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Status of particle physics:  
energy frontier

5

Colliders: SM describes final states of particle 
collisions precisely                                              [CMS public] 

                                          41 channels                   

https://cms-results.web.cern.ch/cms-results/public-results/publications/SMP/index.html
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Colliders: SM describes final states of particle collisions 
precisely 
No proven sign of new physics beyond SM at colliders*            

 
[CMS preprint] 

*Exciting news keep popping up, all below discovery significance yet                         
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0

100

200

300

400

500

600

700

 w
ei

gh
te

d 
ev

en
ts

 / 
G

eV
S/
(S
+B
)

Data
 fitS+B

 componentB
σ1 ±

σ2 ±

CMS  (13 TeV)-1138 fb

100 110 120 130 140 150 160 170

 [GeV]µem

60−
40−
20−

0
20
40
60
80

100
 component subtractedB

http://www.apple.com


Status of particle physics:  
energy frontier

8

Colliders: SM describes final states of particle collisions 
precisely 
No proven sign of new physics beyond SM at colliders*            

 
[CMS preprint] 
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Status of particle physics:  
cosmic and intensity frontiers
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Universe at large scale described precisely by cosmological SM: 
ΛCDM (Ωm =0.3)  

Neutrino flavours oscillate                   

Existing baryon asymmetry cannot be explained by CP 
asymmetry in SM                        

Inflation of the early, accelerated expansion of the present 
Universe                                                                        [https://pdg.lbl.gov] 

Established observations require physics beyond SM, 
but do not suggest rich BSM physics

https://pdg.lbl.gov


Phenomenological approach to new physics

10

Can we explain these observations,                      
but not more,                                                                 

by the same model? 
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Extension of SM: three alternatives with  
different strength and weaknesses

12

Effective field theory, such as SMEFT: general but highly 
complex (2499 dim 6 operators), focuses on new physics at 
high scales

Simplified models, such as dark photon, extended scalar 
sector or right-handed neutrinos: ”easily accessible” 
phenomenology, but focus on specific aspect of new physics, 
so cannot explain all known BSM phenomena

UV complete extension with potential of explaining BSM 
phenomena within a single model such as SuperWeak 
extension of the Standard Model: SWSM
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Particle content of SWSM 
(take-home picture) 
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 Symmetry of the Lagrangian: local 
G=GSM×U(1)z with GSM=SU(3)c×SU(2)L×U(1)Y

renormalizable gauge theory, including all dim 4 
operators allowed by G
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 Symmetry of the Lagrangian: local 
G=GSM×U(1)z with GSM=SU(3)c×SU(2)L×U(1)Y

renormalizable gauge theory, including all dim 4 
operators allowed by G

z-charges fixed by requirement of

gauge and gravity anomaly cancellation and
gauge invariant Yukawa terms for neutrino mass 
generation



Charge assignment from gauge invariant 
neutrino interactions
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(a) anomaly free charges (b) from neutrino-scalar interactions (c) from re-parametrization of couplings

(a) (b) (c)

Table 1: Assignments for the representations (for SU(N)) and charges (for U(1)) of fermion
and scalar fields of the complete model. The charges yj denote the eigenvalue of Y/2, with
Y being the hypercharge operator and zj denote the supercharges of the fields  j of Eq. (2.1)
(j = 1, 2, 3). The right-handed Dirac neutrinos ⌫R are sterile under the GSM group. The
sixth column gives a particular realization of the U(1)Z charges, motivated below, and the
last one is added for later convenience.

.

field SU(3)c SU(2)L yj zj zj rj = zj/z� � yj
UL, DL 3 2 1

6 Z1
1
6 0

UR 3 1 2
3 Z2

7
6

1
2

DR 3 1 �
1
3 2Z1 � Z2 �

5
6 �

1
2

⌫L, `L 1 2 �
1
2 �3Z1 �

1
2 0

⌫R 1 1 0 Z2 � 4Z1
1
2

1
2

`R 1 1 �1 �2Z1 � Z2 �
3
2 �

1
2

� 1 2 1
2 z� 1 1

2

� 1 1 0 z� �1 �1

fields introduced in the covariant derivative transform as

T · W µ(x)
G

�! T · W 0µ(x) = U(x)T · W µ(x) U †(x) +
i

gL
[@µ U(x)] U †(x)

Bµ G
�! B0µ(x) = Bµ(x) �

1

gY
@µ�(x)

Zµ G
�! Z 0µ(x) = Zµ(x) �

1

gZ
@µ⇣(x)

(2.5)

where U(x) = exp [iT · ↵ (x)]. The gauge invariant kinetic term for these vector fields is

LB,Z,W = �
1

4
Bµ⌫B

µ⌫
�

1

4
Zµ⌫Z

µ⌫
�

1

4
W µ⌫ · W µ⌫ , (2.6)

with Bµ⌫ = @µB⌫ � @⌫Bµ ⌘ @[µB⌫], Zµ⌫ = @[µZ⌫] and W µ⌫ = @[µW ⌫] � gW µ ⇥ W ⌫ .

