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Based on work with…

pySecDec 2023: Matthias Kerner, SJ, Gudrun Heinrich, Anton Olsson, Johannes Schlenk, Vitaly Magerya

2305.19768: Numerical Scattering Amplitudes with pySecDec (= pySecDec v1.6) 
2211.14845: From Landau equations to the Newton polytope 
                       w/ E. Gardi, F. Herzog, Y. Ma, J. Schlenk 
2112.09145: Targeting Multi-Loop Integrals with Neural Networks 
                       w/ R. Winterhalder, V. Magerya, E. Villa, M. Kerner, A. Butter, G. Heinrich, T. Plehn 
2108.10807: Expansion by regions with pySecDec (= pySecDec v1.5) 
                       + S. Jahn, F. Langer, A. Poldaru, E. Villa

Photo by Lisa Biermann



Feynman integrals can be difficult to compute analytically  

Various methods to approximate/evaluate them numerically 

Numerical differential equations 

Series solutions of differential equations (DiffExp, AMFlow, Seasyde) 

Mellin-Barnes (MB, Ambre) 

Taylor expansion in Feynman parameters (TayInt) 

Tropical sampling (Feyntrop) 

Numerical Loop-Tree Duality (cLTD, Lotty) 

Sector decomposition (Sector_decomposition, FIESTA, pySecDec)
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Computing Feynman Integrals

Talk of Dario→
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Sector Decomposition in a Nutshell

  

Singularities 

1. UV/IR singularities when some  simultaneously  Sector Decomposition 

2. Thresholds when  vanishes inside integration region  

Sector decomposition 
Find a local change of coordinates for each singularity that factorises it (blow-up)

I ∼ ∫ℝN+1
>0

[dx] xν [𝒰(x)]N−(L+1)D/2

[ℱ(x, s) − iδ]N−LD/2
δ(1 − H(x))

x → 0 ⟹

ℱ ⟹ iδ
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Sector Decomposition in a Nutshell (II)

  

 

Normal vectors incident to each extremal vertex define a local change of variables* 

  

  

*If , need triangulation to define variables (simplicial normal cones  )

I ∼ ∫ℝN
>0

[dx] xν (ci xri)t

𝒩(I) = convHull(r1, r2, …) = ⋂
f∈F

{m ∈ ℝN ∣ ⟨m, nf⟩ + af ≥ 0}

xi = ∏
f∈Sj

y⟨nf ,ei⟩
f

I ∼ ∑
σ∈ΔT

𝒩

|σ | ∫
1

0
[dyf] ∏

f∈σ

y⟨nf ,ν⟩−taf
f ci∏

f∈σ

y⟨nf ,ri⟩+af
f

t

|Sj | > N σ ∈ ΔT
𝒩

Singularities Finite

Kaneko, Ueda 10
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Sector Decomposition in a Nutshell (III)

Calculation of Multi-Loop Integrals with SecDec-3.0 Johannes Schlenk

is performed in sector j. The vectors ei denote the orthonormal basis of RN−1, the set Sj contains
the facets incident to the vertex j. In cases where the set Sj contains more than N− 1 elements,
an additional triangulation of the sector is needed. In SECDEC the triangulation algorithm imple-
mented in NORMALIZ is used for this purpose.

Compared to the other strategies implemented in SECDEC, strategy G2 is the fastest method
and it usually produces the smallest number of sectors.

As an example we decompose the two-loop vacuum integral with one massive and two mass-
less propagators using strategy G2. After employing the Cheng-Wu theorem to integrate out the
massive Feynman parameter x3, the Feynman integral becomes

I =

m

=−Γ(−1+2ε)
(

m2
)1−2ε

∫ ∞

0

dx1dx2
(

x11x
0
2+ x11x12+ x01x12

)2−ε . (3.4)

The exponent vectors

v1 =

(

1
0

)

,v2 =

(

1
1

)

,v3 =

(

0
1

)

(3.5)

can be read off from the polynomial in the denominator of Eq. (3.4) and the associated Newton
polytope Δ is shown in Fig. 1.
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Figure 1: Newton polytope Δ associated to the two loop vacuum integral of Eq. (3.4)

The facet normal vectors

n1 =

(

−1
0

)

n2 =

(

0
−1

)

n3 =

(

1
1

)

a1 = 1 a2 = 1 a3 = −1
(3.6)

together with Eq. (3.2) specify the facet representation of the polytope Δ. The sets Sj associated to
the three extremal vertices v1 to v3 are S1 = {3,1}, S2 = {1,2} and S3 = {2,3}. In this case no
additional triangulation is necessary since the size of the sets already equals N−1. The change of
variables defined in Eq. (3.3) can then be written as

x1 = y−11 y3,
x2 = y−12 y3

(3.7)
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r r r

=

Schlenk 2016

For each vertex make the local change of variables  

e.g.  :  ,   : ,   : r1 x1 = y−1
1 y1

3 , x2 = y0
1 y1

3 r2 x1 = y−1
1 y0

2 , x2 = y0
1 y−1

2 r3 x1 = y0
2 y1

3 , x2 = y−1
2 y1

3
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leading to the decomposed form of the vacuum integral

I =−Γ(−1+2ε)
(

m2
)1−2ε

∫ 1

0
dy1dy2dy3

y−ε1 y−ε2 y−1+ε3

(y1+ y2+ y3)2−ε
[δ (1− y2)+δ (1− y3)+δ (1− y1)] ,

(3.8)
where the δ -distributions correspond to the sets S1 to S3.

3.2 Complex Masses

In certain applications, especially in the electroweak context, the width of unstable particles
can be important. A consistent treatment is provided by the complex-mass scheme [24, 25], where
the width Γ is included as a negative imaginary part of the mass via the replacement

m2 → m2c ≡ m2
(

1− i
Γ
m

)

. (3.9)

The graph polynomial F then has the form

F = F0+U∑
j
x j
(

m2j − im jΓ j
)

, (3.10)

i.e. the widths induce a negative imaginary part:

ImF =−U∑
j
x jm jΓ j (3.11)

In general, for zero widths, F will exhibit kinematic-dependent zeros even after sector de-
composition, which can be avoided by a suitable deformation of the integration contour [26–28].
Similarly, a non-zero width can help to avoid these singular regions as well, but one cannot expect
this to lead to a stable numerical integration in all cases. Thus it makes sense to try to combine the
two in a consistent way, which should be possible since both the contour deformation and the com-
plex masses are required to produce only negative imaginary parts in order to fulfill the Feynman
+iδ prescription. For SECDEC-3.0 we have chosen

z⃗(⃗x) = x⃗− i⃗τ (⃗x), (3.12a)

τk = λxk(1− xk)
∂ReF
∂xk

, (3.12b)

i.e. to set the widths to zero in the definition of the deformation. For small deformations we then
have

F (⃗z(⃗x)) = ReF (⃗x)+ i ImF (⃗x)− iλ∑
k
xk(1− xk)

[

(

∂ReF
∂xk

)2
+ i

∂ ReF
∂xk

∂ ImF

∂xk

]

−
λ 2

2 ∑k,l
xk(1− xk)xl(1− xl)

∂ReF
∂xk

∂ReF
∂xl

[

∂ 2 ReF
∂xk∂xl

+ i
∂ 2 ImF
∂xk∂xl

]

+O(λ 3). (3.13)

Up to order λ , the imaginary parts induced by the widths and the contour deformation are both
negative as they should. The term involving ∂ ImF

∂xk does no harm because it is purely real. At order
λ 2, however, ImF leads to an imaginary part of indefinite sign, which would otherwise have been

5
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Challenges and Opportunities

Frontiers 

*  @ 2-loop : fine (e.g. HH, HJ, ZZ, ZH) 

+ masses (e.g. EW corrections) - suitable 

+ large hierarchies (e.g. small  , large , thresholds) 

*  @ 2-loop : challenging (high dim phase-space) 

* 3-loop+ : suitable, less explored 

Opportunities 
1. Improvements in algorithm & implementation 

2. Smarter numerical integration routines 

3. Improved contour deformation 

4. Expansions

2 → 2

mb s

2 → 3

Figure 1: Sample Feynman diagram with a Higgs boson exchange in the top quark loop.
Straight, dashed and curly lines represent top quarks, Higgs bosons and gluons, respec-
tively.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Diagrams with Higgs boson self coupling and one-particle reducible diagrams.
These classes of diagrams are not considered in this paper.

tegrals where two di↵erent masses are present inside the loops.

• Provide details of the analytic computation of the master integrals which appear in
the subclass of diagrams considered in this paper.

• Provide explicit analytic results for the master integrals in the high-energy limit.

The remainder of the paper is organized as follows: in the next section we introduce our
notation and in Section 3 we outline the expansions which we apply to the Feynman
diagrams. In Section 4 details of the computation of the amplitudes in terms of master
integrals are provided. In Section 5 we provide a detailed description of the computation
of the master integrals and numerical results of the form factors are are given in Section 6.
We conclude in Section 7. In the appendix we present results for three-dimensional Mellin-
Barnes integrals which enter our result.

3

(a) nhC
2
A
CFTF (b) nlCAC

2
F
TF (c) nhCAC

2
F
TF

(d) nhnlCACFT
2
F

(e) n2
h
CACFT

2
F

(f) nlC
2
A
CFTF

(g) n2
l
CACFT

2
F

(h) nhCACFTF (CA � 2CF ) (i) nlCACFTF (CA � 2CF )

(j) nlTF

�
1
2C

2
A
CF + 4d33

�
(k) nlTF

�
1
2C

2
A
CF � 4d33

�
(l) nhTF

�
1
2C

2
A
CF + 4d33

�

(m) nhTF

�
1
2C

2
A
CF � 4d33

�

Figure 1: Example diagrams for the Nf–part of the qq̄ channel. The colour factor

notation is expained in [38].

