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Relevance of electroweak (EW) corrections at the LHC

Precision measurements at the LHC

▶ cross-section uncertainties for single-W/Z production:

∆(luminosity) ∼ 4%, ∆(PDF) ∼ 2−3%

▶ often 1% precision on shapes of distributions or ratios of cross sections

▶ high-precision measurements of MW, sin2 θlepteff :

∆MW/MW
<∼ 2 · 10−4, ∆ sin2 θlepteff / sin2 θlepteff

<∼ 4 · 10−4

▶ energy reach deep into the TeV range with several-% precision

Size of EW corrections
generic size O(α) ∼ O(α2

s) ∼ 1% suggests NLO EW ∼ NNLO QCD

but systematic enhancements possible, e.g.

▶ by photon emission

↪→ kinematical effects, mass-singular logs ∝ α ln(mµ/Q) for muons, etc.,
often several-10% effects near shoulders of distributions

▶ at high energies

↪→ EW Sudakov logs ∝ (α/s2W) ln2(MW/Q) and subleading logs,
typically several-10% effects in the TeV range
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Peculiarities of EW corrections → subjects of this lecture

Large universal corrections

▶ induced by photonic vacuum polarization
and corrections to the ρ-parameter

▶ can often be absorbed into leading-order predictions
by appropriate choice of EW input parameter scheme

Instability of W and Z bosons

▶ realistic observables have to be defined via decay products (leptons, γs, jets)

▶ off-shell effects ∼ O(Γ/M) ∼ O(α) are part of the NLO EW corrections

Photon–jet separation

▶ non-trivial due to q → q + γ splitting

↪→ separation, e.g., by quark-to-photon “fragmentation function”

▶ complication by photon-induced jets via γ∗ → qq̄

↪→ description by “fragmentation” or “conversion function”
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Electroweak input parameter schemes
SM input parameters: (natural choice)

αs, α, MW, MZ, MH, mf , VCKM

Issues:

▶ Setting of α: process-specific choice to

▶ avoid sensitivity to non-perturbative light-quark masses

▶ minimize universal EW corrections

Schemes: fix MW, MZ, and α

▶ α(0)-scheme: α = α(0) = 1/137.0 . . .

▶ α(MZ)-scheme: α = α(M2
Z) ≈ 1/129

▶ Gµ-scheme: α = αGµ =
√
2GµM

2
W(1−M2

W/M2
Z)/π ≈ 1/132

↪→ Some arbitrariness of ∼ 3−6% per factor of α in LO prediction

▶ Warnings / pitfalls:

▶ α must not be set diagram by diagram, but
global factors like α(0)mαn

Gµ
in gauge-invariant contributions mandatory !

▶ weak mixing angle: sW ̸= free parameter if MW and MZ are fixed !

▶ Yukawa couplings are uniquely fixed by fermion masses !
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Running electromagnetic coupling α(s):

γ

q

q

γ
becomes sensitive to unphysical quark masses mq

for |s| in GeV range and below (non-perturbative regime)

↪→ δZe and δZAA involve lnmf with f = q, ℓ

Solution: fit hadronic part of ∆α(s) = −Re{ΣAA
T,R(s)/s} and thus of δZe

via dispersion relation to R(s) =
σ(e+e− → hadrons)

σ(e+e− → µ+µ−) Jegerlehner et al.

⇒ Running elmg. coupling: α(s) =
α(0)

1−∆αferm̸=top(s)

Universal contribution of ∆α(M2
Z) to renormalization constants:

δZe =
1
2
∆α(M2

Z) + . . . , δZAA = −∆α(M2
Z) + . . .
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Leading correction to the ρ-parameter:

mass differences in fermion doublets break custodial SU(2) symmetry

↪→ large effects from bottom–top loops in W/Z self-energies Veltman ’77

▶ large corrections ∝ m2
t in ΣVV

T (s), V = W ,Z

Z

t/b

t/b

Z W

t

b

W

ΣZZ
T (s)

M2
Z

− ΣWW
T (s)

M2
W

|̃s|≪m2
t

3Gµm
2
t

8
√
2π2

≡ ∆ρtop

▶ m2
t -enhanced terms show up in δsW, δcW,

but cancel in ΣVV
T,R(s)