The field strength T · W µ⌫ transforms covariantly under G transformations, T · W µ⌫

G
�!

U(x)T · W µ⌫ U †(x), but Bµ⌫ and Zµ⌫ are invariant, hence a kinetic mixing term of the
U(1) fields is also allowed by gauge invariance:

�
✏

2
Bµ⌫Z

µ⌫ . (2.7)

We can get rid of this mixing term by redefining the U(1) fields using the transformation
✓

B0
µ

Z 0
µ

◆
=

✓
1 sin ✓Z
0 cos ✓Z

◆✓
Bµ

Zµ

◆
, sin ✓Z = ✏ . (2.8)
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Mixing in the neutral gauge sector 
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where  is the weak mixing angle &  is the  mixing, implicitly: 
, with  and  effective couplings, 

functions of the Lagrangian couplings

θW θZ Z − Z′ 

tan(2θZ) = − 2κ/(1 − κ2 − τ2) κ τ

relatively simple, they can explain a multiple of BSM phenomena [10–17].

The specific example we have in mind is the superweak extension of the standard model

(SWSM) [18], although di↵erent charge assignments are also possible, and our formulae do

not depend on the choice explicitly. The SWSM contains also three generations of SM sterile

right handed neutrinos that are clearly necessary for the cancellation of gauge and gravity

anomalies and to explain the origin of neutrino masses. We do not include their e↵ect here

to simplify the parameter dependence in the numerical analysis, but it can be seamlessly

integrated into our complete one-loop prediction.

The Lagrangian of the scalar fields contains a potential energy with quadratic and quartic

terms such that non-vanishing vacuum expectation value (VEV) v of the Brout-Englert-

Higgs (BEH) field breaks the usual SU(2)L⌦U(1)Y symmetry, while the VEV w of the �

breaks the U(1)z symmetry via spontaneous symmetry breaking (SSB).

In addition to the appearance of the massive scalar bosons, the SSB generates mass terms

also for the gauge bosons

L
VB
M =

v
2

2


g
2
L

2
W

+
µ
W

�µ +
g
2
z

2
tan2

� B
0
µ
B

0µ

+
1

4

⇣
gyBµ +

�
gz � gyz

�
B

0
µ
� gLW

3
µ

⌘2
�
,

(1)

where tan � = w/v, gL, gy and gz are the SU(2)L, U(1)Y and U(1)z couplings, while the

mixing coupling gyz parametrizes the kinetic mixing between the Bµ and B
0
µ
fields [19]. The

fields W±
µ

=
�
W

1
µ
± iW 2

µ

�
/
p
2 are the charged, while the neutral gauge eigenstates are Bµ,

B
0
µ
(belonging to the U(1)Y and U(1)z symmetries) and W

3
µ
. The latter fields are related to

the neutral mass eigenstates Aµ, Zµ and Z
0
µ
via two rotations

0

BBB@

Bµ

W
3
µ

B
0
µ

1

CCCA
=

0

BBB@

cW �sW 0

sW cW 0

0 0 1

1

CCCA

0

BBB@

1 0 0

0 cZ �sZ

0 sZ cZ

1

CCCA

0

BBB@

Aµ

Zµ

Z
0
µ

1

CCCA
(2)

where we introduced the abbreviations cX = cos ✓X and sX = sin ✓X for mixing angles. The

Weinberg angle ✓W is defined as

sW =
gy

gZ0
, with the abbreviation g

2
Z0 = g

2
y
+ g

2
L , (3)

so e = gLsW where gL is the SU(2) gauge coupling and e is the elementary charge. The

3

cX = cos θX
sX = sin θX
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The expressions for the neutral gauge boson masses are somewhat 
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Standard Φ complex SU(2)L doublet and new   
χ complex singlet:

with scalar potential

Scalars in the SWSM
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet

� =

✓
�
+

�
0

◆
=

1
p
2

✓
�1 + i�2

�3 + i�4

◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
µ

�]⇤D(�)µ
�+ [D(�)

µ
�]⇤D(�)µ

�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D
(s)
µ

= @µ + igL T ·W µ + igY ysBµ + i(g0
Z
zs � g

0
Y
ys)Z

0
µ

(2.12)

and the potential energy

V (�,�) = µ
2
�
|�|

2 + µ
2
�
|�|

2 +
�
|�|

2
, |�|

2
�✓��

�

2
�

2 ��

◆✓
|�|

2

|�|
2

◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition

4���� � �
2
> 0 . (2.14)

With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)

� = v =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, � = w =

s
2�µ2

�
� 4��µ

2
�

4���� � �2
, (2.15)

provided the conditions

�µ
2
�
> 2��µ

2
�

and �µ
2
�
> 2��µ

2
�

(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.