2.2.2 Reduction

We use 28 integral families, the corresponding topologies are shown in Appendix A.5.

As we aim at a numerical evaluation of the master integrals, the goal of the reduction

– 4 –

WIP: Gudrun Heinrich, SJ, 
Matthias Kerner, Tom Stone, 
Augustin Vestner



1. Algorithmic Improvements
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Performance Improvements

v1.5: Adaptive sampling of sectors, automatic contour def. adjustment 

v1.5.6: Optimisations in integrand code 

v1.6: New Quasi-Monte Carlo integrator ``Disteval’’ 
Faster implementation of old integrator ``IntLib’’ 

CPU & GPU: fusion of integration/integrand code (less modular arithmetic) 

CPU: better utilisation via SIMD instructions (AVX2, FMA) 

GPU: sum result on GPU, less synchronisation 

Parse amplitude coefficients w/GiNaC (supports e.g. partial fractioned input) 

Workers can run on remote machines (via ssh) 

Does it help?
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Performance Improvements (II)

࢕

âƨɼǑɄɼȭŗȳƉƨ ǶȭɱɼɄ˙ƨȭƨȳʚʌ ſ˦ ɱ˦ó͛̈́6͛̈́ ˙ƨɼʌǶɄȳ
ÿǶȭƨ ʚɄ Ƕȳʚƨǖɼŗʚƨ ݒݞݏݞ ݒݞ ʚɄ ࢑ ƕǶǖǶʚʌ ɄǑ ɱɼƨƉǶʌǶɄȳ ˝Ƕʚǫ ɱ˦ó͛̈́6͛̈́ࣘ

óɱƨƨƕʯɱ ʌɄʯɼƉƨʌࣘ
� ࣘࡶࣖࡲˉ ŗƕŗɱʚǶ˙ƨ ʌʯȭ ʌŗȭɱțǶȳǖࣗ ŗʯʚɄ ƉɄȳʚɄʯɼ ƕƨǑɄɼȭŗʚǶɄȳ ŗƕȍʯʌʚȭƨȳʚࣙ
� ࣘࡷࣖࡶࣖࡲˉ ȭǶƉɼɄɄɱʚǶȭǶ˲ŗʚǶɄȳʌ Ƕȳ ʚǫƨ Ƕȳʚƨǖɼŗȳƕ ƉɄƕƨࣙ
� ࣘࡷࣖࡲˉ ŗ ȳƨ˝ çʯŗʌǶࣽ¡Ʉȳʚƨࣽ,ŗɼțɄ ǶȳʚƨǖɼŗʚɄɼ ए6ΐЅЏ͛л̙άऐࣘ

� ʌŗȭƨ ŗțǖɄɼǶʚǫȭ ŗʌ ʚǫƨ Ʉțƕ ǶȳʚƨǖɼŗʚɄɼ ࣯एyκЏ�ΐ̼ऐࣱࣗ Ǒŗʌʚƨɼ ǶȭɱțƨȭƨȳʚŗʚǶɄȳࣙ
� ,âĎ ਀ eâĎࣘ ǑʯʌǶɄȳ ɄǑ ʚǫƨ ǶȳʚƨǖɼŗʚǶɄȳ ƉɄƕƨ ˝Ƕʚǫ ʚǫƨ Ƕȳʚƨǖɼŗȳƕ ƉɄƕƨࣙ
� ,âĎࣘ ſƨʚʚƨɼ ɱɼɄƉƨʌʌɄɼ ʯʚǶțǶ˲ŗʚǶɄȳ ˙Ƕŗ óy¡6 ǶȳʚʌʚɼʯƉʚǶɄȳʌ ࣯�Ĭķࣗࡽ b¡�ࣱࣙ
� eâĎࣘ ɼƨʌʯțʚ ʌʯȭȭŗʚǶɄȳ ƕǶɼƨƉʚț˦ Ʉȳ ʚǫƨ eâĎࣗ ȭǶȳǶȭǶ˲ƨƕ ʌ˦ȳƉǫɼɄȳǶ˲ŗʚǶɄȳࣖ

Vitaly Magerya (Radcor 2023) 
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Profiling (I)

࢙

yȳʚƨǖɼŗʚǶɄȳ ʚǶȭƨࣘ 6ΐЅЏ͛л̙ά ˙ʌ yκЏ�ΐ̼

ݞ ݖݞ � � ˱ �৫ݞƜ

yȳʚƨǖɼŗʚɄɼ࣪�ƉƉʯɼŗƉ˦ ��˱୙ ��˱୚ ��˱୛ ��˱ଡ଼ ��˱ଢ଼ ��˱୞
eâĎ 6ΐЅЏ͛л̙ά ࡽࣖࢅ ʌ ࢁࣖࢍ ʌ ࢑ࡽ ʌ ࢉࣖࡹ ȭ ࢑ࡹ ȭ ࢅࢉ ȭ

yκЏ�ΐ̼ ࡱࣖࡽࡽ ʌ ࡱࣖࡽࡽ ʌ ࡱࡹࡹ ʌ ࢑ࣖࢍ ȭ ࡱࢉ ȭ ࢁࢍࡽ ȭ
óɱƨƨƕʯɱ ࡽࣖࢉ ࡽࣖࢉ ࢅ ࣖࡹ ࢍࣖࢉ ࡱࣖࢁ ࢙ࣖࢅ

,âĎ 6ΐЅЏ͛л̙ά ࢉ ࣖࡹ ʌ ࢅࡹ ʌ ࢍࣖࡹ ȭ ࢁࣖ࢕ ȭ ࢑ࢉ ȭ ࢑ࣖࢅ ǫ
yκЏ�ΐ̼ ࢕ࣖࡱࡽ ʌ ࢍ࢕ ʌ ࡽࣖࢅࡹ ȭ ࡽࣖࡽࢍ ȭ ࡱ࢕ࢅ ȭ ࢁࢅ ࣖࡹ ǫ
óɱƨƨƕʯɱ ࢅ ࣖࡹ ࢍ ࣖࡹ ࢑ࣖ࢕ ࣖ࢑ ࢉ ࢅࣖ࢕ ࡽ࢙ࣖ

ࣷeâĎࣘ ¥ĬǶƕǶŗ ࡱࡱࡹ� ࣙ$eࡱࢅ ,âĎࣘ �¡6 Eϵц̈́ ࡽࢁb࢑ ˝Ƕʚǫ ࡽࢁ ʚǫɼƨŗƕʌࣹ
Vitaly Magerya (Radcor 2023) 
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Profiling (II)

Vitaly Magerya (Radcor 2023) ࡹࡽ

E˥ɱƨƉʚƨƕ ɱƨɼǑɄɼȭŗȳƉƨ ǑɄɼ țɄɄɱࣽࢁ Eİ Ƕȳʚƨǖɼŗțʌ

ɱ˦ó͛̈́6͛̈́ 6ΐЅЏ͛л̙ά ǮȩʋƣǐɮŗʋǮȹȩ ʋǮȣƣɾ ǑɄɼ țɄɄɱࣽࢁ ʌƨțǑࣽƨȳƨɼǖ˦ Ƕȳʚƨǖɼŗțʌࣘࢁ

6Ƕŗǖɼŗȭ>éƨțŗʚǶ˙ƨ ɱɼƨƉǶʌǶɄȳ ��˱୙ ��˱୚ ��˱୛ ��˱ଡ଼ ��˱ଢ଼ ��˱୞
ݒݞݏݞ ݒݞ eâĎ ʌࢉࡹ ʌࡱࡽ ʌࡱࢅ ʌࡱࡱࡽ ȭࢁࡹ ȭࡱࢉ

,âĎ ʌࡱࡹ ʌࡱࢉ ʌࡱࡱࢅ ʌࡱࡱࡱࢅ ȭࡱ࢕ࡹ ȭࡱࡱࡽࡹ

ݒݞ ݥݞݒݞ ݥݞ ݥݞݥݞ ݥݞ ݥݞ eâĎ ʌ࢕ࡹ ʌ࢙ࡹ ʌࡱࢁ ʌࡱࡽ ȭࡽࣖࡹ ȭࡽ

,âĎ ʌࢉ ʌࢅࡹ ʌࡱࢍ ʌࡱࢉ ȭࡽࡹ ȭࢍࡹ

ݒݞ ݥݞݒݞ ݏݞݥݞ
eâĎ ʌࢍ ʌࡹࡹ ʌࡽࡹ ʌࡱࢁ ȭࢁ ȭࢅࡽ

,âĎ ʌࢉ ʌࡱࡹ ʌࡱࢉ ʌࡱࡱ࢕ ȭࡱࢍ ȭࡱࡱ࢕
ࣷóŗȭƨ ƕǶŗǖɼŗȭʌ ŗʌ Ƕȳ 6ʯſɄ˙˦ȕࣗ ĎʌɄ˙ǶʚʌƉǫࣗ eɼ˲ŗȳȕŗ ऒࣹࡹࡽ

