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Motivation

» Broad classes of resummations do not admit a closed analytic solution (or very hard to derive): non-
linearity of evolution equations (e.g. NGLs, micro jets, ...) or lack of analytic form in multi-particle limit
(e.g. complex event shapes or jet rates). Numerical methods are effective in these problems

» Large ongoing efforts to improve parton shower’s perturbative (logarithmic) accuracy. Solutions at NLL
now exist for rIRC safe global and classes of non-global observables: based on constraints inferred from
QCD (multi-parton squared amplitudes, consistency with QCD resummations)

- Higher orders (e.g. NNLL) present additional subtleties, e.g. treatment of virtual corrections in
dimensional regularisation and cancellation of IR singularities

GOAL.: work towards a solid framework to bridge between resummations and parton

showers. Crucial to study features of shower evolution (e.g. IR cutoffs) and develop
algorithmic solutions beyond NLL




Outline of the talk

o Focus on collinear fragmentation

InX(v) ~al+ a’L*+ ... — SL(NLLinDL obs.)

+a,+a’L+a’L?>+ ... - NSL(NNLL in DL obs.)
+ ...

» Generating functional method

o Application to fractional moments of EEC (FCx) and angularities (Ax) measured on mMDT/SD groomed jets
- analytic solution at SL & Markov chain algorithm

o Formulation at NSL.: application to FCx and A«

e Outlook

Disclaimer: slides mainly prepared on a train ride from Geneva to Florence,
apologies for the poor quality and the omission of some references 3



oL fragmentation



Generating functionals: definitions

see e. g. [Konishi, Ukawa, Veneziano '79; Dokshitzer, Khoze, Mueller, Troyan ’o1]

« GFs method postulates the existence of 2 n. + 1 generating functionals G.(x, r). which describe the (time-

like) fragmentation of a parton of flavour £, carrying a fraction x of the initial energy E, and starting at an
initial evolution “time” 7, function of the emission’s kinematics (e.g. angle)

do* as(E%g*(2)6%)  a; 1 2
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» The cross section for the production of a final state with exactly m final state partons originating from the
above fragmentation reads

/ aph = L0

m! du™ {:IL}:O

« Physical observables then computed as I_‘ probing function (source) i = u(x, t; f)

do (f)—O'()C Ofs ®J(f Oésa )

perturbative matching ._.I L. T (g, v) = i / dPY) §(v — V({k}n))

coefficient

m=1



Generating functionals: evolution equations

o Evolution of GFs with time ¢ is governed by a system of equations (anti-quark GF by charge conjugation)
Sudakov form factor = no-emission prob.

Gy(z,t) —uA /O dt/ ZO Gy(x2,t") Gg(x(l—z),t’)ﬁj((;))

Gg(x,t) = ulg( /to dt’ /1 N _ng(z) Gy(xz,t")Gy(x (1 —2),t")

1 A
+ Puy(2) Gy 2,t") Gyl (1 — 2),t") Ag((;)) , see e. g. [Dasgupta, Dreyer, Salam, Soyez ’14]
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Remarks

» Sudakov form factor: defined by requiring unitarity of GFs (i.e. total XS unaffected by inclusive collinear

radiation)
to 1— Z()
lnA / dt/

G (xat”u: =1 - 0 20
f 1 In A /t dt! /1 2) + Py(2))

o Regularisation scheme: IRC singularities could be consistently regulated in dim. reg., but the use of IR
cutoffs allows for algorithmic solution in a computer (Monte Carlo). Important for connection with PS.
Physical results are always obtained in the limit z, - o0, z, = 0 (modulo Landau pole regularisation)

» Ordering: choice of ordering (definition of ¢) such that multi-parton squared amplitudes are reconstructed
recursively order by order. Options in the collinear limit (angle, transverse momentum, ...). Crucially,
physical results not affected by this choice



An example:
fractional moments of EEC and angularities




Moments of EEC and angularities on groomed jets

» Consider a simple observables that admit an analytic solution These observables are naturally double
logarithmic, though grooming makes them
- Consider a mMDT/SD (f = 0) groomed jet, and measure single logarithmic by eliminating soft logs
Q ““““ FC, = 70 Y EiEj|sin6;]" (1 — | cos 0;])"
R e
Sensfuve to angular-t_erered N = - Z E;|sin6;]*(1 — | cos ;)17
primary declusterings " i

o This class of event shapes Is insensitive to the full non-linear structure of the fragmentation. At SL we
can ignore the (secondary) fragmentation of primary radiation, e.g. for quark jets G,(x, ) ~ u

to 1—20 U
Ggl,t) = u () /t dt’ / dz Pyq(2) Gq(x 2,1") Ggtatt—s79 ﬁq((f/))

q



Analytic solution

» Resummation can be worked out analytically

T (g, v) = i / AP 5(v — V ({k}m))