5
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Y
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and the potential energy
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�
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�
|�|2 +

�
|�|2, |�|2

�✓��
�

2
�

2 ��

◆✓
|�|2

|�|2

◆
, (2.15)

in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
fields in the Lagrangian. For the doublet |�| denotes the length

p
|�+|2 + |�0|2. The value

of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�± =
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�� � ��)

1

◆
. (2.17)

As �+ > 0 and �� < 0, in the physical region the potential can be unbounded from below
only if u(�) points into the first quadrant, which may occur only when � < 0. In this
case, to ensure that the potential is bounded from belwo, one also has to require that the
coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p

2

s
2��µ2

�
� �µ2

�

4���� � �2
, w =

p

2

s
2��µ2

�
� �µ2

�

4���� � �2
. (2.19)
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coupling matrix be positive definite, which translates into the condition

4���� � �2 > 0 . (2.18)

With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are
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. (2.19)
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2.2 Scalar sector

To solve the puzzle of missing masses we proceed similarly as in the standard model, but
in addition to the usual BEH-field � that is an SU(2)L-doublet
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◆
, (2.10)

we also introduce another complex scalar � that transforms as a singlet under GSM trans-
formations. The gauge invariant Lagrangian of the scalar fields is

L�,� = [D(�)
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�+ [D(�)

µ
�]⇤D(�)µ

�� V (�,�) (2.11)

where the covariant derivative for the scalar s (s = �, �) is

D
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Y
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0
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(2.12)

and the potential energy
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|�|
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◆
, (2.13)

in addition to the usual quartic terms, introduces a coupling term ��|�|
2
|�|

2 of the scalar
fields in the Lagrangian. In order that this potential energy be bounded from below, in
addition to the positivity of the self-couplings, ��, �� > 0, we also need that the coupling
matrix has to be positive definite, which translates to the condition
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With these conditions satisfied, we can find the minimum of the potential energy at field
values (vacuum expectation values, or VEVs)
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provided the conditions
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�
> 2��µ

2
�

and �µ
2
�
> 2��µ

2
�

(2.16)

are satisfied simultaneously (the denominators are positive due to the constraint (2.14)).
The inequalities in (2.16) cannot be satisfied together if both µ

2
�
and µ

2
�
are positive. Thus

at least one of the mass parameters is negative automatically. If both are negative, then
the sign of � is unconstrained. If however, only one of them smaller than zero, then � must
also be negative.
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in addition to the usual quartic terms, introduces a coupling term ��|�|2|�|2 of the scalar
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of the additive constant V0 is irrelevant for particle dynamics, but may be relevant for
inflationary scenarios, hence we allow for its nonvanishing value. In order that this potential
energy be bounded from below, we have to require the positivity of the self-couplings, ��,
�� > 0. The eigenvalues of the coupling matrix are

�± =
1

2

✓
�� + �� ±

q
(�� � ��)2 + �2

◆
, (2.16)

while the corresponding un-normalized eigenvectors are

u(+) =

✓
2
�
(�+ � ��)

1

◆
and u(�) =

✓
2
�
(�� � ��)

1

◆
. (2.17)
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With these conditions satisfied, we can find the minimum of the potential energy at field
values � = v/

p
2 and � = w/

p
2 where the vacuum expectation values (VEVs) are

v =
p

2

s
2��µ2

�
� �µ2

�

4���� � �2
, w =

p

2

s
2��µ2

�
� �µ2

�

4���� � �2
. (2.19)

5

B. Mixings of scalar and Goldstone bosons

In addition to the usual SU(2)L-doublet Brout-Englert-Higgs (BEH) field

� =

0

@�+

�0

1

A =
1p
2

0

@�1 + i�2

�3 + i�4

1

A , (II.9)

there is another complex scalar � in the model, with charges specified in [28]. The Lagrangian

of the scalar fields contains the potential energy

V (�,�) = V0 � µ2
�|�|2 � µ2

�|�|2 +
�
|�|2, |�|2

�
0

@��
�
2

�
2 ��

1

A

0

@|�|2

|�|2

1

A ⇢ �L (II.10)

where |�|2 = |�+|2 + |�0|2. In the R⇠ gauge we parametrize the scalar fields after spontaneous

symmetry breaking as

� =
1p
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✓
�i

p
2�+

v + h0 + i��

◆
, � =

1p
2
(w + s0 + i��) (II.11)

where v and w denotes the vacuum expectation values (VEVs) of the fields, whose values are

v =
p
2

s
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� � �µ2
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, w =

p
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4���� � �2
. (II.12)

Using the VEVs, we can express the quadratic couplings as

µ2
� = ��v

2
+

�

2
w2 , µ2

� = ��w
2
+

�

2
v2 . (II.13)

The fields h0 and s0 are two real scalars and �� and �� are the corresponding Goldstone

bosons that are weak eigenstates. We shall denote the mass eigenstates with h, s and �Z , �Z0 .

