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Status of particle physics:
energy frontier

Colliders: SM describes final states of particle
collisions precisely [CMS public]
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https://arxiv.org/pdf/2305.18106.pdf

Status of particle physics:
cosmic and intensity frontiers

Universe at large scale described precisely by cosmological SM:
ACDM (2., =0.3)

Neutrino flavours oscillate

Existing baryon asymmetry cannot be explained by CP
asymmetry in SM

Inflation of the early, accelerated expansion of the present
Universe [https://pdg.lbl.gov]

Established observations require physics beyond SM,
but do not suggest rich BSM physics


https://pdg.lbl.gov

Phenomenological approach to new physics

Can we explain these observations,
but not more,
by the same model?
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Extension of SM: three alternatives with
different strength and weaknesses
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high scales
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Extension of SM: three alternatives with
different strength and weaknesses

Effective field theory, such as SMEFT: general but highly
complex (2499 dim 6 operators), focuses on new physics at
high scales

Simplified models, such as dark photon, extended scalar
sector or right-handed neutrinos: "easily accessible”
phenomenology, but focus on specific aspect of new physics,
so cannot explain all known BSM phenomena

UV complete extension with potential of explaining BSM
phenomena within a single model such as SuperWeak

extension of the Standard Model: SWSM
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Particle content of SM
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Superweak extension of SM
(SWSM)

Symmetry of the Lagrangian: local
G=GsuyxU(1), with Gsp=SU(3).xSU(2) . xU(1)y

renormalizable gauge theory, including all dim 4
operators allowed by G
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Superweak extension of SM
(SWSM)

Symmetry of the Lagrangian: local
G=GsuyxU(1), with Gsp=SU(3).xSU(2) . xU(1)y

renormalizable gauge theory, including all dim 4
operators allowed by G

z-charges fixed by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass
generation
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Charge assignment from gauge invariant
neutrino interactions

field SU(3). SU@2: v e e e
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings



Mixing in the neutral gauge sector
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Cxy = COS Oy
Sy = sin Oy

where 6y, is the weak mixing angle & 6, is the Z — Z’' mixing, implicitly:
tan(260,) = — 21</<1 — K2 - 72), with x and 7 effective couplings,

functions of the Lagrangian couplings
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Mixing in the neutral gauge sector

/Bu\ /CW —Swy O\ (1 0 O \ (Au\

Wisale=les et cpe 0 cy; —sy T
where 6y, is the weak mixing angle & 6, is the Z — Z’' mixing, implicitly:
tan(260,) = — 21</<1 — K2 - 72>, with x and 7 effective couplings,

functions of the Lagrangian couplings

Cxy = COS Oy

Sy = sin Oy

The expressions for the neutral gauge boson masses are somewhat
cumbersome, but exists a nice, compact generalization of the SM

2
. P B S s e i
mass-relation formula: S c;M5+s;M, (MW = —gLV)
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Scalars in the SWSM

Standard ® complex SU(2). doublet and new

x complex singlet:
Eoe [D(¢)¢]*D(¢)“¢ 4 [D(X) ]*D(X)u — Vo, %)
with scalar potential

V(g,x) = Vo - i2lof - i+ (o0 (¥ ) (1%
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After SSB, G > SU(3)CX U(1 )QED N R(g gauge
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Mixing in the scalar sector

Gt

where 6, is the scalar mixing angle implicitly:
tan(205) = Avw / </1%w2 — ﬂ¢v2>, with v and w VEVs
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Mixing in the scalar sector

Gt

where 6, is the scalar mixing angle implicitly:
tan(205) = Avw / </1%w2 — ﬂ¢v2>, with v and w VEVs

S5 new parameters:
in gauge sector: {g,and g, } or{xand 7} or{6,and M}
in scalar sector: {,u)?, /1)( and A} or {w, /1)( and A} or {M,, 6, and 4}
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After SSB neutrino mass terms appear

