functional integral /D\U exp {ifd4x E}
» loop lines of Feynman diagrams
P Re-type gauge-fixing to support gauge invariance of '[V]
BFM gauge invariance and gauge fixing of U
> f[\il] fully invariant under “ordinary” gauge transformations of 0

— “ghost-free” QED-like Ward identities for BFM vertex fcts. o

> Reducible Green fcts. GV and S-matrix elements:
> gauge-fixing of ] required for bkg. propagators Gvv
> formed from trees with vertex fcts. [ ¥
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BFM version of charge renormalization in the SM [, < - Weiglein '94

BFM Ward identity for the unrenormalized AFf vertex function:
kurAv(k ) 0, \7 = A> 2»
KE (kB p) = — Qrey [F75(5, ) — F¥(—p, p)]

2 2 2\ s
Renormalization transformation: (%°) = | 4% A ),
Ao zi2 72 \A
AZ AA

ﬂ:)g-" — Z (anj,cr 1/2 6_0‘
J
i (—p,p) = Z (Z07) Y2 (Z57) 2 B0 (—p, p),

~AARF 1/2 f, 1/2 f,o\1/2 pVAT, _
CH-N § ) jz/ (Zi7) (Zy7) " E (k. B p)
V=A2 I,n S~~~
Z5; = 0 due to BFM gauge invariance

BFM Ward identity for the renormalized Aff vertex function:

R AR afif, _ afif
k#r (k p7 p) - Qfe Ze 1/2 [er(pv _p) - I-RJ(_P7 p)]

= Ze analogously to QED = Charge universality of the SM!

—1/2
ZAA”
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