These different eigenstates are related by the rotations

✓
h

s

◆
= ZS

✓
h0

s0

◆
⌘

0

@cos ✓S � sin ✓S

sin ✓S cos ✓S
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◆
(II.14)

and
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✓
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◆
⌘

0

@cos ✓G � sin ✓G

sin ✓G cos ✓G

1

A
✓
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◆
(II.15)

where ✓S and ✓G are the scalar and Goldstone mixing angles that can be determined by the

diagonalization of the mass matrix of the real scalars and that of the neutral Goldstone bosons.
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where  is the scalar mixing angle implicitly: 
, with  and  VEVs

θS

tan(2θS) = λvw/(λχw2 − λϕv2) v w

(

h′

s′

)

=

(

cS sS

−sS cS

)(
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s
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where  is the scalar mixing angle implicitly: 
, with  and  VEVs

θS

tan(2θS) = λvw/(λχw2 − λϕv2) v w

5 new parameters:
• in gauge sector: {  and }   or {  and }        or {  and }                                   gz gyz κ τ θZ MZ′ 

• in scalar sector: { ,  and } or { ,  and } or { ,  and }μ2
χ λχ λ w λχ λ MS θS λ

(

h′

s′

)

=

(

cS sS

−sS cS

)(

h

s

)



After SSB neutrino mass terms appear
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• In flavour basis the full 6×6 mass matrix reads

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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• In flavour basis the full 6×6 mass matrix reads

• νL and νR have the same q-numbers, can mix, leading to type-I 
see-saw

• Dirac and Majorana mass terms appear already at tree level by 
SSB (not generated radiatively)
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It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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After SSB neutrino mass terms appear
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• In flavour basis the full 6×6 mass matrix reads

• νL and νR have the same q-numbers, can mix, leading to type-I 
see-saw

• Dirac and Majorana mass terms appear already at tree level by 
SSB (not generated radiatively)

• Quantum corrections to active neutrinos are not dangerous 
[Iwamoto et al, arXiv:2104.14571]

where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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where LL is the Dirac adjoint of the left handed lepton dublet, YN and Y⌫ are 3⇥ 3 matrices,

the superscript c denotes charge conjugation, ⌫c
= �i�2⌫⇤. After SSB this Lagrangian becomes

� L`
Y =

w + s0 + i��

2
p
2

⌫c
R YN ⌫R +

v + h0 � i��p
2

⌫L Y⌫ ⌫R + h.c. (II.32)

and the terms proportional to the VEVs provide the mass matrices

MN =
wp
2
YN , MD =

vp
2
Y⌫ (II.33)

where the Majorana mass matrix MN is real and symmetric, while the Dirac mass matrix MD

is complex and Hermitian.

In flavour basis the 6⇥ 6 mass matrix for the neutrinos that can be written in terms of 3⇥ 3

blocks as

M0
=

0

@ 03 MT
D

MD MN

1

A . (II.34)

The weak (flavour) eigenstates (⌫e, ⌫µ, ⌫⌧ , ⌫R,1, ⌫R,2, ⌫R,3) can be transformed into the basis of

⌫i (i = 1 � 6) mass eigenstates with a 6 ⇥ 6 unitary matrix [38] U where the mass matrix is

diagonal,

UTM0U = M = diag(m1,m2,m3,m4,m5,m6) . (II.35)

It is helpful to decompose the matrix U into two 3⇥ 6 blocks UL and U⇤
R,

U =

✓
UL

U⇤
R

◆
, (II.36)

so UT
= (UT

L,U
†
R) where both blocks are 6⇥ 3 matrices. It may be worth to emphasize that in

spite of what might be implied by the notation, the matrices UL and U⇤
R are only semi-unitary.

Useful relations of these matrices are collected in Appendix A.

E. Gauge boson – neutrino interactions

As the neutral currents are written in terms of flavour eigenstates, the interactions between

the neutral gauge bosons and the propagating mass eigenstate neutrinos include also the neu-

trino mixing matrices:

�µ
V ⌫i⌫j

= �ie�µ
⇣
�L

V ⌫⌫PL + �R
V ⌫⌫PR

⌘

ij
(II.37)

where

�L
V ⌫⌫ = CL

V ⌫⌫U
†
LUL � CR

V ⌫⌫U
T
RU⇤

R (II.38)
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Expected consequences 
(take-home messages)
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427
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DM exists, but known evidence is based solely on the 
gravitational effect of the dark matter on the luminous 
astronomical objects and on the Hubble-expansion of 
the Universe
Assume that the DM has particle origin



Dark matter candidate

23

DM exists, but known evidence is based solely on the 
gravitational effect of the dark matter on the luminous 
astronomical objects and on the Hubble-expansion of 
the Universe
Assume that the DM has particle origin
Only chance to observe such a particle if it interacts 
with the SM particles, which needs a portal

  In the superweak model the vector boson portal Z' with 
the lightest sterile neutrino  as dark matter candidate is 
a natural scenario       (Higgs portal exists, but negligible)

ν4



Parameter space for the freeze-out scenario of 
dark matter production in the SWSM

24

It is essential for the SWSM DM candidate that the resonance in 
 can dominate the integral in the rateSM+SM → Z′ → DM+DM



Experimental constraints

25

Anomalous magnetic moment of electron and muon 
Z’ couples to leptons modifying the magnetic moment 
Constraints on  translate to upper bounds on the coupling  

NA64 search for missing energy events 
Strict upper bounds on  for any U(1) extension (dark photons) 

Supernova constraints based on SN1987A 
Constraints are based on comparing observed and calculated neutrino 
fluxes 

Big Bang Nucleosynthesis provides constraints on new particles 
New particles should have negligible effects during BBN 
Meson production can be dangerous close to BBN 

Further constraints are due to CMB, solar cooling, beam dump 
experiments etc.

