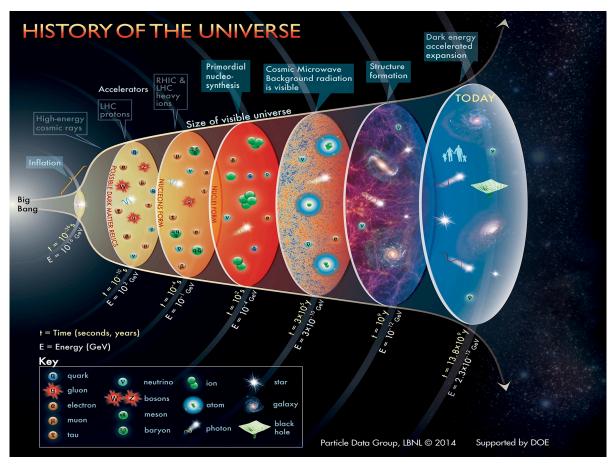
# Neutrinos in cosmology



Yvonne Y. Y. Wong, UNSW Sydney

Neutrino Frontiers Training Week, Galileo Galilei Institute, Florence, June 25 – 28, 2024

# Or, how neutrinos fit into this grand scheme?



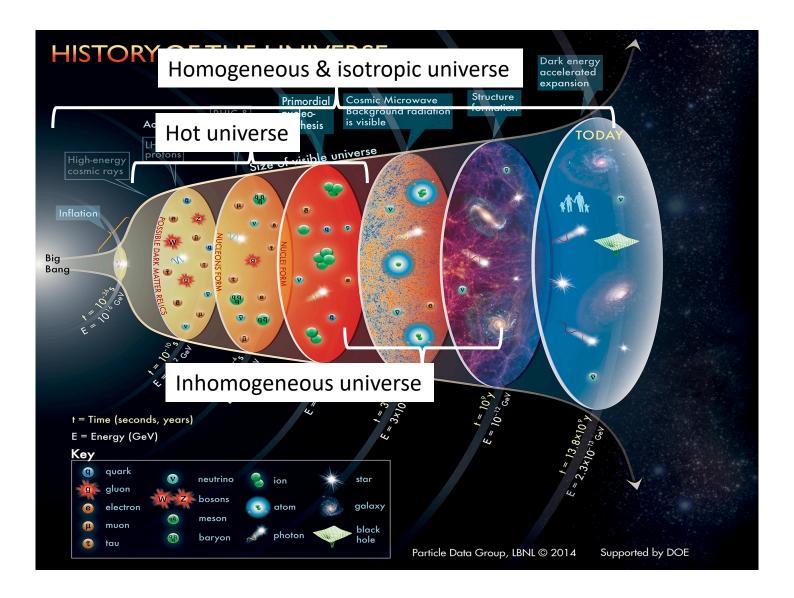
### The grand lecture plan...

#### Part 1: Neutrinos in homogeneous cosmology

- 1. The homogeneous and isotropic universe
- 2. The hot universe and the cosmic neutrino background
- 3. Precision CvB

#### Part 2: Neutrinos in inhomogeneous cosmology

- 1. Theory of inhomogeneities
- 2. Neutrinos and structure formation
- 3. Relativistic neutrino free-streaming and non-standard interactions



#### Useful references...

#### Textbook

• J. Lesgourgues, G. Mangano, G. Miele & S. Pastor, *Neutrino cosmology* 

#### Lecture notes

- Baumann, Cosmology (many different versions)
- Seljak, Lectures on dark matter, ICTP Lect. Notes Ser. 4 (2001) 33
- Hu, Covariant linear perturbation formalism

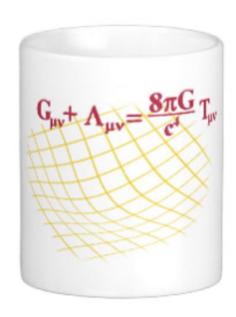
#### Reviews

- A. D. Dolgov, Neutrinos in cosmology, Phys. Rept. 370 (2002) 333 [hep-ph/0202122]
- J. Lesgourgues & S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 307 [astro-ph/0603494]