yȳ ʌǫɄɼʚࣘ ɾƣƅȹȩƐɾ ʋȹ ȣǮȩʠʋƣɾ ɤƣɮ Ǯȩʋƣǐɮŗȑ ʚɄ ŗƉǫǶƨ˙ƨ ɱɼŗƉʚǶƉŗț ɱɼƨƉǶʌǶɄȳࣖ

a×āࣘࢁ ¥ĬǶƕǶŗ ࡱࡱࡹ� ࣙ$eࡱࢅ *×āࣘ �¡6 Eϵц̈́ ࡽࡱࢁ࢑ ˝Ƕʚǫ ࡽࢁ ʚǫɼƨŗƕʌࣖ

࢙

yȳʚƨǖɼŗʚǶɄȳ ʚǶȭƨࣘ 6ΐЅЏ͛л̙ά ˙ʌ yκЏ�ΐ̼

ݞ ݖݞ � � ˱ �৫ݞƜ

yȳʚƨǖɼŗʚɄɼ࣪�ƉƉʯɼŗƉ˦ ��˱୙ ��˱୚ ��˱୛ ��˱ଡ଼ ��˱ଢ଼ ��˱୞
eâĎ 6ΐЅЏ͛л̙ά ࡽࣖࢅ ʌ ࢁࣖࢍ ʌ ࢑ࡽ ʌ ࢉࣖࡹ ȭ ࢑ࡹ ȭ ࢅࢉ ȭ

yκЏ�ΐ̼ ࡱࣖࡽࡽ ʌ ࡱࣖࡽࡽ ʌ ࡱࡹࡹ ʌ ࢑ࣖࢍ ȭ ࡱࢉ ȭ ࢁࢍࡽ ȭ
óɱƨƨƕʯɱ ࡽࣖࢉ ࡽࣖࢉ ࢅ ࣖࡹ ࢍࣖࢉ ࡱࣖࢁ ࢙ࣖࢅ

,âĎ 6ΐЅЏ͛л̙ά ࢉ ࣖࡹ ʌ ࢅࡹ ʌ ࢍࣖࡹ ȭ ࢁࣖ࢕ ȭ ࢑ࢉ ȭ ࢑ࣖࢅ ǫ
yκЏ�ΐ̼ ࢕ࣖࡱࡽ ʌ ࢍ࢕ ʌ ࡽࣖࢅࡹ ȭ ࡽࣖࡽࢍ ȭ ࡱ࢕ࢅ ȭ ࢁࢅ ࣖࡹ ǫ
óɱƨƨƕʯɱ ࢅ ࣖࡹ ࢍ ࣖࡹ ࢑ࣖ࢕ ࣖ࢑ ࢉ ࢅࣖ࢕ ࡽ࢙ࣖ

ࣷeâĎࣘ ¥ĬǶƕǶŗ ࡱࡱࡹ� ࣙ$eࡱࢅ ,âĎࣘ �¡6 Eϵц̈́ ࡽࢁb࢑ ˝Ƕʚǫ ࡽࢁ ʚǫɼƨŗƕʌࣹ



2. Integration: Median Lattice Rules
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Quasi-Monte Carlo

I[f ] ⇡ Q̄n,m[f ] ⌘ 1

m

m�1X

k=0

Q(k)
n [f ], Q(k)

n [f ] ⌘ 1

n

n�1X

i=0

f

✓⇢
iz

n
+�k

�◆
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Li, Wang, Yan, Zhao 15; de Doncker, Almulihi, Yuasa 17, 18;  de Doncker, Almulihi 17;  
Kato, de Doncker, Ishikawa, Yuasa 18

 - Fractional part 
 - Random shift vector 

 - Generating vector 

Previously: 
Precompute  with (CBC) construction 

Guarantee error  if  is square-
integrable and periodic 

CBC needs  bytes memory  @ 2TB 
Can encounter ``unlucky’’ lattices

{}
Δk
z

z

∼ 1/nα δ(α)
x I(x)

𝒪(n) n ≲ 4.1010

I[f ] ⇡ Q̄n,m[f ] ⌘ 1
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n [f ], Q(k)
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n
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Nuyens, Cools 06

Dick, Kuo, Sloan 13
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Quasi-Monte Carlo: Unlucky Lattices

࢑ࡹ

ç¡, ƨɼɼɄɼ ʌƉŗțǶȳǖ ſ˦ țŗʚʚǶƉƨ ʌǶ˲ƨ
âɼƨƉǶʌǶɄȳ ſ˦ țŗʚʚǶƉƨ ǑɄɼ ŗ țɄɄɱࣽࡽ ȭŗʌʌǶ˙ƨ ſɄ˥ࣘ ݞ Ɯݞ

�ʌ˦ȭɱʚɄʚǶƉ ƨɼɼɄɼ ʌƉŗțǶȳǖ Ƕʌ ̛ ��݆ୗ�୛ࣗ ſʯʚࣘ
� ʌɄȭƨ țŗʚʚǶƉƨʌ ŗɼƨ ʠȩȑʠƅȋ˖ࣗ ʌɄȭƨʚǶȭƨʌ ſ˦ ȭʯțʚǶɱțƨ Ʉɼƕƨɼʌ ɄǑ ȭŗǖȳǶʚʯƕƨࣙ
� ʚǫƨ ,$, țŗʚʚǶƉƨ ƉɄȳʌʚɼʯƉʚǶɄȳ ȳƨƨƕʌ ާ 
݆� ſ˦ʚƨʌ ɄǑ ȭƨȭɄɼ˦ࣙʱ ˝ƨ ŗɼƨ ŗſțƨ ʚɄ ƉɄȳʌʚɼʯƉʚ țŗʚʚǶƉƨʌ Ʉȳț˦ ʯɱ ʚɄ �Τ��ୡୠ Ʉȳ ŗ $ÿࡽ ʌƨɼ˙ƨɼࣖ

¥ࣖ$ࣖࣘ ɱțŗǶȳ ¡Ʉȳʚƨ ,ŗɼțɄ ˝Ʉʯțƕ ǫŗ˙ƨ ʌƉŗțƨƕ ŗʌ ̛ ��݆ୖ�୛ࣖ

Good: Asymptotic error scaling  

Bad: Huge drop in precision for some “unlucky” lattices  
         Not consistent across integrands

∼ 1/n1.5
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Quasi-Monte Carlo: Unlucky Lattices (II)

Good: Asymptotic error scaling  

Bad: Huge drop in precision for some “unlucky” lattices  
         Not consistent across integrands

∼ 1/n1.5

࢑ࡹ

ç¡, ƨɼɼɄɼ ʌƉŗțǶȳǖ ſ˦ țŗʚʚǶƉƨ ʌǶ˲ƨ
âɼƨƉǶʌǶɄȳ ſ˦ țŗʚʚǶƉƨ ǑɄɼ ŗ țɄɄɱࣽࡽ ȭŗʌʌǶ˙ƨ ſɄ˥ࣘ ݞ Ɯݞ

�ʌ˦ȭɱʚɄʚǶƉ ƨɼɼɄɼ ʌƉŗțǶȳǖ Ƕʌ ̛ ��݆ୗ�୛ࣗ ſʯʚࣘ
� ʌɄȭƨ țŗʚʚǶƉƨʌ ŗɼƨ ʠȩȑʠƅȋ˖ࣗ ʌɄȭƨʚǶȭƨʌ ſ˦ ȭʯțʚǶɱțƨ Ʉɼƕƨɼʌ ɄǑ ȭŗǖȳǶʚʯƕƨࣙ
� ʚǫƨ ,$, țŗʚʚǶƉƨ ƉɄȳʌʚɼʯƉʚǶɄȳ ȳƨƨƕʌ ާ 
݆� ſ˦ʚƨʌ ɄǑ ȭƨȭɄɼ˦ࣙʱ ˝ƨ ŗɼƨ ŗſțƨ ʚɄ ƉɄȳʌʚɼʯƉʚ țŗʚʚǶƉƨʌ Ʉȳț˦ ʯɱ ʚɄ �Τ��ୡୠ Ʉȳ ŗ $ÿࡽ ʌƨɼ˙ƨɼࣖ

¥ࣖ$ࣖࣘ ɱțŗǶȳ ¡Ʉȳʚƨ ,ŗɼțɄ ˝Ʉʯțƕ ǫŗ˙ƨ ʌƉŗțƨƕ ŗʌ ̛ ��݆ୖ�୛ࣖ
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Median Lattice Rules

Instead:  
Compute  on-the-fly 
1. Choose  random  
2. Estimate integral on each lattice 
3. Choose lattice with median integral value

z
R z ∈ Uniform(0; N − 1)

If  is square-integrable and 
periodic  
Integration error:   
With probability:  

δ(α)
x I(x)

C(α, ε)/(ρn)α−ϵ

1 − ρR+1/2/4
∀ 0 < ε & 0 < ρ < 1
Goda, L’Ecuyer 22

࢙ࡹ

¡ƨƕǶŗȳ țŗʚʚǶƉƨʌ Ƕȳ ɱɼŗƉʚǶƉƨ
âɼƨƉǶʌǶɄȳ ſ˦ țŗʚʚǶƉƨ ǑɄɼ ŗ țɄɄɱࣽࡽ ȭŗʌʌǶ˙ƨ ſɄ˥ࣘ ݞ Ɯݞ

yȳ ʌǫɄɼʚࣘ

� ȭƨƕǶŗȳ țŗʚʚǶƉƨʌ ŗɼƨ Ʉȳ ŗ˙ƨɼŗǖƨ ƉɄȭɱƨʚǶʚǶ˙ƨ ˝Ƕʚǫ ,$, țŗʚʚǶƉƨʌࣙ
� ŗʚ ǫǶǖǫƨɼ ɱɼƨƉǶʌǶɄȳʌ ʚǫƨ ˝Ʉɼʌʚ ʯȳțʯƉȕ˦ țŗʚʚǶƉƨʌ ŗɼƨ ŗ˙ɄǶƕƨƕࣙ
� ȳɄ țǶȭǶʚŗʚǶɄȳ Ʉȳ ʚǫƨ țŗʚʚǶƉƨ ʌǶ˲ƨࣙ
� ſʯʚࣘ ȳƨƨƕ ʚɄ ſƨ ƉɄȳʌʚɼʯƉʚƨƕ Ʉȳ ʚǫƨ ̈ ࣗ˦ Ƕȳʚƨɼțƨŗ˙ƨƕ ˝Ƕʚǫ ǶȳʚƨǖɼŗʚǶɄȳࣖ



3. Contour Deformation
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3. Neural Networks for Contour Deformation

5.3. Deformation of the integration contour

after having integrated out the loop momenta, see Ref. [300]. The leading Landau
singularity is again given by the solution to the system of equations assuming an empty
set of vanishing Feynman parameters.
How we deal with these singularities will be described in the following section.