(g − 2) gz(MZ′ )

gz(MZ′ )



Cosmological constraints on the freeze-out 
scenario of dark matter production in the SWSM

26



Expected consequences 
(take-home messages)
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation]  

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427


Prerequisite:  
Phase-transitions in the SWSM

28
[Seller, Szép, ZT, arXiv:2301.07961]

U(1)z is broken earlier than SU(2)LxU(1)Y

                                           MS = 200 GeV, MN = 150 GeV, w = 5v , |λ | = 0.0394

https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048


Prerequisite:  
phase-transition temperatures in the SWSM

29
[Seller, Szép, ZT, arXiv:2301.07961]

U(1)z is broken earlier than SU(2)LxU(1)Y

 w/v  w/v

https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427
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Dirac and Majorana neutrino mass terms are generated by the SSB of the 
scalar fields, providing the origin of neutrino masses and oscillations                                                                                                   
[Iwamoto, Kärkäinnen, Péli, ZT, arXiv:2104.14571; Kärkkäinen and ZT, arXiv:2105.13360]  

The lightest new particle is a natural and viable candidate for WIMP dark 
matter if it is sufficiently stable                 [Seller, Iwamoto and ZT, arXiv:2104.11248] 

Diagonalization of neutrino mass terms leads to the PMNS matrix, which 
in turn can be the source of lepto-baryogenesis                                       
[Seller, Szép, ZT, arXiv:2301.07961 and under investigation] 

The second scalar together with the established BEH field can stabilize 
the vacuum and be related to the accelerated expansion now and 
inflation in the early universe                                                                           
[Péli, Nándori and ZT, arXiv:1911.07082; Péli and ZT, arXiv:2204.07100]  

SWSM has the potential of explaining all known results beyond the SM

https://inspirehep.net/literature/1861571
https://arxiv.org/abs/2105.13360
https://arxiv.org/abs/2104.11248
https://inspirehep.net/files/df159f25b65e70e2344eb1acc92c6048
https://arxiv.org/abs/1911.07082
https://inspirehep.net/literature/2067427
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Main questions

34

Is there a non-empty region of the parameter 
space where all these promises are fulfilled? 

Can we predict any new phenomenon 
observable by present or future experiments?                                                                                         

Present focus:



Important test

35

the observation of  the Z’ or S in the allowed  
region

Once the allowed region of the parameter space for fulfilling 
the expectations is understood



Experimental constraints in the scalar sector 
from direct searches and MW

36

:                                          [Zoltán Péli and ZT, arXiv: 2204.07100]Ms > Mh
: scalar sector decouplesyx = 0

https://doi.org/10.1103/PhysRevD.106.055045


Experimental constraints in the scalar sector 
from direct searches and MW

37

:                                          [Zoltán Péli and ZT, arXiv: 2204.07100]Ms > Mh

https://doi.org/10.1103/PhysRevD.106.055045


MW is measured and computed precisely 
(with per myriad precision) 

38[PDG 2023]



Prediction of MW in the SWSM

39

Can be determined from the decay width of the muon: 

M2
W = cos2 θZM2

Z+sin2 θZM2
Z′ 

2 1 + 1 −
4πα/( 2GF)

cos2 θZM2
Z+sin2 θZM2

Z′ 

1
1 − ΔrSM−(Δr(1)

BSM + Δr(2)
BSM)

Valid in MS
 is the  mixing angleθZ Z − Z′ 

 collects the SM quantum corrections (known completely at two 
loops and partially at three loops)
ΔrSM

 collects the formally SM quantum corrections but with BSM loopsΔr(1)
BSM

 collects BSM corrections to  & :  neglected in FlexibleSUSYΔr(2)
BSM MZ′ θZ

[Zoltán Péli and ZT, arXiv: 2305.11931]

https://link.aps.org/doi/10.1103/PhysRevD.108.L031704


Scale dependence of MW in the SWSM 
MZ′ 

= 5 TeV, sZ = 10−4, tan β = 10
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� The ߝ poles cancel in 
ઢ࢘ in ܴక-gauge with 
general ݖ-charge 
assignment

� For several benchmark 
points ઢ࢘ is 
independent of the 
gauge parameters ߦ௜ǡ
���� ݅ ൌ ܹǡܣǡ ܼǡ ܼԢ

� Weak dependence on 
the renormalization 
scale ߤ at fixed 
benchmark points

Checks
௓ᇱܯ ൌ ͷ����ǡ ௓ݏ ൌ ͳͲିସǡ ߚ��� ൌ ͳͲ

Δr(2)
BSM

included
neglected
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Established observations require physics beyond SM, but do not suggest rich 
BSM physics
U(1)z superweak extension has the potential of explaining all known results 
beyond the SM
Neutrino masses are generated by SSB at tree level
One-loop corrections to the tree-level neutrino mass matrix computed and 
found to be small (below 1%o) in the parameter space relevant in the SWSM
Lightest sterile neutrino is a candidate DM particle in the 