▶ leading terms to ∆ρ known beyond NLO

Universal contribution of ∆ρ to renormalization constants:

δc2W
c2W

= −∆ρtop + . . . ,
δs2W
s2W

=
c2W
s2W

∆ρtop︸ ︷︷ ︸
major effect due to 1/s2W enhancement

+ . . .
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Fermi constant Gµ as input parameter – the quantity ∆r

µ decay including higher-order corrections

µ−

Gµ

νµ

e−

ν̄e

+ QED corrections ⇐⇒
W

µ−

νµ

e−

ν̄e

+ EW corrections

↪→ Relation between Gµ, α(0), MW, and MZ including corrections:

αGµ ≡
√
2

π
Gµ M2

W

(
1− M2

W

M2
Z

)
= α(0)(1 + ∆r)

∆r comprises quantum corrections to µ decay
(beyond electromagnetic corrections in Fermi model) Sirlin ’80, Marciano, Sirlin ’80

∆r1−loop = ∆α(M2
Z) − c2W

s2W
∆ρtop + ∆rrem(MH)

∼ 6% ∼ 3% ∼ 1%

α ln(mf /MZ) Gµm
2
t α ln(MH/MZ)

γ

f

f

γ W

t

b

W
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Excursion: predicting MW from muon decay

Measure Gµ in µ decay and trade MW for Gµ as input in

√
2

π
Gµ M2

W

(
1− M2

W

M2
Z

)
= α(0)(1 + ∆r) → solve for MW

∆r depends on all input parameters → sensitivity to mt, MH in SM fit

Contributions to ∆r :

+ virtual corrections:

W self-energy

ΣW
T (s)

W

Wlνl vertex correction

W

box diagrams

+ photonic bremsstrahlung in the SM

− photonic bremsstrahlung in the Fermi model

+ full two-loop contributions + higher-order corrections to ρ-parameter
v.Ritbergen,Stuart ’98; Seidensticker,Steinhauser ’99; Freitas et al. ’00-’02;
Awramik,Czakon ’02/’03; Onishchenko,Veretin ’02
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Confronting predicted and measured values of MW

Hollik et al. ’03

ATLAS ’23
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this work

Measurement
Stat. Unc.
Total Unc.
SM Prediction

ATLAS  Preliminary
-1 = 7 TeV, 4.6 fbs

▶ Current theoretical precision: ∆MW ∼ 0.003GeV

▶ Most precise measurements:

CDF ’22: (80.4335± 0.0094)GeV (controversial analysis)

ATLAS ’23: (80.360± 0.016)GeV
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Adaption of input parameter schemes for cross-section predictions

Aim: absorb universal corrections from ∆α and ∆ρ
into leading-order (LO) predictions as much as possible

▶ ∆αn terms can be absorbed to all orders

▶ ∆ρn terms can be absorbed at least to two-loop order

▶ factor α in δEW can still be adjusted appropriately
(e.g. α→α(0) if γ radiation dominates, α→αGµ if weak corrections dominate)

Consider NLO cross section:

σNLO = αNALO (1 + δEW) , δEW = O(α)

▶ for process at some generic energy scale Q >∼ MW

▶ with Nγ external photons (separable from γ∗ → f f̄ )

▶ with NW couplings of W/Z in dominating LO diagrams
(∆ρ effects from cW from difference between W/Z ignored)

↪→ NW factors of g 2
2 ∝ 1/s2W in LO cross section

α(0)-scheme: σLO = α(0)NALO

δ
α(0)
EW = 2N δZe + Nγ δZAA − NW

δs2W
s2W

+ . . .
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α(0)-scheme: σLO = α(0)N ALO

δ
α(0)
EW = (N − Nγ)∆α(M2

Z)− NW
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = N, NW = 0,

i.e. for processes such as γγ → ℓ+ℓ−,W+W−, eγ → eγ, etc.

α(MZ)-scheme: σLO = α(M2
Z)

N ALO

δ
α(MZ)
EW = δ

α(0)
EW − N∆α(MZ) + . . . = −Nγ ∆α(M2

Z)− NW
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = 0, NW = 0,

which is not possible, since there is at least one Z exchange for Nγ = 0.