5.3 Deformation of the integration contour

5.3.1 Cauchy theorem

Re(z)

Im(z)

10

Figure 5.2: Schematic picture of the closed contour avoiding poles on the real axis.

Unless the function F is of definite sign for all possible values of invariants and Feyn-
man parameters, the denominator of a multi-loop integral will vanish within the integra-
tion region on a hypersurface given by the solutions of the Landau equations. To avoid
the non-physical poles on the real axis, the Cauchy theorem

∮

c

N∏

j=1

dzjI(z⃗) =
∫ 1

0

N∏

j=1

dxjI(x⃗) +
∫ 0

1

N∏

j=1

dzjI(z⃗) = 0 (5.5)

can be exploited, where Re(z⃗) = x⃗. To be able to use the theorem, the original integrand,
depending only on the real coordinates xj, is analytically continued to the complex plane.
The coordinate transformation reads

∫ 1

0

N
∏

j=1

dxjI(x⃗) =
∫ 1

0

N
∏

j=1

dxj

∣
∣
∣
∣

(
∂zk(x⃗)
∂xl

)∣
∣
∣
∣
I(z⃗(x⃗)) , (5.6)

where the new complex coordinates z⃗ describe a path parametrized by the variables x⃗.
With a given description of the coordinates z⃗, the Cauchy theorem in Eq. (5.5) can be
formulated. It is valid in this form as long as the deformation is in accordance with
the causal iδ prescription of the Feynman propagators, as the region enclosed by the
integration contour then does not contain any singular points, compare Fig. 5.2. It is
important to keep in mind, that no poles should be crossed while changing the integration
path, otherwise Eq. (5.5) is no longer valid.

55

Feynman integral (multi-loop/leg): 

I ∼ ∫
1

0
[dx] xν [𝒰(x)]N−(L+1)D/2

[ℱ(x, s)]N−LD/2

Must deform contour to avoid poles on real axis

Feynman prescription  tells us how to do this 

Expand  around :  

Old Method 

 with small constants  

New Method  
Generalise  and use Neural Network (Normalizing Flows) to pick contour

ℱ → ℱ − iδ

ℱ(z = x − iτ) x ℱ(z) = ℱ(x) − i∑
j

τj
∂ℱ(x)

∂xj
+ 𝒪(τ2)

τj = λj xj(1 − xj)
∂ℱ(x)

∂xj
λj > 0

λj → λj(x)
Winterhalder, Magerya, Villa, SJ, Kerner, Butter, Heinrich, Plehn 22

Soper 99; Binoth, Guillet, Heinrich, Pilon, 
Schubert 05; Nagy, Soper 06; Anastasiou, 
Beerli, Daleo 07; Beerli 08; Borowka, 
Carter, Heinrich 12; Borowka 14;…
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3. Neural Networks for Contour Deformation (II)

Normalizing Flows consist of a series of (trainable) bijective mappings for which we 
can efficiently compute the Jacobian

Procedure

SciPost Physics Submission

2. -glob:  
optimization of  parameters

�
�j

1. Contour deformation: 
 used if multi-scale integral 

Analytic 
continuation

3. Normalizing flow: 
remapping of reals 

zj = yj(x)

yj � � zj = yj � i�j �j = �j yj(1 � yj) �F
�yj

xj � � xj � �

zj � �

�j = 0
yj � yj(x)

�j = �opt

�j = 0

yj � �

Figure 5: Schematic illustration of our workflow.

invertible network (INN) variant [61–63]. Even if we are not interested in this symmetric
evaluation, normalizing flows have the considerable advantage of a tractable Jacobian. A
simple realization are stacked coupling layers [62,64], where we split the input vector x in
x1 and x2 and use an element-wise multiplication � and sum to define the mapping

y1 = x1 � es1(x2) + t1(x2) x1 = (y1 � t1(x2)) � e�s1(x2)

y2 = x2 � es2(y1) + t2(y1) x2 = (y2 � t2(y1)) � e�s2(y1) , (20)

where s1, s2, t1 and t2 are parametrized by neural networks. The Jacobian of such a
coupling block is [62]

J =

 
0

@y2
@y1

diag(es2(y1))

!✓
diag(es1(x2)) @y1

@x2

0

◆
. (21)

While J is not triangular, we will only be interested in the log-determinant, which can be
calculated e�ciently as

log (det J) = log

 
dimx2Y

i=1

es1(x2)i

!
+ log

 
dim y1Y

i=1

es2(y1)i

!

=
dimx2X

i=1

s1(x2)i +
dim y1X

i=1

s2(y1)i .

(22)

For all examples we employ a normalizing flow consisting of these a�ne coupling
blocks, where each coupling block describes a bijective mapping RN

$ RN . To map the
Feynman parameters x 2 [0, 1]N from the unit-hypercube to RN bijectively we apply the
logit function

y = logit(x) ⌘ log

✓
x

1 � x

◆
, with (Jlogit)jk =

�jk
xj � x2j

, (23)

11

Loss:    constructed to minimise variance without crossing polesL = LMC + Lsign
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3. Neural Networks for Contour Deformation (III)

Applied to several 1 & 2-loop Feynman Integrals with multiple masses/thresholds 
using tensorflow

Proof of principle that Machine Learning can help to find improved contours and 
reduce variance, still a tradeoff between training time/ integrating time

SciPost Physics Submission
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Figure 8: Relative integration error for sector one of the triangle2L (left) and elliptic2L
(right) integrals using the standard pySecDec algorithm (green), the ⇤-glob algorithm
(blue) and ⇤-glob with additional normalizing flow (red). The lower panel shows the ratios
to the standard method.

Performance

Finally, we illustrate the performance gain achieved by applying both, the ⇤-glob algorithm
only and its combination with the normalizing flow.

In Figure 8 we show results for the triangle2L (left) and the elliptic2L (right) integral.
For both integrals we consider the first sector integral after sector decomposition. We
sample 100 phase space points varying over 4-5 orders of magnitude in the squared center-
of-mass energy s ⌘ (p1 + p2)2. For both processes, we intentionally consider points below
and above threshold, to compare the performance when no contour deformation is needed.
We normalized the kinematic invariants using m2 = 1. For the triangle2L integral, shown
in the left panel of Figure 8, the average integration error over all phase-space points is
reduced by a factor two for the ⇤-glob algorithm and by a factor of 5 for our ML-approach.
In the low-energy regime the error reduction stays around the average value. For increasing
energies towards threshold at s/m2 = 1, the absolute integration error of the standard
pySecDec method and the pure ⇤-glob algorithm increase, while absolute integration
error of our ML-approach keeps decreasing. This results in a relative performance gain by
a factor of up to 30 close to the threshold. The threshold being located at s/m2 = 1 is a
consequence of considering sector one, which e↵ectively corresponds to a topology where
one of the massive triangle propagators connecting to p3 is pinched. In contrast, in the
elliptic2L sector 1 integral, shown in the right panel of Figure 8, the importance sampling
through the normalizing flow reduces the integration error by a factor of 20 and does not
show the rising profile towards the threshold. The average integration error is reduced by
a factor of 7 or 2 depending on whether the additional mapping of the normalizing flow is
used or not. The kinematic points for this diagram are chosen to have varying values of
t = (p1 + p3)2 and p24.

In general, for energies close but above threshold the performance gain is less pro-
nounced, as the contour deformation in this regime has less freedom for optimization and
the e↵ect of modifying the real parts is diminished.
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Figure 1: Feynman diagrams for our four example integrals, which we call pentagon1L,
ladder2L (first line) and triangle2L, elliptic2L (second line). The blue lines denote massive
lines, green lines denote massive or o↵-shell external legs (with a mass di↵erent from m).

Example diagrams

The Feynman diagrams we use to develop and benchmark our approaches are shown in
Figure 1.

The top left diagram is a one-loop pentagon integral as it occurs in the production
of a top quark pair in association with another massive particle and depends on four
independent Mandelstam invariants as well as the top quark mass and the invariant mass
of p5. Analytically it depends on logarithms and dilogarithms of ratios of kinematic
invariants, leading to a complicated branch-cut structure. After Feynman parametrization
the corresponding integral is described by 4 independent Feynman parameters.