[10,50] MeV mass range for freeze-out mechanism with resonant 
enhancement → predicts an approximate mass relation between vector boson 
and lightest sterile neutrino
In the scalar sector we find non-empty parameter space for  Ms > Mh
Contributions to EWPOs (e.g. , lepton g-2) are negligible in the superweak 
region and a systematic exploration of the parameter space is ongoing

MW



the end
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Status of the muon anomalous magnetic 
moment: experiment
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The muon g-2 has been a smoking gun for new 
physics for many years, more recently:

[https://muon-g-2.fnal.gov/result2023.pdf]

6

Run !a/2⇡ [Hz] !̃
0
p/2⇡ [Hz] R0

µ ⇥ 1000
Run-1 3.7073004(17)
Run-2 229077.408(79) 61790875.0(3.3) 3.7073016(13)
Run-3a 229077.591(68) 61790957.5(3.3) 3.7072996(11)
Run-3b 229077.81(11) 61790962.3(3.3) 3.7073029(18)
Run-2/3 3.70730088(79)
Run-1/2/3 3.70730082(75)

TABLE II. Measurements of !a, !̃
0
p, and their ratios R0

µ mul-
tiplied by 1000. The Run-1 value has been updated from [1]
as described in the text.

FIG. 3. Experimental values of aµ from BNL E821 [8], our
Run-1 result [1], this measurement, the combined Fermilab re-
sult, and the new experimental average. The inner tick marks
indicate the statistical contribution to the total uncertainties.
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The muon g-2 has been a smoking gun for new 
physics for many years 
The most precise experimental value is from FNAL 
(2023) :  

…equivalent to a bathroom scale sensitive to a single 
eyelash: 

                       

aμ = g − 2
2 = 116 592 055(24) ⋅ 10−11 (0.20 ppm)

Experiment

Experimental result
Newly announced result at Fermilab

aµ(FNAL) = 11 659 204.0(5.4) · 10�10 (0.46 ppm)

Equivalent to: bathroom scale sensitive to weight of a single eyelash.

Fully agrees with the BNL E821 measurement

aµ(BNL) = 11 659 209.1(6.3) · 10�10 (0.54 ppm)

aµ(combined) = 11 659 206.1(4.1) · 10�10 (0.35 ppm)

Target uncertainty: (1.6)
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 cross section  
in this energy range gives 
more than 50%  to total HVP 
contribution to   

σ(e+e− → π+π−)

aμ

HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on
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Status of the muon anomalous magnetic 
moment: theory with R-ratio
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HVP from R-ratio

Tensions in the R-ratio method

CMD3 [2302.08834] e+e� ! ⇡+⇡� for
p

s: 0.60–0.88 GeV

More than 50% of the total HVP contribution to aµ

tension: already
in earlier data
) error inflation

KLOE & BaBar: ⇡3�
(bit different

p
s range)

CMD3 vs. old average:
4.4� tension

central value: 15 unit
shift (remember)

White Paper must further inflate errors: less chance for new physics?

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 12 / 30

The muon g-2 has been a smoking gun for new 
physics for many years, but tension already in earlier 
data used for  
theory prediction:                       

[BMW compilation]



HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19
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BMWc’17
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ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on
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HVP from R-ratio

Tensions in the R-ratio method

CMD3 [2302.08834] e+e� ! ⇡+⇡� for
p

s: 0.60–0.88 GeV

More than 50% of the total HVP contribution to aµ

tension: already
in earlier data
) error inflation

KLOE & BaBar: ⇡3�
(bit different

p
s range)

CMD3 vs. old average:
4.4� tension

central value: 15 unit
shift (remember)

White Paper must further inflate errors: less chance for new physics?
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New CMD3 data show a ~15 unit increase in central 
value and 4.4σ tension with old average:                                           

 cross section  
in this energy range gives 
more than 50%  to total HVP 
contribution to   

σ(e+e− → π+π−)

aμ

[BMW compilation]
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Lattice:  
~15 units above the R-ratio white paper value (a 2.1σ tension)                    

aHVP@LO
μ = 707.5(2.3)stat(5.0)sys[5.5]tot
HVP from lattice

Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on
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restrict correlation window to [0.4,1.0] fm: 
two orders of magnitude easier (less CPU, less manpower  
needed)        lattice vs. R-ratio: 4.9σ tension:           

HVP from lattice

Window observable
Restrict correlator to window between t1 = 0.4 fm and t2 = 1.0 fm

[RBC/UKQCD’18]

Less challenging than full aµ

signal/noise

finite size effects

lattice artefacts (short & long)

about two orders of magnitude
easier (CPU and manpower)

histogram of 250,000 fits
with and without improvements

Z. Fodor Anomalous magnetic moment of the muon May 24, 2023 21 / 30

HVP from lattice

Tension in the window observables

R-ratio’20  [BMW/lat]

R-ratio’22  [Colangelo/lat]