But: γ exchange dominates over Z exchange for Q ≪ MW (NW → 0)

⇒ “α(Q) scheme” for neutral-current processes appropriate, e+e−/qq̄ → ℓ+ℓ−, etc.

Gµ-scheme: σLO = αN
Gµ

ALO

δ
Gµ

EW = δ
α(0)
EW − N∆r + . . . = −Nγ ∆α(M2

Z) + (N − NW )
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = 0, NW = N,

i.e. for W/Z decays, all EW processes without external γ at Q >∼ MW
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Mixed scheme: σLO = α(Gµ)
nα(0)mALO

δmix
EW = δ

α(0)
EW − n∆r + . . . = (m − Nγ)∆α(M2

Z) + (n − NW )
c2W
s2W

∆ρtop + . . .

⇒ cancellation of ∆α, ∆ρ for Nγ = m, NW = n,

i.e. for all EW processes with m external γ at Q >∼ MW

Note: m does not include γ as parton from p/p̄, because processes
induced by γ → qq̄, ℓℓ̄ cannot be separated form pure γ processes

Harland-Lang et al. ’16
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Example: weak corrections to Z production
(partonic cross sections, no photonic corrections)

γ/Z

q̄

q

ℓ−

ℓ+

S.D., Huber ’09
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▶ expected off-sets between NLO EW corrections in different schemes

▶ most suited EW input parameter schemes:√
ŝ >∼ MZ: Gµ scheme

√
ŝ <∼ 70GeV: α(MZ) scheme scheme (α(Q) scheme for Q =

√
ŝ ≪ MZ)

▶ dashed lines include leading 2-loop effects from ∆α and ∆ρ
↪→ highest stability against h.o. corrections in recommended schemes
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Collinear final-state radiation (FSR) off leptons

kℓ

ℓ
zkℓ

γLeading logarithmic effect is universal:

σLL,FSR =

∫
dσLO(kl)︸ ︷︷ ︸

hard scattering

∫ 1

0

dz ΓLL
ℓℓ (z ,Q2)︸ ︷︷ ︸

leading-log structure
function, Q = typ. scale

Θcut(zkl)

▶ ΓLL
ℓℓ (z ,Q2) known to O(α5) + soft exponentiation,

equivalent description by QED parton showers

▶ O(α) approximation: ΓLL,1
ℓℓ (z,Q2) =

α(0)

2π

[
ln
(Q2

m2
ℓ

)
− 1

](1 + z2

1− z

)
+

▶ Alternative approach: QED parton shower
↪→ advantage: photons described with finite pT and definite multiplicity

Impact on predictions:

▶ log-enhanced corrections for “bare” leptons (muons) → large radiative tails

▶ KLN theorem:
mass-singular FSR effects cancel if (ℓγ) system is inclusive

(full integration over z)

▶ full FSR not universal,
in general not even separable from other EW corrections
(possible only if LO amplitudes do not include W bosons)
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Radiative tail from final-state radiation

occurs if resonances reconstructed from decay products

Typical situations: e+e− → WW/ZZ → 4f ,

pp → Z/γ → ℓℓ̄+ X

γ

k1

k2

Z

Final-state radiation:
resonance for

M2 = (k1+k2)
2 < (k1+k2+kγ)

2 ∼ M2
Z

↪→ radiative tail in distribution dσ
dM

of reconstructed invariant mass M
for M < MZ

Æ
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pp → Z/γ → ℓℓ̄ + X

pp → Z/γ → ℓℓ̄ + X

S.D., Huber ’09

Example: Single-Z production

▶ radiative tail with corrections up to ∼ 80%

▶ FSR effect drastically reduced
by photon recombination (“rec”):

If Rlγ < 0.1 then (lγ) → l̃ with pl̃ = pl + pγ .
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Comparison with radiative tail from initial-state radiation

occurs if initial state is fixed

Typical situations: e+e− → Z/γ → f f̄ ,
µ+µ− → Z,H, ? → f f̄

Z

γ γ

e−

e+

f̄

f

↪→ scan over s-channel resonance in σtot(s) by changing CM energy
√
s

Initial-state radiation:

Z can become resonant for s = (p++p−)
2 > (p++p−−kγ)

2 ∼ M2
Z

↪→ radiative tail for s > M2
Z due to “radiative return”

Final-state radiation:

s = k2
Z ∼ M2

Z for FSR

↪→ only rescaling of resonance

Example:
cross section for µ−µ+ → bb̄ in lowest order,

including photonic and QCD corrections,

with and without invariant-mass cut√
s −M(bb̄) < 10GeV

S.D., Kaiser ’02

Born
corrected, Mhad cut
corrected

SM

µ+µ− → bb̄

√
s[GeV]

σ[pb]

12512011511010510095908580

10000

1000

100

MH = 115GeV
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Electroweak corrections at high energies

Sudakov logarithms induced by soft gauge-boson exchange

j

k

a = γ,W , Z

etc.