- s’ o, v+h —io
e . 208 YN Vi ¢V_YVV + h.c.
w U
MN:_YN MD _YV

0; Mj
Mp My

In flavour basis the full 6x6 mass matrix reads M’ =

)
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After SSB neutrino mass terms appear

- s’ +io, — - h' — io
g 208 YN Vi ¢V_YVV + h.c.
P R o
w (Y
My=—Yun Mp=—7=Y,

e Y

: . % 0; M£E
In flavour basis the full 6x6 mass matrix reads M’ = ( : D)

Mp My

v and vz have the same g-numbers, can mix, leading to type-|
see-saw

Dirac and Majorana mass terms appear already at tree level by
SSB (not generated radiatively)

Quantum corrections to active neutrinos are not dangerous
[lwamoto et al, arXiv:2104.14571]
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Expected consequences
(take-home messages)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]

21
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The lightest new particle is a natural and viable candidate for WIMP dark
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Dark matter candidate
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gravitational effect of the dark matter on the luminous
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the Universe
Assume that the DM has particle origin
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Dark matter candidate

DM exists, but known evidence is based solely on the

gravitational effect of the dark matter on the luminous

astronomical objects and on the Hubble-expansion of

the Universe

Assume that the DM has particle origin

Only chance to observe such a particle if it interacts

with the SM particles, which needs a portal

In the superweak model the vector boson portal Z’' with
the lightest sterile neutrino v, as dark matter candidate is

a natural scenario  (Higgs portal exists, but negligible)
23



Parameter space for the freeze-out scenario of
dark matter production in the SWSM
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It is essential for the SWSM DM candidate that the resonance in
SM+SM — Z' — DM+DM can dominate the integral in the rate



Experimental constraints

Anomalous magnetic moment of electron and muon
Z' couples to leptons modifying the magnetic moment

Constraints on (g — 2) translate to upper bounds on the coupling g.(M,)
NA64 search for missing energy events

Strict upper bounds on g (M) for any U(1) extension (dark photons)
Supernova constraints based on SN1987A
Constraints are based on comparing observed and calculated neutrino
fluxes
Big Bang Nucleosynthesis provides constraints on new particles
New particles should have negligible effects during BBN
Meson production can be dangerous close to BBN
Further constraints are due to CMB, solar cooling, beam dump
experiments etc.

25



Cosmological constraints on the freeze-out
scenario of dark matter production in the SWSM
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Expected consequences
(take-home messages)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]

The lightest new particle is a natural and viable candidate for WIMP dark
matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which

in turn can be the source of lepto-baryogenesis
[Seller, Szép, ZT, arXiv:2301.07261 and under investigation]
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Prerequisite:
Phase-transitions in the SWSM

U(1), is broken earlier than SU(2) xU(1)y
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Expected consequences
(take-home messages)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]

The lightest new particle is a natural and viable candidate for WIMP dark
matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which

in turn can be the source of lepto-baryogenesis
[Seller, Szép, ZT, arXiv:2301.07261 and under investigation]

The second scalar together with the established BEH field can stabilize
the vacuum and be related to the accelerated expansion now and
inflation in the early universe

[Péli, Nandori and ZT, arXiv:1211.07082; Péli and ZT, arXiv:2204.07100]
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Expected consequences
(take-home messages)

Dirac and Majorana neutrino mass terms are generated by the SSB of the
scalar fields, providing the origin of neutrino masses and oscillations
[lwamoto, Karkainnen, Péli, ZT, arXiv:2104.14571; Karkkainen and ZT, arXiv:2105.13360]

The lightest new particle is a natural and viable candidate for WIMP dark
matter if it is sufficiently stable [Seller, Iwamoto and ZT, arXiv:2104.11248]

Diagonalization of neutrino mass terms leads to the PMNS matrix, which

in turn can be the source of lepto-baryogenesis
[Seller, Szép, ZT, arXiv:2301.07261 and under investigation]

The second scalar together with the established BEH field can stabilize
the vacuum and be related to the accelerated expansion now and
inflation in the early universe

[Péli, Nandori and ZT, arXiv:1211.07082; Péli and ZT, arXiv:2204.07100]

SWSM has the potential of explaining all known results beyond the SM
31
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Main questions

Present focus:

Is there a non-empty region of the parameter
space where all these promises are fulfilled?