BMW’20  [2002.12347]

Mainz’22 [2206.06582]

ETMC’22 [2206.15084]

RBC/UKQCD’23 [2301.08696]

FHM’23 [2301.08274]

 200  203  206  209  212

 1010 × [alight
µ,win]iso

lattice
R-ratio / lattice

5 fully independent results
most of them: blinded(*)
all agree with each other

average: small �2/dof
(very conservative errors)
no error inflation
as for the R-ratio

lattice vs. R-ratio:
4.9� tension

QCD compared with QCD

either new physics
or underestimated errors
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Final result for LO-HVP (hadronic vacuum polarization)

CHHKS’19
KNT’19

DHMZ’19
WP’20

BMWc’17
RBC’18
ETM’19

PACS’19
FHM’19

Mainz’19
LM’20

BMWc’20

 660  680  700  720  740

 1010 × aLO-HVP
µ

lattice
R-ratio

no new physics

aLO-HVP
µ = 707.5(2.3)(5.0)[5.5] with 0.8% accuracy:

Lattice: systematic uncertainty: ⇡2 times as large as the statistical error
consistent with new FNAL experiment
BMW is by 15 units larger than the White Paper: 2.1� tension
CMD3 is also 15 units larger than the White Paper: spot on
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Message of the muon anomalous magnetic 
moment

52

We are certain that there is new physics beyond the SM 
“Final word” on  will tell how BSM should affect the muon g-2aμ

new physics

[BMW compilation]
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We are certain that there is new physics beyond the SM
Current main question:

How large is the new physics contribution to  really?aμ
“large” (almost 5σ — R-ratio result)
”small” (almost insignificant — lattice result) 

The experimental result appears robust, only its uncertainty will 
reduce further
Main task:

Resolve discrepancy between theory predictions
Until then

everything else is speculation



Muon anomalous magnetic moment:        
speculations with R-ratio result

54

Generally large  

  

[Czarneczki, Marciano hep-ph/0102122]   
can only be explained  by rather small masses and/or large 
couplings and enhanced chirality flips    
(the QFT operator corresponding to  connects left and right chirality muons), 
which can lead to  

conflicts with limits from LHC and dark matter experiments  
Exhaustive study of single-, two- and three-field extensions 
shows that most of these are excluded 

[Athron et al., arXiv:2104.03691]

ΔaBSM
μ = CBSM

m2
μ

M2
BSM

≲ O(1)
m2

μ

M2
BSM

⟹ MBSM ≲ 2 TeV

aμ

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.64.013014
https://link.springer.com/article/10.1007/JHEP09(2021)080
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Some specific incomplete three-field models (2F1S, 2S1F) with 
large couplings                                          [Athron et al., arXiv:2104.03691]

https://doi.org/10.1007/JHEP09(2021)080
https://link.springer.com/article/10.1007/JHEP07(2021)075
http://www.apple.com
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Some specific incomplete three-field models (2F1S, 2S1F) with 
large couplings                                          [Athron et al., arXiv:2104.03691]
MSSM with                            [Iwamoto et al., arXiv:2104.03217, 2104.03223]

Bino-like LSP and either slepton or chargino coannihilation
Wino-like LSP, but additional dark matter

https://doi.org/10.1007/JHEP09(2021)080
https://link.springer.com/article/10.1007/JHEP07(2021)075
http://www.apple.com
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Some specific incomplete three-field models (2F1S, 2S1F) with 
large couplings                                          [Athron et al., arXiv:2104.03691]
MSSM with                            [Iwamoto et al., arXiv:2104.03217, 2104.03223]

Bino-like LSP and either slepton or chargino coannihilation
Wino-like LSP, but additional dark matter

Muon chirality flip enhancements are related to the mass 
generation mechanism for the muon, so the measurement of 
the Higgs–muon coupling at LHC or FCC can (will) provide 
further tests 
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http://www.apple.com


Least constrained models

55

Some specific incomplete three-field models (2F1S, 2S1F) with 
large couplings                                          [Athron et al., arXiv:2104.03691]
MSSM with                            [Iwamoto et al., arXiv:2104.03217, 2104.03223]

Bino-like LSP and either slepton or chargino coannihilation
Wino-like LSP, but additional dark matter

Muon chirality flip enhancements are related to the mass 
generation mechanism for the muon, so the measurement of 
the Higgs–muon coupling at LHC or FCC can (will) provide 
further tests 
Planned JPARC g − 2 experiment and progress on theory 
prediction using results from the MUonE initiative should be 
decisive

https://doi.org/10.1007/JHEP09(2021)080
https://link.springer.com/article/10.1007/JHEP07(2021)075
http://www.apple.com


Non-standard interactions and the SWSM            
[Timo J. Kärkäinen and ZT, arXiv: 2301.06621]

56

 

where  is the scale of new physics, can be as low as few MeV,  
which can be probed in  
Coherent Elastic Neutrino-Nucleus Scattering (CEνNS)

)6a = C6a

Λ2 (LγμPLL)( fγμPX f )
Λ

Standard parametrization of NSI: 
 

where     ,         “light NSI”          