+ sub-leading logarithms from collinear singularities

Typical impact on 2 → 2 reactions at
√
s ∼ 1TeV:

δ
1−loop
LL ∼ −

α

πs2W
ln2

( s

M2
W

)
≃ −26%, δ

1−loop
NLL ∼ +

3α

πs2W
ln
( s

M2
W

)
≃ 16%

δ
2−loop
LL ∼ +

α2

2π2s4W
ln4

( s

M2
W

)
≃ 3.5%, δ

2−loop
NLL ∼ −

3α2

π2s4W
ln3

( s

M2
W

)
≃ −4.2%

⇒ Corrections still relevant at 2-loop level

Note: differences to QED/QCD where Sudakov logs cancel
▶ massive gauge bosons W, Z can be reconstructed

↪→ no need to add “real W, Z radiation”

▶ non-Abelian charges of W, Z are “open” → Bloch–Nordsieck theorem not applicable

Extensive theoretical studies at fixed perturbative (1-/2-loop) order and
suggested resummations via evolution equations

Beccaria et al.; Beenakker, Werthenbach; Ciafaloni, Comelli; Denner, Pozzorini;
Fadin et al.; Hori et al.; Melles; Kühn et al., Denner et al.; Manohar et al. ’00–
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High-energy limit – Sudakov versus Regge regime

Sudakov regime: all invariants ki · kj ≫ M2
W !

Example:
2 → 2 particle process

k1

k2

i

i ′

f

f ′

k3

k4

k1

k2

i

i ′

f

f ′

k3

k4

Kinematic variables in centre-of-mass frame in high-energy limit (k2
j → 0):

s = (k1 + k2)
2 ∼ 4E 2, E = beam energy,

t = (k1 − k3)
2 ∼ −4E 2 sin2(θ/2), θ = scattering angle,

M34 =
√
s ∼ 2E ,

kT = k3,T ∼ E sin θ

High-energy limits in distributions:

▶ dσ

dkT
: kT ≫ MW ⇒ s, |t| ≫ M2

W ⇒ Sudakov domination

▶ dσ

dM34
: M34 ≫ MW ⇒ small |t| possible ⇒ in general no Sudakov domination

(i.e. typically smaller corrections)
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Example: Drell–Yan production

Neutral current: pp → ℓ+ℓ− at
√
s = 14TeV (based on S.D./Huber arXiv:0911.2329)

Mℓℓ/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞
σ0/pb 738.733(6) 32.7236(3) 1.48479(1) 0.0809420(6) 0.00679953(3) 0.000303744(1)

δrecqq̄,phot/% −1.81 −4.71 −2.92 −3.36 −4.24 −5.66

δqq̄,weak/% −0.71 −1.02 −0.14 −2.38 −5.87 −11.12

δ
(1)
Sudakov/% 0.27 0.54 −1.43 −7.93 −15.52 −25.50

δ
(2)
Sudakov/% −0.00046 −0.0067 −0.035 0.23 1.14 3.38

no Sudakov domination!

Charged current: pp → ℓ+νℓ at
√
s = 14TeV (based on Brensing et al. arXiv:0710.3309)

MT,νℓℓ
/GeV 50−∞ 100−∞ 200−∞ 500−∞ 1000−∞ 2000−∞

σ0/pb 4495.7(2) 27.589(2) 1.7906(1) 0.084697(4) 0.0065222(4) 0.00027322(1)

δ
µ+νµ
qq̄ /% −2.9(1) −5.2(1) −8.1(1) −14.8(1) −22.6(1) −33.2(1)

δrecqq̄ /% −1.8(1) −3.5(1) −6.5(1) −12.7(1) −20.0(1) −29.6(1)

δ
(1)
Sudakov/% 0.0005 0.5 −1.9 −9.5 −18.5 −29.7

δ
(1)
EWslog/% 0.008 0.9 2.3 3.8 4.8 5.9

δ
(2)
Sudakov/% −0.0002 −0.023 −0.082 0.21 1.3 3.8

Sudakov domination!