# Part 1: Neutrinos in homogeneous cosmology

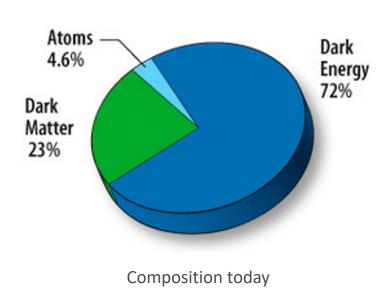
- 1. The homogeneous and isotropic universe
- 2. The hot universe and the cosmic neutrino background
- 3. Precision CvB

# 1. The homogeneous and isotropic universe...

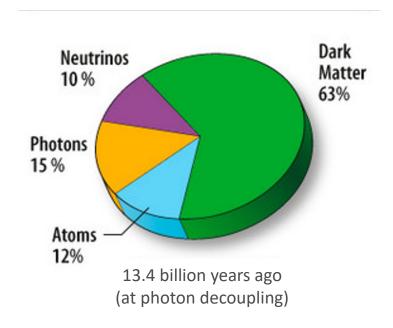


#### The concordance flat ACDM model...

The simplest model consistent with present observations.



Plus flat spatial geometry+initial conditions from single-field inflation

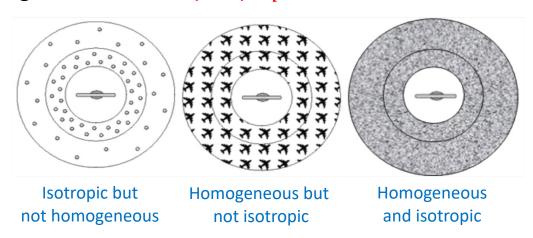


#### FLRW universe...

FLRW = Friedmann-Lemaître-Robertson-Walker

**Cosmological principle**: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).

- Homogeneous → same everywhere
- Isotropic → same in all directions
- Sufficiently large scales  $\rightarrow > O(100)Mpc$

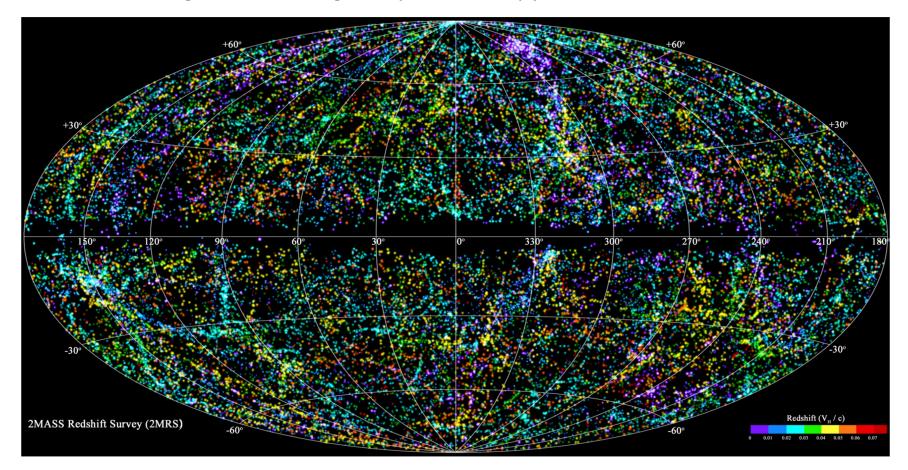


#### FLRW universe...

**Cosmological principle**: our universe is spatially homogeneous and isotropic on sufficiently large length scales (i.e., we are not special).

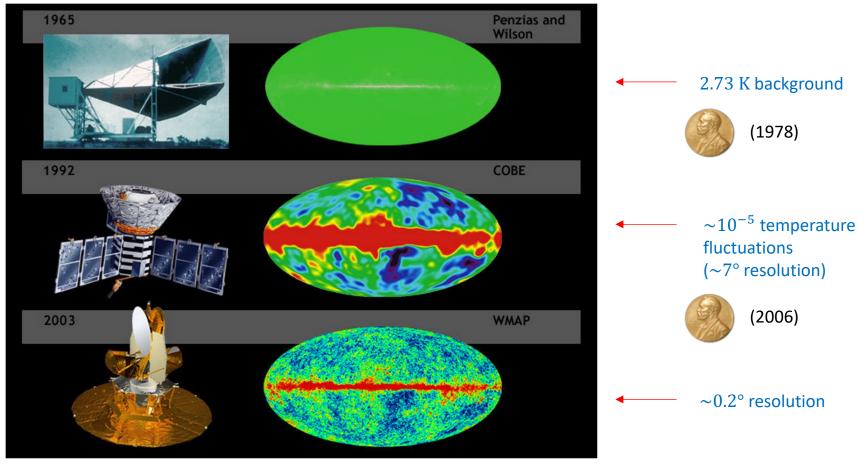
- Homogeneous → same everywhere
- Isotropic → same in all directions
- Sufficiently large scales  $\rightarrow > O(100)Mpc$
- 1 pc = 1 parsec =  $3.0856 \times 10^{18}$  cm
  - Distance from Sun to Galactic centre  $\sim 10~{\rm kpc}$
  - Distance to the Virgo cluster ~ 20 Mpc
  - Size of the visible universe  $\sim O(10 \text{ Gpc})$