,      “heavy NSI”,   

ℒNSI = − 2 2GF ∑
f,X=±,ℓ,ℓ′ 

ε f,X
ℓ,ℓ′ 

(ν̄ℓγμPLνℓ′ 
)( f̄γμPX f )

ε f,X
ℓ,ℓ′ 

∝ + 1
q2  if q

2 ≫ M2

ε f,X
ℓ,ℓ′ 

∝ − 1
M2  if q

2 ≪ M2

for a mediator 
of mass M

https://doi.org/10.1103/PhysRevD.107.115020


Non-standard interactions and the SWSM

57

assume MeV, which is 
• light in CHARM or NuTEV  
• heavy in neutrino oscillation experiments  
• but  in CEνNS 
We can still apply the NSI formalism using the  full propagator  
with  being the characteristic momentum transfer squared 

M = 50
q2 = O((20 GeV)2)

q2 ≈ 0
q2 ≈ M2

q2
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assume MeV, which is 
• light in CHARM or NuTEV  
• heavy in neutrino oscillation experiments  
• but  in CEνNS 
We can still apply the NSI formalism using the  full propagator  
with  being the characteristic momentum transfer squared 

M = 50
q2 = O((20 GeV)2)

q2 ≈ 0
q2 ≈ M2

q2

Can be used to                           [Timo J. Kärkäinen and ZT, arXiv: 2301.06621]

Constrain the parameter space of SWSM
Predict relations between NSI couplings assuming SWSM

https://doi.org/10.1103/PhysRevD.107.115020
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Constraints to NSI

First stage: high-energy theory enforces texture for NSI matrix.
Q

ccca

Ám
ee Ám

eµ Ám
e·

Ámú
eµ Ám

µµ Ám
µ·

Ámú
eµ Ám

µµ Ám
µ·

R

dddb

Q

ccca

Áe 0 0
0 Áµ 0
0 0 Á·

R

dddb

Q

ccca

Á 0 0
0 Á 0
0 0 Á

R

dddb

µ ≠ · symmetry Flavour-conserving Flavour-universal
CLFV decays X No No
‹ oscillation X X No

CE‹NS X X X
‹ scattering maybe maybe maybe

Second stage: existing limits on NSI constrain the parameters of the high-energy
theory.

5 / 19

High-energy theory enforces texture for NSI matrix:                            
                                                                          SWSM 

Existing limits on NSI constrain the parameters of the 
high-energy theory 

Nonstandard interactions in SWSM

Z,Z 0

⌫` ⌫`

e, u, d e, u, d We integrate out the Z Õ boson to obtain effective
nonrenormalizable dimension-6 operator.

LNSI = ≠2
Ô

2GF Áff
¸¸Õ(‹¸“

µPL‹¸)(f “µPLf )

Ám,X
¸¸ = v2

2(q2 ≠ M2
Z Õ)

eCL
Z Õ‹‹eCX

Z Õff

Ám
¸¸ = Áe

¸¸ + 2Áu
¸¸ + Ád

¸¸¸ ˚˙ ˝
=0

+Nn
Ne

(Áu
¸¸ + 2Ád

¸¸)

e≠ and p contributions vanish due to (y , z) charge
assignments.

Sum over the fermions f = e, u, d and chiralities X = L, R .

Ám
¸¸ = ≠

v2

8(q2 ≠ M2
Z Õ)

Nn
Ne

3
g Õ

y cos ◊Z ≠
gL sin ◊Z
cos ◊W

4 3
(g Õ

y ≠ g Õ
z) cos ◊Z ≠

gL sin ◊Z
cos ◊W

4
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Light mediator NSI escapes high-energy constraints
High-energy neutrino scattering experiments such as CHARM and NuTeV are
insensitive to light NSI mediators! (Èq2

Í ≥ 20 GeV2 kills the NSI)
Neutrino oscillations can only probe nondiagonal NSI and differences of diagonal
NSI parameters due to phase freedom.

HNSI =
Ô

2GF Ne

Q

ca
Ám

ee Ám
eµ Ám

e·

Ámú
eµ Ám

µµ Ám
µ·

Ámú
e· Ámú

µ· Ám
··

R

db
ph. rot.
‘≠æ

Ô

2GF Ne

Q

ca
Ám

ee ≠ Ám
µµ Ám

eµ Ám
e·

Ámú
eµ 0 Ám

µ·

Ámú
e· Ámú

µ· Ám
·· ≠ Ám

µµ

R

db

Only way to measure diagonal NSI elements themselves is via Coherent elastic
neutrino-nucleon scattering (CE‹NS). FN and FZ are nuclear form factors.
d‡(‹–N æ ‹–N)

dT (E , T )
----
SM, tree

= G2
F M
fi

3
1 ≠

MNT
2E2

4 Ë
gpZFZ (|q|

2)+gnNFN(|q|
2)

È2

gn π gp , making the neutron term dominant. Above the sub-leading contribution
from neutrino charge radius is suppressed. [Cadeddu et al., PRD 102 (2020) 1]
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