S.Dittmaier Electroweak Precision Physics – Lecture 3 GGI, Florence, Sep 2023 24



Table of contents

Relevance of electroweak corrections at the LHC

Electroweak input parameter schemes

Photon radiation off leptons

Electroweak corrections at high energies

Unstable particles in Quantum Field Theory

S.Dittmaier Electroweak Precision Physics – Lecture 3 GGI, Florence, Sep 2023 25



Problem of unstable particles:

description of resonances requires resummation of propagator corrections

↪→ mixing of perturbative orders potentially violates gauge invariance

Dyson series and propagator poles (scalar example)

= + + + . . .

Gϕϕ
R (p) =

i

p2 −m2
+

i

p2 −m2
iΣR(p

2)
i

p2 −m2
+ . . . =

i

p2 −m2 +ΣR(p2)

ΣR(p2) = renormalized self-energy, m = ren. mass

stable particle: Im{ΣR(p
2)} = 0 at p2 ∼ m2

↪→ propagator pole for real value of p2,
renormalization condition for physical mass m: ΣR(m

2) = 0

unstable particle: Im{ΣR(p
2)} ̸= 0 at p2 ∼ m2

↪→ location µ2 of propagator pole is complex,
possible definition of mass M and width Γ: µ2 = M2 − iMΓ
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Commonly used mass/width definitions:

▶ “on-shell mass/width” MOS/ΓOS: M2
OS −M2

0 + Re{Σ(M2
OS)} !

= 0

↪→ Gϕϕ(p) ˜p2→M2
OS

1

(p2 −M2
OS)(1 + Re{Σ′(M2

OS)}) + i Im{Σ(p2)}

comparison with form of Breit–Wigner resonance
ROS

p2 −m2 + imΓ

yields: MOSΓOS ≡ Im{Σ(M2
OS)} / (1 + Re{Σ′(M2

OS)}), Σ′(p2) ≡ ∂Σ(p2)

∂p2

▶ “pole mass/width” M/Γ: µ2 −M2
0 +Σ(µ2)

!
= 0

complex pole position: µ2 ≡ M2 − iMΓ

↪→ Gϕϕ(p)
p̃2→µ2

1

(p2 − µ2)[1 + Σ′(µ2)]
=

R

p2 −M2 + iMΓ

Note:
µ = gauge independent for any particle (pole location is property of S-matrix)

MOS = gauge dependent at 2-loop order Sirlin ’91; Stuart ’91; Gambino, Grassi ’99;
Grassi, Kniehl, Sirlin ’01
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Relation between “on-shell” and “pole” definitions:

Subtraction of defining equations yields:

M2
OS + Re{Σ(M2

OS)} = M2 − iMΓ + Σ(M2 − iMΓ)

Equation can be uniquely solved via recursion in powers of coupling α:

ansatz: M2
OS = M2 + c1α

1 + c2α
2 + . . .

MOSΓOS = MΓ + d2α
2 + d3α

3 + . . . , ci , di = real

counting in α: MOS,M = O(α0), ΓOS, Γ,Σ(p
2) = O(α1)

Result:
M2

OS = M2 + Im{Σ(M2)} Im{Σ′(M2)} + O(α3)

MOSΓOS = MΓ + Im{Σ(M2)} Im{Σ′(M2)}2
+ 1

2
Im{Σ(M2)}2 Im{Σ′′(M2)} + O(α4)

i.e. {MOS, ΓOS} = {M, Γ} + gauge-dependent 2-loop corrections
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Important examples: W and Z bosons

In good approximation: W → f f̄ ′, Z → f f̄ with masses fermions f , f ′

so that: Im{ΣV
T(p

2)} = p2 × ΓV

MV
θ(p2), V = W,Z

↪→ M2
OS = M2 + Γ2 + O(α3) MOSΓOS = MΓ +

Γ3

M
+ O(α4)