-~ Weigh each probability with measurement function, e.g. for FCx (using ©, (2) = O(z — z,,) O(1 — z — 7))

Jdpf@ = A (1) X 8(FC,)
gn 1—z, - .
JdPZ@ =A (D) | dy J dz; P, (7)) X |6(FC, — z)(1 —2)0:9) 0O, (z)) + 6(FC,) (1 — @Zwt(zl))
| tfo "Zf(()) 1 -z, | |
J dP;? = A0 J @ ””ZJ d2id2 Poy(y) Pyylcy) X [0UFC =211 = 20250 ©. () +8(FC) (1 = O, (2) (1 = O, (2)
[ v1 20

= S(FC, - 2,(1 = 2)02,9 0, () (1 - O_ (@)

L 1 FC, doc 1=z
S(FC,) = _J 22 40 = exp { —J dt’[ dz P, (2)0((1 — 20> — FC,) }

O 0 de

Zcut
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Monte Carlo solution

» Generate m-particles states with a Markov chain MC

- Measure observable only at the end of the evolution (PS like)

r l
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recursively solve for next evolution time
until 7, ; > 1

A, (1)

Aq(tO)
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NSL fragmentation



Anatomy of NSL formulation

do\) = o0 C(as) @ JY) (ag, v)

Matching coefficient at one loop v—l I—c GFs evolution with two loop kernels
(coupling at the hard scale for IRC safe obs.)
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Anatomy of NSL formulation

do\) = o0 Clas) @ JY) (ag, v)

Matching coefficient at one loop o—J |—c GFs evolution with two loop kernels
(coupling at the hard scale for IRC safe obs.)

» Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

Virtual corrections
(for free from unitarity)

to 1—20 A (t)
Gy(z,t) = ulAg(t)+ dt’ dz Gy(x 2,t") Gy(x (1 — 2),t") % Py(z,0)
t 20 AC](t/)
+KEn(G,, Gy
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Anatomy of NSL formulation

do\) = o0 Clas) @ JY) (ag, v)

Matching coefficient at one loop o—J |—c GFs evolution with two loop kernels
(coupling at the hard scale for IRC safe obs.)

» Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

m\,(ﬂ\’,aﬂm\

Virtual corrections el o
(for free from unitarity) ._I
o o ERTAYI0)
Gy(z,t) = uAg( dt’ dz Gy(x z,t") Gy(x (1 — 2),t) =~ Py(z,0)
Ay(t')

4 Kﬁmte Gq, G
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Anatomy of NSL formulation

do\) = o0 Clas) @ JY) (ag, v)

Matching coefficient at one loop o—J |—c GFs evolution with two loop kernels
(coupling at the hard scale for IRC safe obs.)

» Two loop corrections to evolution equation (e.g. quark fragmentation in NS channel)

m\,(ﬂ\’,aﬂm\

Virtual corrections el o
(for free from unitarity) ._I
o o ERTAYI0)
Gy(z,t) = uAg( dt’ dz Gy(x z,t") Gy(x (1 — 2),t) =~ Py(z,0)
Ay(t')

4 Kﬁmte Gq, G

.Kﬁmte Gq, G Gq, ; ] KqDC[Gq, Gg]
/(WM\“\ , L Subtract iteration of
one-loop evolution
operator

D G, 1y 93) Go(X, 15.3) G (X3, 15 3)
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Cancellation of IRC divergences

« Local counter-term to make cancellation manifest and evaluate numerically (e.g. quark NS C: channel)

(871)% .
123
2o = 2(1 — 2zp)
» » s=22 M Dy > Dy
(87 . .J l.. (87)” -
—JdCD3 2. (P)p G, (x(1 = 2),1) 23) G (X2, 1) »3) +Jd(b3 52, (P)cpe G, (x(1 = 2),1) 23) G (x 2, 1) 23)
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Cancellation of IRC divergences
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-----------------------------------------------------------------------------------------------

calculate in D=4
(e.g. via MC)

-----------------------------------------------------------------------------
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---------------------------------------------------------------------------

calculate in D=4-2¢
analytically at fixed D,
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Kinematic map and %/ (z)

« Map ./ : ®, — @, obtained in general following a Cambridge-Aachen like clustering sequence:

71 Easy to map out the collinear singularities in each of the colour/flavour channels

Xl Phase space angular constraints lead to complicated integrals (especially for gluon fragmentation)

- Result leads to finite integral operator in D=4. Sudakov form factor defined via unitarity i.e. G (x, 1) =1
u=1
to 1—20 ,——oTwo loop cusp AD
In A ( / dt’ / dz Pq( P (.0) - 2CF - aS(Ezgz(z)m)K(l)
1-=z | 27
s EQ 2 2
4 B(z) + 2T (g 1 Bty ng?(2))

2T

New anomalous dimension. Note: ._I
Z Is momentum fraction after the first splitting!
for quark jets obtained in [Dasgupta, EI-Menoufi "21]
for gluon jets obtained in [v. Beekveld, Dasgupta, EI-Menoufi, Helliwell, PM ’23] 19




An application: FCy and A, on groomed jets at NSL

for Ax in quark jets see also [Dasgupta, EI-Menoufi, Helliwell '22]

» One readily gets analytic results for F'C_and A, at NSL for quark and gluon jets, usable at hadron colliders

e.g. FC =%
T Radiator originating from NSL Sudakov FFs ~ RY. (v, ze) = J dt’[ dz P (z,0)0(z(1 — 2)6°™* — FC,)

1_Zcut
Rf, Cx(v, Zegt) = J dt’[ dz (@qg(z, 0) + P, (2, 6’)) O((1 — )0 - FC,)
Z

cut

- s (B2 o pa o (E?

29 () = UOZ—NJq (1 | éw )Cg(l)(zwt)> o~ 2Ry (v,2cut) (1 | (2(7r)2) erglust(v)>
s (B2 _op9g o (E?

29 (p) = Uéf—mg (1 | éw )Cg(l)(zwt)> o~ 2Ry (v,zcut) (1 | (2(7r)2) Qj:gust(v)>

One-loop matching coefficients for Z — gg and H — gg

' ' iainati i finite
(only process dependent piece) Clustering corrections originating from soft limit of i "“[G, G ]

m? 4 n 1
Cg(l)(zcut) = H1 — 2X;+CF (8 In2n zeue + 61In2 — 3 ) : Felust.(v) = CF (CF?WClz (g) +Ca hgﬁst. +LRrny thlistJf> 9 _ wnij 2\
2 o ]
CID (zeu) = HW — 2X9 + O (8 210z — 5 ) ’ s (v) = CaTng hin! =———,
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Conclusions & outlook

o Formulation of jet calculus to NSL for collinear fragmentation

- New angle on resummation of collinear sensitive observables (e.g. micro jets
fragmentation, groomed event shapes, correlators)

= Direct link to parton shower algorithms. Essential insight on inclusion of higher order
corrections, treatment of IR cutoffs, ...

o Next steps:
=~ Numerical algorithm for collinear fragmentation (many subtleties) & applications
- Consistent simultaneous description of soft evolution at wide angles (at least in planar limit)

- Explore implications for building NNLL parton shower algorithms
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Gluon jets: structure of NLL evolution equation

0 (E*20%)  Ca (| as(E*20%) )
as(F2(1 — 2)202) 2

as(E?(1 — 2)%6%)

/tO dt’ / ZO _ng(z,ﬁ) Gy(r2,t")Gy(z (1 —2),t")

z,t') q(x(l—z),t’)-

DC C3



Quark jets: double real corrections

1 A) (A
€816y Gy = Y g [af? P {Gnen (- 202 Gale - 5) (1-2) 02

(A)
Ay(t)
Aq (t1,2)

-+ /dq):(gB) Pl(i)S {GQ(CU (1 — Z), t1,23) Gg(x < (1 — Zp)7 t2,3)

X Gg(x z,t123) — Grpy(z (1 — 2),t123) Gy 2, t12,3)}

— Gy (1= 2),tras) Gl 2, tmg)} Aq(t)




Soft gluons on the celestial sphere & NGLs

o Similar formalism (albeit for colour dipoles in planar limit)
was used for first NSL calculation of NGLs
(not considered further in this talk)

» e.g. GFs evolution at SL
Z0fQs )] = 802(Q) + [ [kl (k) £2

l < Zalkeas {u}) Zuslkra: {u]u(ka)O(Q — kea)

defined by
LolQ:{u=1}] =1 T T~ N:.0ji+1

C_ ) Fraction of events passing the veto is
= ; affected by large logarithms L=In(Q/w), All

['t Hooft 73]

order resummation requires distribution of
soft gluons on the sphere

.
il B BB BH BB =H B =E BB BB BBl BB BB =B B =]
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