The top right diagram is a two-loop box diagram with one massive on-shell leg and
one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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invariants, leading to a complicated branch-cut structure. After Feynman parametrization
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one o↵-shell leg. This diagram is a topology occurring for example in tt̄V production at
two loops, where the boson V is radiated o↵ an external top quark. It is close to the
configuration of a 2-loop gluon ladder diagram where the exchange of gluons between
two top quark lines gives rise to a Coulomb singularity. The analytic expression for this
type of diagram is not known, but it is anticipated that it will contain elliptic functions.
This integral depends on 6 Feynman parameters and is the most complicated example we
consider in terms of dimensionality.

The diagram on the lower left of Figure 1 is a two-loop three-point function with
a massive sub-triangle occurring, for instance, in NLO corrections to Higgs production
in gluon fusion. It is the easiest 2-loop diagram we consider and serves as a stepping
stone towards more complicated 2-loop diagrams. Analytic results for this diagram can
be found in Refs. [49–51]. Depending on 5 Feynman parameters this integral is in between
the previous two examples in terms of dimensionality of the integration.

The diagram on the lower right is a topology occurring in Higgs+jet production in
gluon fusion at two loops. Its analytic expression contains elliptic functions and therefore
is cutting edge for integrals that are currently accessible analytically. It has been calculated
(semi-)analytically in Refs. [52,53] and also served as a benchmark for the development of
the program pySecDec [45], where it is contained in the list of examples. This integral is
5-dimensional, so it has the same number of Feynman parameters as the triangle diagram,
but it depends on four kinematic invariants rather than two.
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4. Expansions: Method of Regions
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Method of Regions

Consider expanding an integral about some limit: 
  ,    or   for  

Issue: integration and series expansion do not necessarily commute 

Method of Regions 

  

1. Split integrand up into regions ( ) 
2. Series expand each region in  
3. Integrate each expansion over the whole integration domain 
4. Discard scaleless integrals (= 0 in dimensional regularisation) 
5. Sum over all regions 

p2
i ∼ λQ2 pi ⋅ pj → λQ2 m2 ∼ λQ2 λ → 0

I(s) = ∑
R

I(R)(s) = ∑
R

T (R)
t I(s)

R
λ

Smirnov 91; Beneke, Smirnov 97; Smirnov, Rakhmetov 99; Pak, Smirnov 11; Jantzen 2011; … 
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Finding Regions

 

Normal vectors w/ positive  component define change of variables  

  

Original integral  may then be approximated as  

I ∼ ∫ℝN
>0

[dx] xν (ci xri)t → ∫ℝN
>0

[dx] xν (ci xriλri,N+1)t → 𝒩N+1

λ nf = (v1, …, vN,1)

x = λnf y , λ → λ

I I = ∑
f∈F+

I( f ) +…

Pak, Smirnov 10; Semenova, 
A. Smirnov, V. Smirnov 18

1,2 ∈ F+

3 ∉ F+

(0, 1)

(1, 0) (2, 0)

pt

px

v2

v1

v3

<latexit sha1_base64="weqJ3kTEmyqN709igjbkEUqVl00=">AAACNHicbVDLTsJAFJ3iC+sLNK7cNBISF4S0hqhLohuXmMjDQENup1OYMH1kZoqQhq9wq7/hv5i4M279BofShYAnmeTk3Mece5yIUSFN80PLbWxube/kd/W9/YPDo0LxuCXCmGPSxCELeccBQRgNSFNSyUgn4gR8h5G2M7qb19tjwgUNg0c5jYjtwyCgHsUglfQU9XtMNbvQL5TMqpnCWCdWRkooQ6Nf1E57bohjnwQSMxCia5mRtBPgkmJGZnq5FwsSAR7BgHQVDcAnwk5SyzOjrBTX8EKuXiCNVNX/TCTgCzH1HdXpgxyK1dpc/K/WjaV3Yyc0iGJJArz4yIuZIUNjfr/hUk6wZFNFAHOqzBp4CBywVCktbXLHNBKp64oElWdlgl0Oz3YyWdywZEmoCIbEnekqSGs1tnXSuqxaV9XaQ61Uv80izaMzdI4ukIWuUR3dowZqIox89IJe0Zv2rn1qX9r3ojWnZTMnaAnazy+VWqtr</latexit>p�
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n
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Additional Regulators/ Rapidity Divergences

MoR subdivides   new (internal) facets  

New facets can introduce spurious singularities not regulated by dim reg 

Lee Pomeransky Representation: 

If  have  need analytic regulators 

𝒩(I) → {𝒩(IR)} ⟹ Fint.

f ∈ Fint af = 0 ν → ν + δν

𝒩(I(R)) = ⋂
f∈F

{m ∈ ℝN ∣ ⟨m, nf⟩ + af ≥ 0}

I ∼ ∑
σ∈ΔT

𝒩

|σ | ∫ℝN
>0

[dyf] ∏
f∈σ

y⟨nf ,ν⟩+ D
2 af

f ci∏
f∈σ

y⟨nf ,ri⟩+af
f

− D
2

Heinrich, Jahn, SJ, Kerner, Langer, Magerya, Põldaru, Schlenk, Villa 21; Schlenk 16
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Additional Regulators/ Rapidity Divergences

1

2

f1

f2

f3

f4 f5,1

1

2

f1

f2

f3

f4 f5,2

SD1(�) SD2(�)

1

2

f1

f2

f3

f4 f5,1

1

2

f1

f2

f3

f4 f5,2

SD1(�) SD2(�)

need 
analytic 

regulator
ok!

pySecDec can find the constraints on the analytic regulators for you 

extra_regulator_constraints(): 
        

suggested_extra_regulator_exponent(): 
       

v2 − v4 ≠ 0, v1 − v3 ≠ 0

{δν1, δν2, δν3, δν4} = {0,0,η, − η}

Toy Example:

ࢅࡹ

�ʌ˦ȭɱʚɄʚǶƉ ƨ˥ɱŗȳʌǶɄȳ ŗȳƕ ƨ˥ʚɼŗ ɼƨǖʯțŗʚɄɼʌ

݁൫ݞ୘� �ݤ ൮ݥ � ݞ � ഐ/ݩୗ୘୙୚ ൮ݩ১൫ǘݍ ܾ২൫ǘݞ�ݩ୘� �ݤ ൮ݥ ৪
� ˱ �ୗ୘୙୚ݩ
E˥ɱŗȳʌǶɄȳ ſ˦ ɼƨǖǶɄȳʌ ɄǑ ݁ Ƕȳ ʌȭŗțțݞ୘ݤ� ǶȳʚɼɄƕʯƉƨʌ ɾɤʠɮǮȹʠɾ ɾǮȩǐʠȑŗɮǮʋǮƣɾ
ȳɄʚ ɼƨǖʯțŗʚƨƕ ſ˦ ʚǫƨ ƕǶȭƨȳʌǶɄȳŗț ɼƨǖʯțŗɼǶ˲ŗʚǶɄȳࣖʱ B˕ʋɮŗ ɮƣǐʠȑŗʋȹɮɾ ȳƨƨƕ ʚɄ ſƨ ǶȳʚɼɄƕʯƉƨƕࣗ ƨࣖǖࣖࣘ ࣷóȭǶɼȳɄ˙ ऒࣹ࢑࢙

2#`= ݁ ? � HBK৳ୡ� ୢ� ୣ� ୤ ɱୖ 2#`൦ഐ/ݩୗ୘୙୚ ১ݍ ܾ২ ৪
� ˱ �ୗ୘୙୚ݩ Τ ୡୗ৳ݩ ୘ୢ৳ݩ ୙ୣ৳ݩ ୤୚৳ݩ ൩
¡ŗȳ˦ ˙ŗțǶƕ ɄɱʚǶɄȳʌࣘ

� ƨŗƉǫ ݚ৳ ŗʌ ŗȳ Ƕȳƕƨɱƨȳƕƨȳʚ ɼƨǖʯțŗʚɄɼ ˙ŗɼǶŗſțƨʌࣙ
� Ʉȳƨ ˙ŗɼǶŗſțƨ ݟ ŗȳƕ ৳ୗ� ୘� ୙� ୚ � �ݟ[ ���ݟ ���ݟ ࣙ_��ݟ ƨʚƉࣖ

yʌ ŗ ȭɄɼƨ ƅȹȣɤŗƅʋ ƅȹȩɾʋɮʠƅʋǮȹȩ ɱɄʌʌǶſțƨࣞ ĸƨʌࣖ ࣷpƨǶȳɼǶƉǫ ƨʚ ŗț ऒࣙࡹࡽ óƉǫțƨȳȕ ऒࣹࢍࡹ

� � ʌǶȳǖțƨ ɼƨǖʯțŗʚɄɼ ˙ŗɼǶŗſțƨ Ƕʌ ŗț˝ŗ˦ʌ ƨȳɄʯǖǫࣖ
� óʯ˾ƉǶƨȳʚ ƉɄȳƕǶʚǶɄȳʌ ˙Ƕŗ 2ti`�n`2;mH�iQ`n+QMbi`�BMibUVࣘ৳୘ ˱ ৳୚ ̿ � ŗȳƕ ৳ୗ ˱ ৳୙ ̿ ��
� � ʌɄțʯʚǶɄȳ ˙Ƕŗ bm;;2bi2/n2ti`�n`2;mH�iQ`n2tTQM2MiUVࣘ৳ୗ� ୘� ୙� ୚ � ]�� �� �ݟ _ݟ˱ �

Small  expansionm

P1(x, λ) = 1 + λx1 + x1x2 + λx2 P2(x, λ) = λ + x1 + λx1x2 + x2
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Applying Expansion by Regions

s m

For large ratio of scales ( ) the EBR result is faster & easier to integratem2/s

(at large ) 
~1 day

m2/s

Ratio of the finite  piece of numerical result  to the analytic result 𝒪(ϵ0) Rn Ra

~2 min
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Building Bridges: LP  Propagator Scaling↔
Region vectors in momentum space and Lee-Pomeransky space are related, we 
can see this using Schwinger parameters  

  , with  

  

Example: 1-loop form factor 

 

Can connect the regions in mom. space with those we determine geometrically 

Next step: automatically find (Sudakov decomposed) loop momentum scalings 
compatible with region vectors

x̃e

1
Dνe

n
=

1
Γ(νe) ∫

∞

0

dx̃e

x̃e
x̃νe

e e−x̃eDe xe ∝ x̃e

(D−1
1 , …, D−1

N ) ∼ (x̃1, …, x̃N) ∼ (x1, …, xN)

Hard : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ0, λ0, λ0), (x1, x2, x3) ∼ (λ0, λ0, λ0)

Collinear to p1 : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ−1, λ0, λ−1), (x1, x2, x3) ∼ (λ−1, λ0, λ−1)

Collinear to p2 : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ0, λ−1, λ−1), (x1, x2, x3) ∼ (λ0, λ−1, λ−1)

Soft : (D−1
1 , D−1

2 , D−1
3 ) ∼ (λ−1, λ−1, λ−2), (x1, x2, x3) ∼ (λ−1, λ−1, λ−2)

WIP w/ Yannick Ulrich
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Building Bridges: Landau  Regions↔

The Landau equations give the necessary conditions for an integral to diverge 

 

Solutions are pinched surfaces of the integral where IR divergences may arise 

Idea is to explore the neighbourhood of a pinched surface, defined by 

 

with the goal of further understanding the connection between 

Solutions of the Landau equations  Regions

1) αel2
e (k, p, q) = 0 ∀e ∈ G

2)
∂

∂kμ
a

𝒟(k, p, q; α) =
∂

∂kμ
a ∑

e∈G

αe (−l2
e (k, p, q) − iε) = 0 ∀a ∈ {1,…, L}

1) αel2
e (k, p, q) ∼ λp ∀e ∈ G, with p ∈ {1,2}

2)
∂

∂kμ
a

𝒟(k, p, q; α) ≲ λ1/2 ∀a ∈ {1,…, L}

↔

Gardi, Herzog, Ma, Schlenk 22
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On-Shell Expansion

Consider an arbitrary loop, -leg wide-angle scattering graph 

Assuming only hard, collinear & soft modes in momentum space:  

What can we say about the regions?

(K + L)

on-shell: p2
i ∼ λQ2 (i = 1,…, K ),

off-shell: q2
j ∼ Q2 ( j = 1,…, L),

wide-angle: pk ⋅ pl ∼ Q2 (k ≠ l) .
G

q1 qL

p1

p2

pK
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On-Shell Expansion

Using MoR we find: 

 

Consider possible solutions of the Landau equations, search for the scaleful ones 
 constraints from Landau equations & scalefulness 

vR = (uR,1, uR,2, …, uR,N; 1), uR,e ∈ {0, −1, −2},
uR,e = 0 ↔ e ∈ H

uR,e = − 1 ↔ e ∈ J ≡ ∪K
i=1 Ji

uR,e = − 2 ↔ e ∈ S

⟹

H

S

J1

J2

JK

q1 qL

p1

p2

pK

Appears to hold at any order 
in the power expansion  
(i.e. any order in )λ

We find:



p4

p1

p3

p2
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On Shell Expansion: Graphical Method

p4

p1

p3

p2

p4

p1

p3

p2

p4

p1

p3

p2

p4

p1

p3

p2

p4

p1

p3

p2

p4

p1

p3

p2

G =

Can construct graphical method for writing down the region vectors 

γ1 : γ2 : γ1 ⊔ γ2 :

γ3 : γ4 : γ1 ⊔ γ2 ⊔
γ3 ⊔ γ4 :

Checked algorithm explicitly for all diagrams in  with up to 
 3-legs @ 5-loops & 4-legs @ 4-loops

ϕ3, ϕ4

See also: 
Arkani-Hamed, Hillman, Mizera 22



Work in Progress…
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: Quark Initiated  Piecett̄H nf

Compute 2-loop ingredients for , starting with ,  piecesttH qq nf

(a) nhC
2
A
CFTF (b) nlCAC

2
F
TF (c) nhCAC

2
F
TF

(d) nhnlCACFT
2
F

(e) n2
h
CACFT

2
F

(f) nlC
2
A
CFTF

(g) n2
l
CACFT

2
F

(h) nhCACFTF (CA � 2CF ) (i) nlCACFTF (CA � 2CF )

(j) nlTF

�
1
2C

2
A
CF + 4d33

�
(k) nlTF

�
1
2C

2
A
CF � 4d33

�
(l) nhTF

�
1
2C

2
A
CF + 4d33

�

(m) nhTF

�
1
2C

2
A
CF � 4d33

�

Figure 1: Example diagrams for the Nf–part of the qq̄ channel. The colour factor

notation is expained in [38].

2.2.2 Reduction

We use 28 integral families, the corresponding topologies are shown in Appendix A.5.

As we aim at a numerical evaluation of the master integrals, the goal of the reduction

– 4 –

New challenges 
5-point amplitudes depending on  
5 kinematic scales + 2 masses 
831 master integrals

WIP: V. Magerya, G. Heinrich, SJ, M. Kerner, 
S. Klein, J. Lang, A. Olsson
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: Quark Initiated  Piece (II)tt̄H nf

Projectors: Born amplitudes 
Reduction: On-the-fly numerical reduction 
for each phase-space point with Ratracer 

Integrals: quasi-finite, d-factorizing, 
possible with pySecDec, also investigating 
DiffExp approach 

First look at phase-space points… 
Target  precision on amplitudeϵrel = 1 ⋅ 10−4

Magerya 22

A.6 Example point result

For an example point of

m
2
H
=

8085251

15486360
m

2
t
, (A.26)

x12 = 10m2
t
, (A.27)

x23 = �
2571

620
m

2
t
, (A.28)

x35 =
357583

168330
m

2
t
, (A.29)

x54 =
19381

5704
m

2
t
, (A.30)

x41 = �
2734

465
m

2
t
, (A.31)

or, in our parameterization

� = 0.5086928048062861, (A.32)

fstt = 0.5122328420534715, (A.33)

cos(✓H) = +0.7071312786466397, (A.34)

cos(✓t) = �0.9185902767364711, (A.35)

cos(�t) = +0.7746128530137932 (A.36)

we find the 2-loop unrenormalized amplitude as

– 23 –
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: Quark Initiated  Piecett̄H nf

Poles - checked (subtraction formulae + cross-check) 
Finite part - O(16k) points

Good point: 3-4 mins Bad point: >24 hr

Need to deal with poor performance near thresholds, decide how to sample the PS

࢙

yȳʚƨǖɼŗʚǶɄȳ ʚǶȭƨࣘ 6ΐЅЏ͛л̙ά ˙ʌ yκЏ�ΐ̼

ݞ ݖݞ � � ˱ �৫ݞƜ

yȳʚƨǖɼŗʚɄɼ࣪�ƉƉʯɼŗƉ˦ ��˱୙ ��˱୚ ��˱୛ ��˱ଡ଼ ��˱ଢ଼ ��˱୞
eâĎ 6ΐЅЏ͛л̙ά ࡽࣖࢅ ʌ ࢁࣖࢍ ʌ ࢑ࡽ ʌ ࢉࣖࡹ ȭ ࢑ࡹ ȭ ࢅࢉ ȭ

yκЏ�ΐ̼ ࡱࣖࡽࡽ ʌ ࡱࣖࡽࡽ ʌ ࡱࡹࡹ ʌ ࢑ࣖࢍ ȭ ࡱࢉ ȭ ࢁࢍࡽ ȭ
óɱƨƨƕʯɱ ࡽࣖࢉ ࡽࣖࢉ ࢅ ࣖࡹ ࢍࣖࢉ ࡱࣖࢁ ࢙ࣖࢅ
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Updates 
• New``DistEval’’ integrator: ~3-5x faster than old ``IntLib’’ 
• Median lattice rules: lattices of unlimited size, smaller fluctuations in error 
• Coefficients: accept GiNaC compatible input 
• Tools for MoR: including extra regulator construction 

Applications 
• Various processes at  with many masses 
• First applications to  amplitudes 

MoR 
• How does the analysis generalise to other types of expansion (e.g. Regge, 

massive particles, threshold/potential)? 
• How should we deal with regions due to cancellation? (e.g. negative )

2 → 2
2 → 3

ci

37

Conclusion

Thank you for listening!
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1) Partition the graph into hard , jet  and soft  subgraphs with  
propagators and LP parameters scaling as  

2) Define contracted subgraphs  and  by contracting  or  to a point 

Possible to show: 

 

 

We want to minimise   
 small , large  

Consider  (degree ): 

 

(H) (Ji) (S) nH, nJ, nS
{0, −1, −2}

(J̃i) (S̃) G∖Ji G∖S

L(G) = L(H) +
K

∑
i=1

L(J̃i) + L(S̃)

nH ≥ L(H), nS ≤ L(S̃)

r ⋅ vR
⟹ nH nS

𝒰(G) L(G)

nH = L(H), nJ = L(J̃), nS = L(S̃)

𝒰(R)(x) = UH(x[H]) ⋅ (∏
i

UJi
(x[Ji])) ⋅ US(x[S])

A taste of why this might hold

ST

ST

ST

ST

ST

q1 qL

p1

pi

pK
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A taste of why this might hold

Similar (though slightly longer) arguments lead to the following theorem

We find that contributions correspond to solutions of the Landau equations only if 
some further conditions hold (suggested by our previous figures)

The configuration of T 2 in this case is depicted in figure 10(d). Similar to the previous
three cases, the F

(q2,R)
II

polynomial can be factorised as follows

F
(q2

ij
,R)

II
(x; s) = UH(x[H]

) ·

X

i,j

⇣
F

q
2
ij

Ji[Jj[S(x[Ji],x[Jj ],x[S]
) ·

Y

k 6=i,j

UJk
(x[Jk])

⌘
.(3.32)

Here the polynomial F
(q2

ij
)

Ji[Jj[S consists of the spanning 2-trees of the graph Ji[Jj [S,
such that the momentum flowing between the components is exactly qij ⌘ pi + pj .