In terms of measured numbers:

W boson: MW ≈ 80GeV, ΓW ≈ 2.1GeV

↪→ MW,OS −MW,pole ≈ 28MeV

Z boson: MZ ≈ 91GeV, ΓZ ≈ 2.5GeV

↪→ MZ,OS −MZ,pole ≈ 34MeV

Exp. accuracy: ∆MATLAS
W,exp = 16MeV, ∆MZ,exp = 2.1MeV

↪→ Difference in definitions phenomenologically important !
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Example of W and Z bosons continued:

Approximation of massless decay fermions:

ΓV,OS(p
2) = ΓV,OS × p2

M2
V,OS

θ(p2), V = W,Z

Fit of W/Z resonance shapes to experimental data:

▶ ansatz

∣∣∣∣ R ′

p2 −m′2 + iγ′p2/m′

∣∣∣∣2 yields: m′ = MV,OS, γ′ = ΓV,OS

▶ ansatz

∣∣∣∣ R

p2 −m2 + iγm

∣∣∣∣2 yields: m = MV,pole, γ = ΓV,pole

Note: The two forms are equivalent:

R =
R ′

1 + iγ′/m′ , m2 =
m′2

1 + γ′2/m′2 , mγ =
m′γ′

1 + γ′2/m′2

↪→ consistent with relation between “on-shell” and “pole” definitions !
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The issue of gauge invariance

Preliminary remarks:

The issue of gauge invariance goes

▶ beyond the definition of M and Γ and also

▶ beyond the question of parametrizing the resonance!

It is about the consistency of amplitudes everywhere in phase space, i.e.

▶ on resonance,

▶ in off-shell regions, and

▶ in the transition region between on-/off-shell domains.

Gauge-invariance requirements in amplitude calculations:

▶ proper cancellation of gauge-parameter dependences
(relations between self-energies, vertex corrections, boxes, etc.)

▶ validity of (internal) Ward identities
(e.g. ruling cancellations for forward scattering of e± or at high energies)

⇒ Required: schemes to introduce width Γ

▶ without breaking gauge invariance

▶ maintaining (at least) NLO accuracy everywhere in phase space
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Width schemes for LO calculations:

Naive propagator substitutions in full tree-level amplitudes:

1

k2 −m2
→ 1

k2 −m2 + imΓ(k2)
for resonant or all propagators

▶ constant width Γ(k2) = const. → U(1) respected (if all propagators dressed),

SU(2) “mildly” violated

▶ step width Γ(k2) ∝ θ(k2) → U(1) and SU(2) violated

▶ running width Γ(k2) ∝ θ(k2)× k2 → U(1) and SU(2) violated
↪→ results can be totally wrong !

Complex-mass scheme Denner et al. ’99

Complex masses for V = W,Z from

µ2
V = M2

V − iMVΓV = location of complex poles in V propagators

Complex (on-shell) weak mixing angle via cW = µW/µZ

⇒ All algebraic relations expressing gauge invariance hold exactly
(gauge-parameter cancellation, Ward identities).

Major benefit: Generalization to NLO Denner et al. ’05; Denner, SD ’19

provides NLO accuracy everywhere in phase space!
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LO example from e+e− physics: σ[ fb] for e+e− → νeν̄eµ
−ν̄µud̄ (with cuts)

W

W

W

W

e+

e−

ν̄e

νe

γ/Z

W

W

Z

e+

e−

+ etc.

S.D., Roth ’02

√
s 500GeV 800GeV 2TeV 10TeV

constant width 1.633(1) 4.105(4) 11.74(2) 26.38(6)

running width 1.640(1) 4.132(4) 12.88(1) 12965(12) ← totally wrong!

complex mass 1.633(1) 4.104(3) 11.73(1) 26.39(6)

High-energy behaviour of longitudinal V = W/Z bosons:

k

V

˜k0≫MV

1

k2 −M2
V

kµ TV
µ =

1

k2 −M2
V

cVMVT
S

(S = Goldstone partner of V )

SU(2) Ward identity kµTV
µ = cVMVT

S essential to cancel factor k0,

otherwise gauge-invariance/unitarity-breaking terms enhanced by k0/MV
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Width schemes for higher-order calculations:

▶ Pole Scheme (PS) Stuart ’91; Aeppli et al. ’93, ’94; etc.