Can we predict any new phenomenon
observable by present or future experiments?
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Important test

Once the allowed region of the parameter space for fulfilling
the expectations is understood

the observation of the Z’ or S in the allowed
region

25



Experimental constraints in the scalar sector

from direct searches and My,

[Zoltan Péli and ZT, arXiv: 2204.07100]
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Experimental constraints in the scalar sector
from direct searches and My,

= M > M,: [Zoltan Péli and ZT, arXiv: 2204.07100]
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My is measured and computed precisely
(with per myriad precision)

ALEPH { ———gg— 80.440 + 0.051
DELPHI -— 80.336 + 0.067
13 —— 80.270 + 0.055
OPAL ——m——  80.41520.052
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i ¥2/dof = 49/41
CDF - 80.389+ 0.019
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. N . . . . . 7-2160' = 4.216
ATLAS = 80.370+ 0.019
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Prediction of My in the SWSM

Can be determined from the decay width of the muon:

( )
s cos’ (9ZM§+sin2 QZM% i 4”0‘/ (ﬁGF ) 1
e 2 \ cos? 0,Mz+sin” 0,M3, | _ A ( ArD + A”é?M)
Valid in MS

0, is the Z — Z' mixing angle

Arg, collects the SM quantum corrections (known completely at two
loops and partially at three loops)

Arl%& collects the formally SM quantum corrections but with BSM loops

Arz(azs)M collects BSM corrections to M, & 6,: neglected in FlexibleSUSY

[Zoltan Péli and ZT, arXiv: 2305.11 931(])
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Scale dependence of My in the SWSM
M.=5TeV 5;=10 " tanf=10

80.390 =

g 2) R

80.385- | Arl) :

i Case (i I i

30,380/ O (i) included E

= - | Case (i) | neglected :

B 80375 ‘ ]
z e

= 80370~ e -

80365 L. ]

80360 . .

80355




Conclusions

Established observations require physics beyond SM, but do not suggest rich
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One-loop corrections to the tree-level neutrino mass matrix computed and
found to be small (below 1%o0) in the parameter space relevant in the SWSM
Lightest sterile neutrino is a candidate DM particle in the

[10,50] MeV mass range for freeze-out mechanism with resonant
enhancement — predicts an approximate mass relation between vector boson
and lightest sterile neutrino

In the scalar sector we find non-empty parameter space for M, > M,

Contributions to EWPOs (e.g. My, lepton g-2) are negligible in the superweak

region and a systematic exploration of the parameter space is ongoing
41









Status of the muon anomalous magnetic
moment: experiment

The muon g-2 has been a smoking gun for new
physics for many years, more recently:

A BNL
1 : FNAL Run-1
] | FNAL Run-2/3
o— FNAL Run-1 + Run-2/3
< ; Exp. Average
20.0 20.5 21.0 21.5 22.0 225
a,% 10" - 1165900

[https://muon-g-2.fnal.gov/result2023.pdf]
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Status of the muon anomalous magnetic
moment: experiment

The muon g-2 has been a smoking gun for new
physics for many years

The most precise experimental value is from FNAL

(20231 -5y
e = 116592055(24) - 107! (0.20 ppm)

U
...equivalent to a bathroom scale sensmve to a single

eyelash
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Status of the muon anomalous magnetic
moment: experiment vs. theory

{155 >
o i O |
: BMW Experimental
R-ratio lattice QCD Average 2021
method Standard Model
< i2o >
: @ :
White Paper

Standard Model
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[BMW compilation]



Status of the muon anomalous magnetic
moment: experiment vs. theory
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R-ratio lattice QCD Average 2021
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Status of the muon anomalous magnetic
moment: theory with R-ratio