#### Evidence for large-scale homogeneity and isotropy:



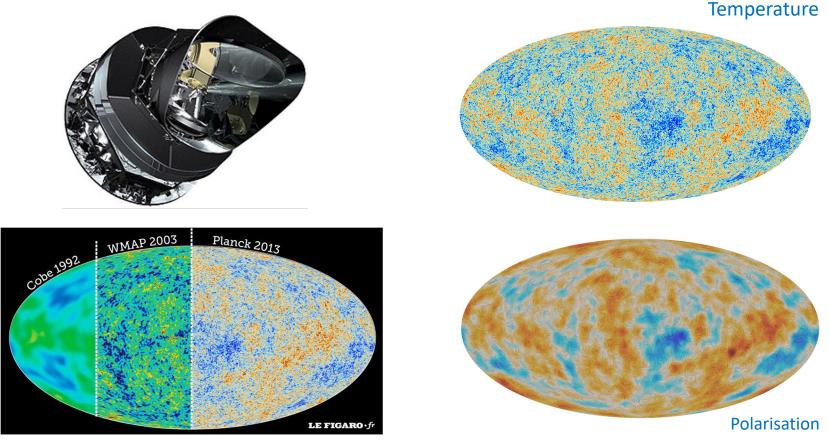
Local galaxy distribution as measured by the 2Mass Redshift Survey

#### Evidence for large-scale homogeneity and isotropy:



Cosmic microwave background (temperature)

# State-of-the-art: Temperature and polarisation fluctuations in the cosmic microwave background as seen by Planck. (Latest results 2018)



#### FLRW universe...

Homogeneity and isotropy imply maximally symmetric 3-spaces (3 translational and 3 rotational symmetries).

 A spacetime geometry that satisfies these requirements is the Friedmann-Lemaître-Robertson Walker (FLRW) geometry:

$$ds^2 = -dt^2 + a^2(t) \left[ \frac{dr^2}{1 - Kr^2} + r^2(d\theta^2 + \sin^2\theta \ d\phi^2) \right]$$
 FLRW metric 
$$a(t) = \text{scale factor}$$
 Spatial geometry 
$$K = -1 \text{ (hyperbolic), 0 (flat), +1 (spherical)}$$

•  $\frac{a(t_2)}{a(t_1)}$  = factor by which a physical length scale increases between time  $t_1$  and  $t_2$ .

An observer at rest with the FLRW spatial coordinates is a comoving observer.

$$ds^{2} = -dt^{2} + a^{2}(t) \left[ \frac{dr^{2}}{1 - Kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right]$$
Comoving observers
$$(0,0) \ (1,0) \qquad (0,0) \ (1,0)$$
time

→ The **physical distance** between two comoving observers increases with time, but the coordinate distance between them remains unchanged.

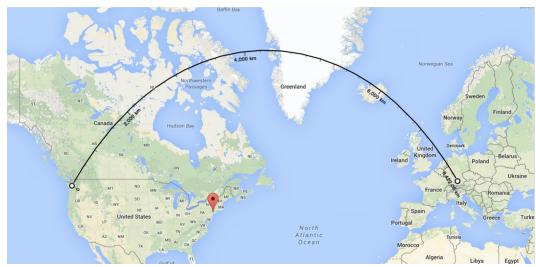
scale factor a

#### Geodesics...

In the **absence of other forces**, test particles move on the **geodesics** of a spacetime geometry, i.e., the "straight lines" of a curved spacetime.