Isolate resonance in a gauge-invariant way and introduce Γ only there:

M =
R(p2)

p2 −M2
+ N(p2) =

R(M2)

p2 −M2
+

R(p2)− R(M2)

p2 −M2
+ N(p2)

→ R̃(M2 − iMΓ)

p2 −M2 + iMΓ︸ ︷︷ ︸
resonant

+
R(p2)− R(M2)

p2 −M2︸ ︷︷ ︸
non-res./non-fact. corrs.

+ Ñ(p2)︸ ︷︷ ︸
non-resonant

↪→ consistent, gauge invariant, NLO everywhere possible,
but subtle and cumbersome in practice (complex kinematics, pole
location is branch point rather than pole, IR structure of radiation)

▶ Leading pole approximation (PA)
Take term with highest resonance enhancement of pole expansion
= leading term of Pole Scheme

↪→ consistent, gauge invariant, straightforward,
but valid only in resonance neighbourhood,
rel. uncertainty for EW corrections = α

π
×O(Γ/M)
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▶ Complex-mass scheme at NLO Denner et al. ’05; Denner, S.D. ’19

mass2 = location of propagator pole in complex p2 plane

↪→ complex mass renormalization: M2
W,0︸ ︷︷ ︸

bare mass

= µ2
W + δµ2

W︸︷︷︸
ren. constant

, etc.

Gauge invariance by complex weak mixing angle:

cW =
µW

µZ
,

δc2W
c2W

=
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

Features of the complex-mass scheme:

⊕ perturbative calculations as usual (with complex masses and couplings)

⊕ no double counting of contributions (bare Lagrangian unchanged!)

⊕ gauge invariance (ST identities, gauge-parameter independence)

⊕ NLO accuracy everywhere in phase space
▶ spurios terms are beyond NLO, but spoil unitarity
▶ complex gauge-boson masses also in loop integrals (all known)

⊖ unstable particles only allowed as resonances (not as external states)

⊖ generalization to NNLO not yet known (but expected to work)
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Technical details, exemplified for W bosons:

OS renormalization conditions for renormalized (transverse) self-energy

ΣW
T,R(µ

2
W) = 0, Σ′W

T,R(µ
2
W) = 0

↪→ µ2
W is location of propagator pole, and residue = 1

Solution of renormalization conditions:

δµ2
W = ΣW

T (µ2
W), δZW = −Σ′W

T (µ2
W)

Note: Evaluation of ΣW
T (p2) at complex p2 can be avoided

ΣW
T (µ2

W) = ΣW
T (M2

W) + (µ2
W −M2

W)Σ′W
T (M2

W) + α
π
iMWΓW︸ ︷︷ ︸

from non-analyticity

at p2 = M2
W

+ O(α3)︸ ︷︷ ︸
beyond one loop

and finite

⇒ Renormalized W self-energy:

ΣW
T,R(p

2) = ΣW
T (p2)− δM2

W + (p2 −M2
W)δZW

with δM2
W = ΣW

T (M2
W) + α

π
iMWΓW, δZW = −Σ′W

T (M2
W)

Differences to the usual on-shell scheme:

▶ no real parts taken from ΣW
T

▶ ΣW
T evaluated with complex masses and couplings
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Example: predictions for σWW in the LEP2 energy range

0

5
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16
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RacoonWW/4f

σ [pb]

√
s [GeV]

e+e− → WW → 4f

IBA
DPA
full

LEP2

−25
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−15

−10
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0

5
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δ [%]

√
s [GeV]

IBA
DPA
full

▶ IBA = based on leading-log ISR and universal EW corrections (∆ ∼ 2%)
(also by GENTLE)↪→ shows large ISR impact near threshold

▶ DPA = “Double-Pole Approximation” (leading term of resonance expansion)

RacoonWW, YFSWW↪→ ∆ ∼ 0.5% above threshold, not applicable at threshold

▶ “full” = full NLO prediction for e+e− → 4f via charged current Denner at al. ’05

based on complex-mass scheme

+ leading-log improvements for ISR beyond NLO

↪→ ∆ ∼ 0.5% everywhere
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Literature

↪→ See Lecture 1 !
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