The muon g-2 has been a smoking gun for new
physics for many years, but tension already in earller

data used for pefore CMD2
theory prediction: cmp2
SND

o(ete™ — ntn7) cross section KLOE comb
in this energy range gives BABAR

more than 50% to total HVP B
R CLEO
contribution to a, ; . sNDk
A . —=— cMD3 ;
- - 360 365 370 375 380 385 390

aﬁ" (0.6 <Vs < 0.88 GeV ), 10°7"°
[BMW compilation] ;g



Status of the muon anomalous magnetic
moment: theory with R-ratio

New CMD3 data show a ~15 unit increase in central
value and 4.40 tension with old average:

o(ete™ — ntn7) cross section
in this energy range gives
more than 50% to total HVP
contribution to a, ;
AN

[t f

= béfore CIEWDZ

cMp2

——  BABAR
CLEO

360 365 370 375 380 385 390

a™™ (0.6 <\s <0.88 GeV), 10"’
[BMW compilation]



Status of the muon anomalous magnetic
moment: lattice vs. R-ratio

Lattice: alfIVP@LO

o 7075(23)stat(5 -O)sys[s ‘S]tOt

~15 units above the R-ratio white paper value (a 2.1 tension)
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Status of the muon anomalous magnetic
moment: window observable

restrict correlation window to [0.4,1.0] fm:
two orders of magnitude easier (less CPU, less manpower

needed) lattice vs. R-ratio: 4.90 tension:

15 wmdow [RBC/UKQCD18] — - lattice —8—
1.0 A s S S S R R-ratio / lattice —@—

05 / e G S S S Rt S o ! ! ! ! !
by da/dt [BMWG17] — o | FHM'23 [2301.08274] |~ —B—

00 da uw.n/dt [BUWC'17] —o— I ]
B 7| RBC/UKQCD23[2301.08696] | - I -

300 I U ETMC'22 [2206.15084] | | T
200 _— e : Mainz’22 [2206.06582] | o E—
wolé? % v _ BMW20 [2002.12347) | =E—
| | | - ‘ | | ‘ R-ratio’22 [Colangelo/lat] --—0—- ffffff ffffffffffff ————————— ———————————— —

0 B R50000000000080560008083853088 s s 1 s |
R-ratio’20 [BMW/at] | —e— e

00 05 10 15 20 25 30 35 40 45 i i S i
f 200 203 206 209 212

t[fm] 10 _ ;. light
(144 x 963, a ~ 0.064 fm, My ~ 135 MeV) 10~ X [au,win]iso



Message of the muon anomalous magnetic

moment

We are certain that there is new physics beyond the SM

“Final word"” on a, will tell how BSM should affect the muon g-2

U
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'new physics
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Status of the muon anomalous magnetic
moment

We are certain that there is new physics beyond the SM
Current main question:

How large is the new physics contribution to a,, really?

“large” (almost 50 — R-ratio result)
"small” (almost insignificant — lattice result)
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Status of the muon anomalous magnetic
moment

We are certain that there is new physics beyond the SM
Current main question:

How large is the new physics contribution to a,, really?
“large” (almost 5o — R-ratio result)

"small” (almost insignificant — lattice result)

The experimental result appears robust, only its uncertainty will
reduce further

Main task:

Resolve discrepancy between theory predictions
Until then

everything else is speculation
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Muon anomalous magnetic moment:
speculations with R-ratio result

Generally large

i &
BSM BSM

[Czarneczki, Marciano hep-ph/0102122]
can only be explained by rather small masses and/or large
couplings and enhanced chirality flips

(the QFT operator corresponding to g, connects left and right chirality muons),

which can lead to
conflicts with limits from LHC and dark matter experiments

Exhaustive study of single-, two- and three-field extensions

shows that most of these are excluded
[Athron et al., arXiv:2104.03691]



https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.013014
https://link.springer.com/article/10.1007/JHEP09(2021)080

| east constrained models

Some specific incomplete three-field models (2F1S, 251F) with
large couplings [Athron et al., arXiv:2104.03691]
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https://doi.org/10.1007/JHEP09(2021)080
https://link.springer.com/article/10.1007/JHEP07(2021)075
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| east constrained models