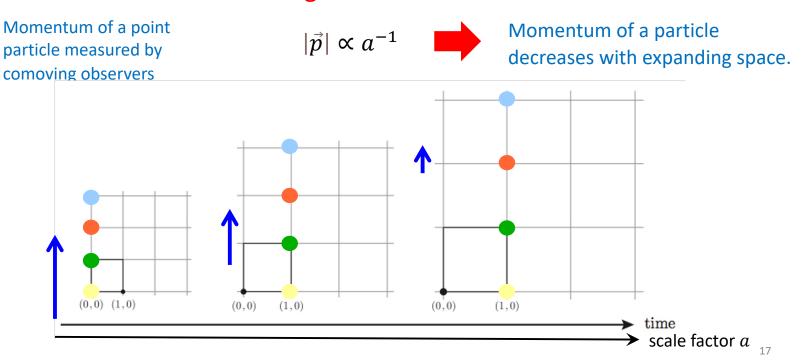
• It's like flight paths, which follow (more or less) the geodesics on the surface of the Earth.



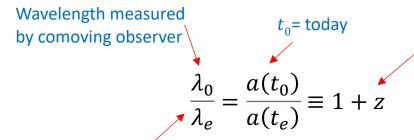


## Geodesics and cosmological redshift...

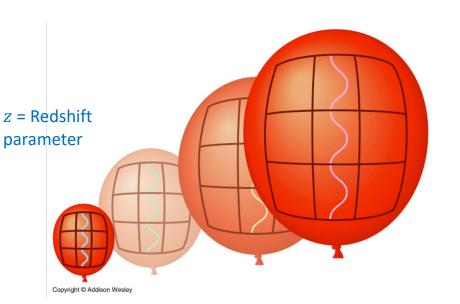
**All** test particles (massive or massless) moving on geodesics of an FLRW universe suffer cosmological redshift of its momentum:







Wavelength of particle (usually photon) emitted by comoving emitter



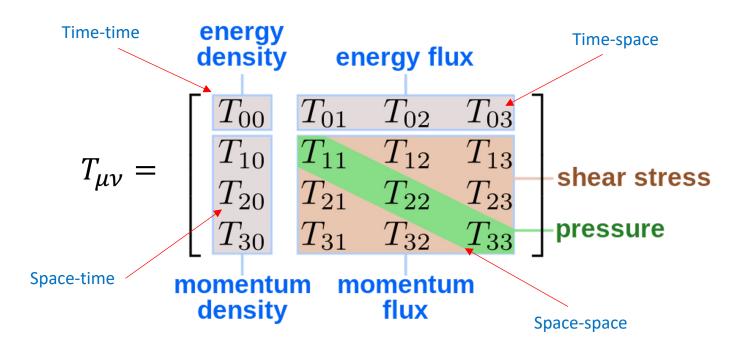
- A particle emitted at a very early time t when the scale factor a was very small would be observed today with a very large redshift z
- $\rightarrow$  There is a one-to-one correspondence between t, a, and z:



→ We use them interchangeably as a measure of time.

# Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor  $T_{\mu\nu}$  encodes the matter/energy content.



# Matter/energy content (stuff in the universe).

In GR, the stress-energy tensor  $T_{\mu\nu}$  encodes the matter/energy content.

Homogeneity and isotropy imply only one viable form:

$$\rho_{\alpha} = \text{Energy density}$$
 (energy per unit volume) of substance  $\alpha$  in its rest frame 
$$T^{\mu}_{\quad \nu(\alpha)} = \begin{pmatrix} -\rho_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 \\ 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 \\ 0 & 0 & P_{\alpha}(t) & 0 & \text{its rest frame} \\ 0 & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & P_{\alpha}(t) & 0 & 0 & P_{\alpha}(t) & 0 & P_{\alpha}(t) & 0 & P_{\alpha}(t) & 0 & P_{\alpha}(t) & P_{\alpha}($$

- $\rho(t)$  and P(t) can depend on time, but **not** on the spatial coordinates.
- → How do they evolve with time?