We note that the three cases above have covered all the possibilities of the terms of
F

(R)
(x; s), because for any other values of k1 and k2 in (3.21), we have k1 + k2 > 2, and

the corresponding value of r · vR is

r · vR = �2(L(eS) � k2) � (L( eJ) + k2 + 1 � k1) + rN+1

= �2L(eS) � L( eJ) + k2 + k1 � 1 + rN+1

> �2L(eS) � L( eJ), (3.33)

where rN+1 is the kinematic contribution of the point r, satisfying rN+1 = 0 or 1. We
emphasise that (3.33) is a strict inequality. The right-hand side is min(r · vR), which is
attained for all of the four cases above. It follows that cases with k1 + k2 > 2 do not
correspond to any potential terms of P

(R)
0 (x; s).

We conclude that the following theorem must hold.

Theorem 2. For any region R in the on-shell expansion of a wide-angle scattering graph
G, the leading Lee-Pomeransky polynomial takes the form

P
(R)
0 (x; s) = U

(R)
(x) + F

(R)
(x; s) (3.34)

F
(R)

(x; s) =

KX

i=1

F
(p2

i
,R)

(x; s) + F
(q2,R)
I

(x; s) +

KX

i>j=1

F
(q2

ij
,R)

II
(x; s) (3.35)

These polynomials factorise as follows

U
(R)

(x) = UH(x[H]
) ·

⇣ KY

i=1

UJi
(x[Ji])

⌘
· US(x[S]

) ,

F
(p2

i
,R)

(x; s) = UH(x[H]
) · F

(p2
i
)

Ji
(x[Ji]; s) ·

⇣ KY

j 6=i

UJj
(x[Jj ])

⌘
· US(x[S]

) ,

F
(q2,R)
I

(x; s) = F
(q2)
H[J(x[H],x[J ]

) · US(x[S]
) ,

F
(q2

ij
,R)

II
(x; s) = UH(x[H]

) · F
(q2

ij
)

Ji[Jj[S(x[Ji],x[Jj ],x[S]
) ·

Y

k 6=i,j

UJk
(x[Jk]) .

(3.36)

Corollary 2.1. Let us denote the number of parameters which each monomial contains
in H, Ji and Sk as nH , nJi

and nSk
, respectively. These numbers are summarised in the

following table:
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Motic: components become 1PI after connecting all external lines to a point 

Mojetic: components become 1VI after connecting all external lines to a point  
(= motic & scaleful, for massless diagrams)

(a) Both motic and mojetic. (b) Both motic and mojetic.

(c) Motic but not mojetic. (d) Neither motic nor mojetic.

Figure 12: Examples of motic and mojetic graphs. The pink vertex is introduced to
connect all external lines to a single point.

UV divergences from any Euclidean Feynman integral, onto a firmer mathematical ground.
The possibly simplest way to define a motic subgraph is that it is an arbitrary, possibly
disconnected, graph each of whose connected components become 1PI after contracting all
the external lines into a point.

It turns out that a slight modification of the motic criteria will also be useful in the
classification of Minkowskian infrared subgraphs; and more specifically those which appear
in the on-shell expansion. In particular we define a graph to be mojetic if it becomes 1VI
after contracting all its external edges to a point. It turns out that mojetic is actually
equivalent to motic and scaleful for the case under consideration. The mojetic criteria is
especially useful for the construction of a Minkowskian infrared-subgraph finder - we will
discuss a possible algorithm below. In figure 12 we show a few examples to explain the
concept of motic and mojetic graphs.

With the help of these concepts, we claim that the requirements of H and J in sec-
tion 3.3, are equivalent to the requirement that all the K subgraphs H[J \Ji (i = 1, . . . ,K)
are mojetic. Equivalently, the following theorem on a necessary and sufficient condition for
any infrared region of G is formulated as below.

Theorem 3. Given any solution of the Landau equations, it corresponds to an infrared
region of G if and only if the following graph-theoretical conditions for H, eJ and eS are
satisfied:

1. For any i = 1, . . . ,K, the subgraph H [ J \ Ji is mojetic.

2. Every connected component of S must be attached to at least two different jets, Ji and
Jj.

Note that here we have implicitly required the connectivity of H and J , i.e. H is a
connected subgraph including all the off-shell external momenta {qµ

j
}, and each eJi (i =

– 40 –
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Some Definitions

Brown 15
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Graphical Construction Algorithm

Step 1: For each , construct the one-external subgraph  in the  
channel, such that the subgraph  is mojetic

i = 1,…, K γi pi
Hi ≡ G∖γi

p1 p2

q1

As described above the algorithm generates the two collinear regions as cut graphs,
which separate the external jet vertex

�1 :

p1 p2

q1

�2 :

p1 p2

q1

(4.2)

For each of these jet-subgraphs we now have to check mojetivity of Hi ⌘ G \ �i. Let
us explicitly check this for G \ �1. To check that G3 \ �1 is mojetic we need to identify
its external hard and jet momenta, that is we need to connect the external lines in vertex
displayed in pink below, and check that the result, displayed as G3 \ �1|c below, is indeed
1VI. This is evidently the case:

G \ �1 =

p2

q1

, G \ �1|c = (4.3)

We see that G3 \ �1 is mojetic and by symmetry of the diagrams so is �2. This concludes
step 1 of the algorithm. In step 2 we now combine the two subgraphs, an operation we
denote via the t symbol below. Since �1 and �2 overlap this leads to a soft line:

�1 t �2 :

p1 p2

q1

(4.4)

Step 3 now demands that we check that the resulting graph �1 t �2 satisfies three proper-
ties. The first two properties, the connectivity of each jet subgraph (the individual green
subgraphs) and the hard subgraph (indicated in blue, here just a single vertex with external
hard momentum), are clearly satisfied. The third property asks for all H [ J \ Ji to be

– 43 –
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Graphical Construction Algorithm

Step 2: Consider all possible sets .  
If an edge has been assigned to two or more , it belongs to the soft subgraph ; if 
it has been assigned to exactly one , it belongs to the jet subgraph ; if it has not 
been assigned to any , it belongs to .

{γ1, …, γK}
γi S

γi Ji
γi H

As described above the algorithm generates the two collinear regions as cut graphs,
which separate the external jet vertex

�1 :

p1 p2

q1

�2 :

p1 p2

q1

(4.2)

For each of these jet-subgraphs we now have to check mojetivity of Hi ⌘ G \ �i. Let
us explicitly check this for G \ �1. To check that G3 \ �1 is mojetic we need to identify
its external hard and jet momenta, that is we need to connect the external lines in vertex
displayed in pink below, and check that the result, displayed as G3 \ �1|c below, is indeed
1VI. This is evidently the case:

G \ �1 =

p2

q1

, G \ �1|c = (4.3)

We see that G3 \ �1 is mojetic and by symmetry of the diagrams so is �2. This concludes
step 1 of the algorithm. In step 2 we now combine the two subgraphs, an operation we
denote via the t symbol below. Since �1 and �2 overlap this leads to a soft line:

�1 t �2 :

p1 p2

q1

(4.4)

Step 3 now demands that we check that the resulting graph �1 t �2 satisfies three proper-
ties. The first two properties, the connectivity of each jet subgraph (the individual green
subgraphs) and the hard subgraph (indicated in blue, here just a single vertex with external
hard momentum), are clearly satisfied. The third property asks for all H [ J \ Ji to be
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Graphical Construction Algorithm

Step 3: Check that result obeys: (i) each jet subgraph  is connected; (ii) each hard 
subgraph  is connected; (iii) each of the  subgraphs  is 
mojetic. The region is ruled out if any of these conditions are not satisfied.

Ji
H K H ∪ J∖Ji (i = 1,…, K)

mojetic. We show that this is indeed satisfied check this explicitly for H [ J \ J2:

H [ J \ J2 =

p1

q1

, H [ J \ J2|c = . (4.5)

Given that H [J \J2|c is 1VI it follows that H [J \J2 is indeed mojetic, and by symmetry
of the diagram so is H [ J \ J1. This concludes the construction of all region subgraphs for
the simple triangle subgraphs.

Let us now consider an example where the mojetic criterion fails. Consider the following
jet subgraph:

J3 :

p1 p2

p3

H3 [ J1|c = (4.6)

The hard subgraph H3 [ J1 the complement of the jet subgraph J3 above is not mojetic,
since H3[J1|c is 1VR. Note that here J1 corresponds to a "trivial jet", containing only the
external massless momentum p1. Therefore this region is ruled out.