Some specific incomplete three-field models (2F1S, 251F) with
large couplings [Athron et al., arXiv:2104.03691]
MSSM with [lwamoto et al., arXiv:2104.03217, 2104.03223]

Bino-like LSP and either slepton or chargino coannihilation
Wino-like LSP, but additional dark matter
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| east constrained models

Some specific incomplete three-field models (2F1S, 251F) with

large couplings [Athron et al., arXiv:2104.03691]

MSSM with [lwamoto et al., arXiv:2104.03217, 2104.03223]
Bino-like LSP and either slepton or chargino coannihilation
Wino-like LSP, but additional dark matter

Muon chirality flip enhancements are related to the mass

generation mechanism for the muon, so the measurement of

the Higgs-muon coupling at LHC or FCC can (will) provide

further tests
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https://doi.org/10.1007/JHEP09(2021)080
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http://www.apple.com

| east constrained models

Some specific incomplete three-field models (2F1S, 251F) with

large couplings [Athron et al., arXiv:2104.03691]

MSSM with [lwamoto et al., arXiv:2104.03217, 2104.03223]
Bino-like LSP and either slepton or chargino coannihilation
Wino-like LSP, but additional dark matter

Muon chirality flip enhancements are related to the mass

generation mechanism for the muon, so the measurement of

the Higgs-muon coupling at LHC or FCC can (will) provide

further tests

Planned JPARC g — 2 experiment and progress on theory

prediction using results from the MUonE initiative should be

decisive
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Non-standard interactions and the SWSM
[Timo J. Karkainen and ZT, arXiv: 2301.06621]

AR 2
Ota = —5 Cr*PLLY(fr,Pxf)

where A is the scale of new physics, can be as low as few MeV,
which can be probed in
Coherent Elastic Neutrino-Nucleus Scattering (CEvNS)

Standard parametrization of NSI:
Prnsi=—2V2Ge D, X0 Py ) Fr.Prf)
fX=%0.0"

1
where &% «+—ifg*>M?  "light NSI"
; q2

1
faX . % 2 1 "
£,y 2n‘q < M-, heavy NSI”,

for a mediator
of mass M
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https://doi.org/10.1103/PhysRevD.107.115020

Non-standard interactions and the SWSM

assume M = 50 MeV, which is

light in CHARM or NuTEV ¢? = O((20 GeV)?)

heavy in neutrino oscillation experiments g ~ 0

but g* ~ M? in CEVNS
We can still apply the NSI formalism using the full propagator
with g* being the characteristic momentum transfer squared

S



Non-standard interactions and the SWSM

assume M = 50 MeV, which is
light in CHARM or NuTEV ¢? = 0((20 GeV)?)
heavy in neutrino oscillation experiments g ~ 0
but g* ~ M? in CEVNS
We can still apply the NSI formalism using the full propagator
with g? being the characteristic momentum transfer squared
Can be used to [Timo J. Karkainen and ZT, arXiv: 2301.06621]

Constrain the parameter space of SWSM
Predict relations between NSI couplings assuming SWSM

S
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Non-standard interactions and the SWSM

High-energy theory enforces texture for NSI matrix:

N
Erp = €gp + €4 + 5gg+—Nn (b + 225)
~"~ e

=0

SWSM
(622 em 5217) (e 0 0) (e 0 0)
Eepp Epp Epr 0 ¢, O 0 ¢ O
erem o em) o o o) \oo o
1 — 7 symmetry  Flavour-conserving Flavour-universal
CLFV decays v No No
v oscillation \/ \/ No
CEUNS v v v
v scattering maybe maybe maybe

Existing limits on NSI constrain the parameters of the

high-energy theory




Non-standard interactions and the SWSM:
preferred regions of the parameters
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Non-standard interactions and the SWSM:
preferred regions of the parameters

—— COHERENT 2o limits 130 MeV
110 MeV
190 MeV
3
W 170 MeV
50 MeV
30 MeV
10 MeV
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