### Matter/energy content: conservation law...

Local conservation of energy-momentum in an FLRW universe implies:

Energy density 
$$\frac{d\rho_{\alpha}}{dt} + 3\frac{\dot{a}}{a}(\rho_{\alpha} + P_{\alpha}) = 0$$
 Pressure Continuity equation (from  $\nabla_{\mu}T^{\mu\nu}_{(\alpha)} = 0$ )

- There is one such continuity equation for each substance  $\alpha$ .
- We need in addition to specify a relation between  $\rho(t)$  and P(t), i.e., the equation of state of the substance  $\alpha$ , which is a property of the substance.
  - It's common to use an equation of state parameter w:  $w_{\alpha}(t) \equiv \frac{P_{\alpha}(t)}{\rho_{\alpha}(t)}$
  - Assuming a constant w:  $\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$



## Matter/energy content: what's there?

$$\rho_{\alpha}(t) \propto a^{-3(1+w_{\alpha})}$$

#### Non-relativistic matter

- Atoms (or constituents thereof)
- Dark matter (does not emit light but feels gravity); GR people call it "dust"

$$w_m \simeq 0$$

 $\Rightarrow \rho_m \propto a^{-3}$ 

Volume expansion

#### Ultra-relativistic radiation

- Photons (main the CMB)
- Relic neutrinos (at early times at least)
- Gravitational waves

$$w_r = 1/3$$

 $\Rightarrow \rho_r \propto a^{-4}$ 

Volume expansion + momentum redshift

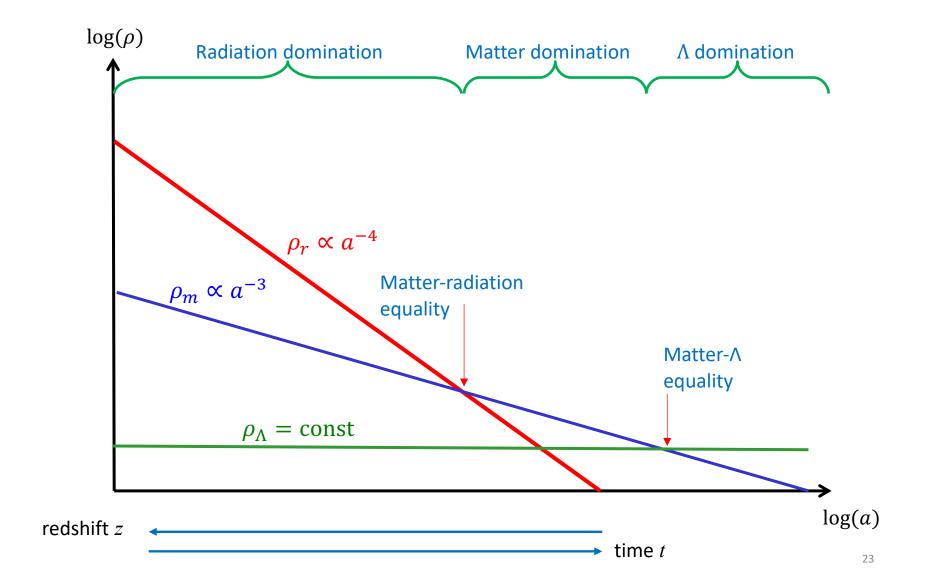
#### Other funny things

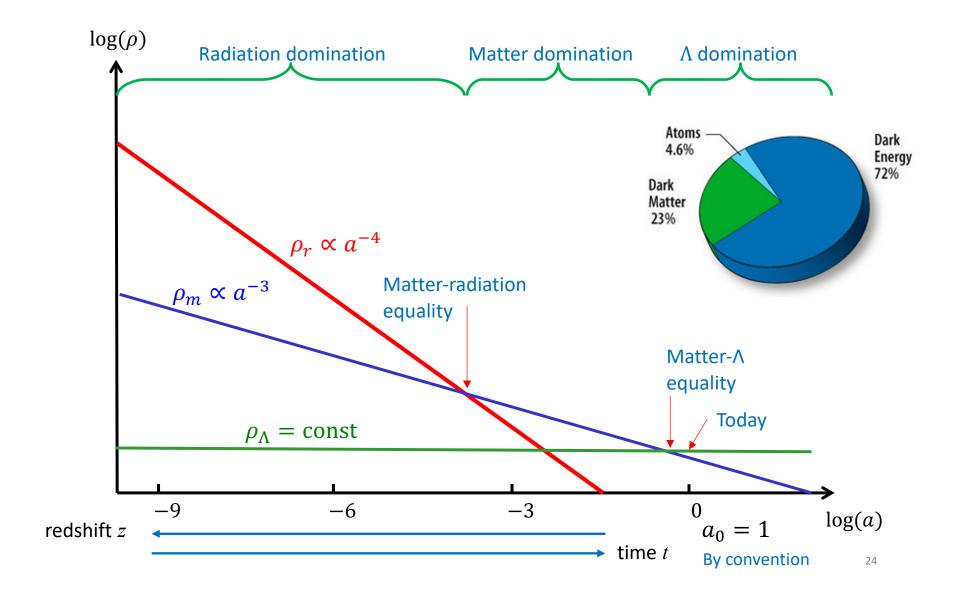
- Cosmological constant/vacuum energy
- 33