In the remaining part of this subsection, we show that this algorithm constructs exactly
those regions satisfying the two conditions in theorem 3, i.e. H [ J \ Ji is mojetic for every
i, and every connected component of S is attached to at least two different jets. By
construction, all the regions obtained from the algorithm automatically satisfy these two
conditions. First, in the last step we have discarded all the unqualified regions that violate
the property that H [ J \ Ji are mojetic. Second, since all the soft edges are obtained from
the intersection of different jet edges, and each jet subgraph is assured to be connected in
the third step, any connected component of the soft subgraph S must be attached to at
least two jets.

As a result, it now suffices to show that, any region R satisfying the conditions of
theorem 3 can be obtained from a suitable choice of one-external subgraphs in the pi
channel, {�(R)

i
} for i = 1, . . . ,K. Below we explain how each �(R)

i
is obtained.

First, we denote by Si the union of the connected components of the soft subgraph
S that are attached to Ji. The vertices of G are then automatically partitioned into the
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Example - Failing criterion (iii): not mojetic
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H [ J \ J2 =

p1

q1

, H [ J \ J2|c = . (4.5)
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As a result, it now suffices to show that, any region R satisfying the conditions of
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i
is obtained.
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Expansion by Regions



Example: 1-loop massive box expanded for small  

 

Can keep  symbolic or  and take 

m2
t ≪ s, | t |

G4 = μ2ϵ ∫
∞

−∞

dDk
iπD/2

1
[k2 − m2

t ]δ1[(k + p1)2 − m2
t ]δ2[(k + p1 + p2)2 − m2

t ]δ3[(k − p4)2 − m2
t ]δ4

δ1, …, δ4 δ1 = 1 + n1/2, δ2 = 1 + n1/3,… n1 → 0+

47

pySecDec: EBR Box Example

mt

mH

mH

Requires the use of analytic regulators  

Can regulate spurious singularities by adjusting 
propagators powers

Output region vectors: 
v1 = (0,0,0,0,1)
v2 = (−1, − 1,0,0,1)
v3 = (0,0, − 1, − 1,1)
v4 = (−1,0,0, − 1,1)
v5 = (0, − 1, − 1,0,1)

Result: 4.0, -2.82843, ) s = t = m2
t = 0.1, m2

h = 0
I = −1.30718 ± 2.7 ⋅ 10−6 + (1.85618 ± 3.0 ⋅ 10−6) i

+𝒪 (ϵ, n1,
m2

t

s
,

m2
t

t )



Issue 2: What happens if we have negative coefficients ? 

Consider a 1-loop massive bubble at threshold  
  

Can split integral into two subdomains  and  then remap 

 :     (for first domain) 

Various tools attempt to find such re-mappings: 

FIESTA 
Check all pairs of variables ( ) which are part of monomials of opposite sign 
For each pair, try to build linear combination  s.t negative monomial vanishes 
Repeat until all negative monomials vanish or warn user 

ASPIRE 
Consider Gröbner basis of  (i.e.  and Landau equations) 
Eliminate negative monomials with linear transformations 

ci < 0

y = m2 − q2/4 → 0
ℱ = q2/4(x1 − x2)2 + y(x1 + x2)2

x1 ≤ x2 x2 ≤ x1
x1 = x′�1/2
x2 = x′�2 + x′ �1/2

ℱ →
q2

4
x′�22 + y(x′ �1 + x′�2)2

x1, x2
x′�1

{ℱ, ∂ℱ/x1, ∂ℱ/x2, …} ℱ
x1 → ax′�1, x2 → x′�2 + ax′ �1

48

Geometric Method: Negative Coefficients

Jantzen, A. Smirnov, V. Smirnov 12

not handled by 
pySecDec (yet!)

Ananthanarayan, Pal, Ramanan, Sarkar 18; B. Ananthanarayan, Das, Sarkar 20



Rewrite our polynomial as:   
With  defined such that it contains all of the lowest order terms in  

Then, binomial expansion of 

 converges for  if  

Some observations: 
• An expansion with region vector  converges at a point  if the lowest order 

terms along the direction  contain the lowest order terms along the direction  
• For any direction  the vertices with the smallest must be part of some 

facet  of the polytope 
• Since , the lowest order terms for any  must lie on a facet whose 

inwards pointing normal vector has a positive -th component, let us call 
the set of such facets 

P(x) = Q(x) + R(x)
Q(x) t

P(x)m = Q(x)m(1 +
R(x)
Q(x) )

m

x = tu R(x)/Q(x) < 1

v u
v u

u < pi, u >
F
uN+1 > 0 u

(N + 1)
F+

49

Geometric Method: Determining the Regions (VI)



50

Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 9/19

Transform the expression for the full integral:

p
m m

k k

k + p

F =

∫

k∈Dh

Dk I +

∫

k∈Ds

Dk I =
∑

i

∫

k∈Dh

Dk T (h)
i I +

∑

j

∫

k∈Ds

Dk T (s)
j I

=
∑

i

( ∫

k∈Rd

Dk T (h)
i I −

∑

j

∫

k∈Ds

Dk T (s)
j T (h)

i I

)

+
∑

j

( ∫

k∈Rd

Dk T (s)
j I −

∑

i

∫

k∈Dh

Dk T (h)
i T (s)

j I

)

The expansions commute: T
(h)
i T

(s)
j I = T

(s)
j T

(h)
i I ≡ T

(h,s)
i,j I

⇒ Identity: F =
∑

i

∫

Dk T (h)
i I

︸ ︷︷ ︸

F
(h)

+
∑

j

∫

Dk T (s)
j I

︸ ︷︷ ︸

F
(s)

−
∑

i,j

∫

Dk T (h,s)
i,j I

︸ ︷︷ ︸

F
(h,s)

All terms are integrated over the whole integration domain Rd as prescribed for the

expansion by regions ⇒ location of boundary Λ between Dh, Ds is irrelevant.

Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012
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Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 34

The general formalism (details)

Identities as in the examples are generally valid, under some conditions.

Consider

• a (multiple) integral F =
∫

Dk I over the domain D (e.g. D = Rd),

• a set of N regions R = {x1, . . . , xN},

• for each region x ∈ R an expansion T (x) =
∑

j T
(x)
j

which converges absolutely in the domain Dx ⊂ D.

Conditions

•
⋃

x∈R Dx = D [Dx ∩Dx′ = ∅ ∀x ≠ x′] .

• Some of the expansions commute with each other.

Let Rc = {x1, . . . , xNc} and Rnc = {xNc+1, . . . , xN} with 1 ≤ Nc ≤ N .

Then: T (x)T (x′) = T (x′)T (x) ≡ T (x,x′) ∀x ∈ Rc , x
′ ∈ R .

• Every pair of non-commuting expansions is invariant under some expansion from Rc:

∀x′1, x
′
2 ∈ Rnc, x

′
1 ≠ x′2, ∃x ∈ Rc : T (x)T (x′

2)T (x′

1) = T (x′

2)T (x′

1) .

• ∃ regularization for singularities, e.g. dimensional (+ analytic) regularization.
↪→ All expanded integrals and series expansions in the formalism are well-defined.
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Slide from: Bernd Jantzen, High Precision for Hard Processes (HP2) 2012

Bernd Jantzen, Expansion by regions: foundation, generalization and automated search for regions 35

The general formalism (2)
Under these conditions, the following identity holds:

[

F (x,...) ≡
∑

j,...

∫

Dk T
(x,...)
j,... I

]

F =
∑

x ∈ R

F (x) −
⟨Rc + 1⟩
∑

{x′
1, x

′
2} ⊂ R

F (x′
1,x

′
2) + . . .− (−1)n

⟨Rc + 1⟩
∑

{x′
1, . . . , x

′
n} ⊂ R

F (x′
1,...,x

′
n) + . . .+ (−1)Nc

∑

x′ ∈ Rnc

F (x′,x1,...,xNc )

where the sums run over subsets {x′1, . . .} containing at most one region from Rnc.

Comments

• This identity is exact when the expansions are summed to all orders. !

Leading-order approximation for F " dropping higher-order terms.

• It is independent of the regularization (dim. reg., analytic reg., cut-off, infinitesimal

masses/off-shellness, . . .) as long as all individual terms are well-defined.

• Usually regions & regularization are chosen such that multiple expansions

F (x′

1,...,x
′

n) (n ≥ 2) are scaleless and vanish.

[! if each F
(x)
0 is a homogeneous function of the expansion parameter with unique scaling.]

• If ∃ F (x′

1,x
′

2,...) ≠ 0 " relevant overlap contributions (→ “zero-bin subtractions”).

They appear e.g. when avoiding analytic regularization in SCET. e.g. Manohar, Stewart ’06;
Chiu, Fuhrer, Hoang, Kelley, Manohar ’09; . . .
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Periodising Transforms

Lattice rules work especially well for continuous, smooth and periodic functions 
Functions can be periodized by a suitable change of variables: x = �(u)
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I[f ] ⌘
Z

[0,1]d
dx f(x) =

Z

[0,1]d
du !d(u)f(�(u))
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�(u) = (�(u1), . . . ,�(ud)), !d(u) =
dY

j=1

!(uj) and !(u) = �0(u)
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Korobov transform: 
Sidi transform: 
Baker transform: 

!(u) = 6u(1� u), �(u) = 3u2 � 2u3

!(u) = ⇡/2 sin(⇡u), �(u) = 1/2(1� cos⇡t)

�(u) = 1� |2u� 1|
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