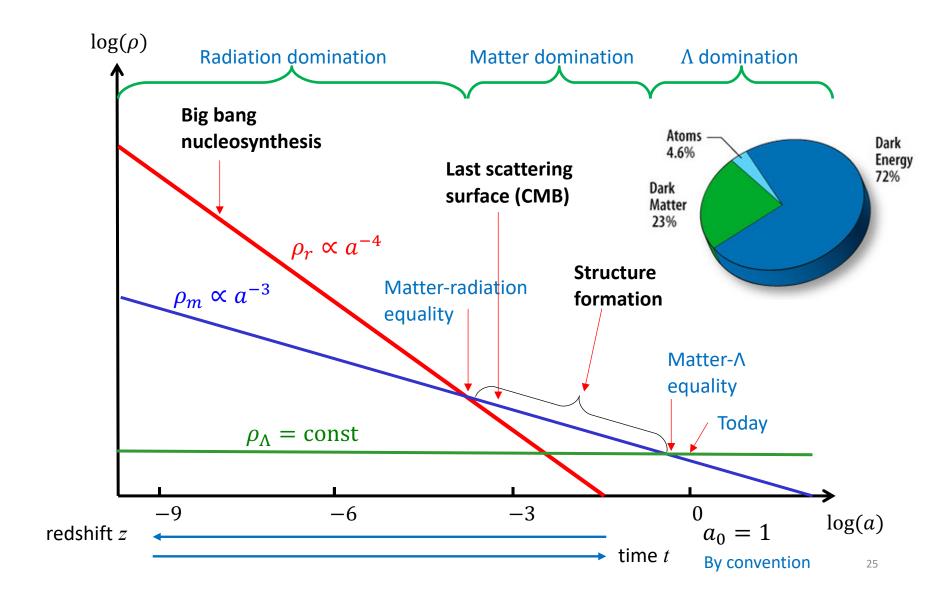
$$w_{\Lambda} = -1$$

 $\Rightarrow \rho_{\Lambda} \propto constant$ 

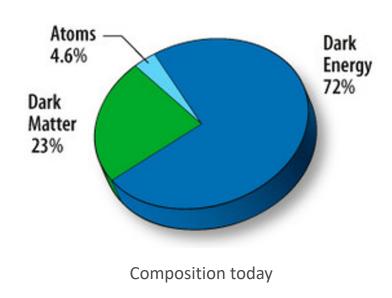
More space, more energy

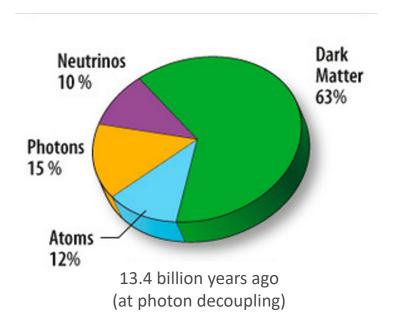






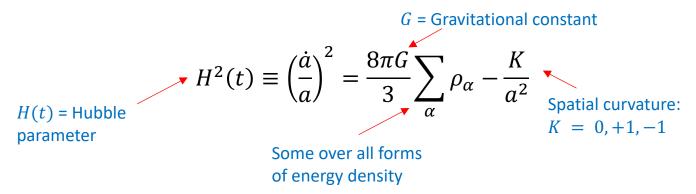
Different evolution for different forms of energy densities means that radiation dominated in the early universe, while dark energy was unimportant.





## Friedmann equation...

The Friedmann equation describes the evolution of the scale factor a(t).



The Friedman equation is itself derived from Einstein's equation:

$$R$$
 = Ricci scalar and tensor (nonlinear functions of the 2<sup>nd</sup> derivative of the spacetime metric)  $R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$  Stress-energy tensor spacetime metric)

## Friedmann equation...

You may also have seen the Friedmann equation in this form:

$$H^{2}(t) = H^{2}(t_{0})[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{K}a^{-2}]$$

$$\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\rm crit}(t_0)}$$

Present-day reduced energy 
$$\Omega_{\alpha} = \frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\mathrm{crit}}(t_0)}, \qquad \rho_{\mathrm{crit}}(t) \equiv \frac{3H^2(t)}{8\pi G}, \qquad \Omega_K \equiv -\frac{K}{H^2(t_0)}$$
 density

$$\Omega_K \equiv -\frac{K}{H^2(t_0)}$$

Critical density

A flat universe means

$$\Omega_K = 0 \qquad \qquad \Omega_m + \Omega_r + \Omega_{\Lambda} \simeq \Omega_m + \Omega_{\Lambda} = 1$$

Radiation energy density is negligibly small today:

From measuring the CMB temperature a and energy spectrum:

$$\Omega_r \sim 10^{-5}$$

### Friedmann equation...

You may also have seen the Friedmann equation in this form:

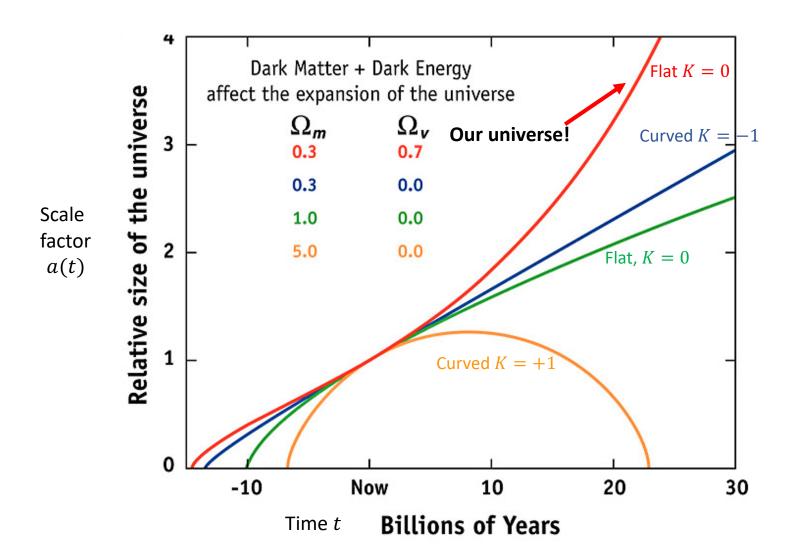
$$H^{2}(t) = H^{2}(t_{0})[\Omega_{m}a^{-3} + \Omega_{r}a^{-4} + \Omega_{\Lambda} + \Omega_{K}a^{-2}]$$

Present-day reduced energy 
$$\Omega_{\alpha}=\frac{\bar{\rho}_{\alpha}(t_0)}{\rho_{\mathrm{crit}}(t_0)}, \qquad \rho_{\mathrm{crit}}(t)\equiv \frac{3H^2(t)}{8\pi G}, \qquad \Omega_K\equiv -\frac{K}{H^2(t_0)}$$
 density

From current observations:

$$\Omega_m \sim 0.3$$
,  $\Omega_\Lambda \sim 0.7$ ,  $|\Omega_K| < 0.01$  e.g.,  $H_0 \equiv H(t_0) \sim 70 \; \mathrm{km s^{-1} Mpc^{-1}}$ 

e.g., Aghanim et al. [Planck collaboration] 2019



# Friedmann equation: accelerated expansion...

Yet another form of the Friedmann equation:

Obtained by combining the usual Friedmann equation for H(t) and the continuity equation.

Acceleration of the scale factor 
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3} \sum_{\alpha} (\rho_{\alpha} + 3P_{\alpha})$$

Compare with

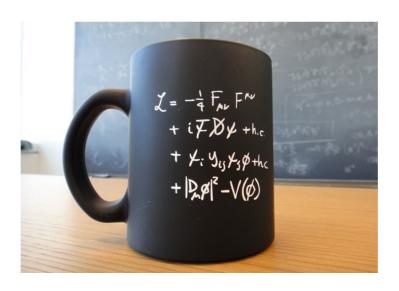
$$H^{2}(t) \equiv \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} - \frac{K}{a^{2}}$$

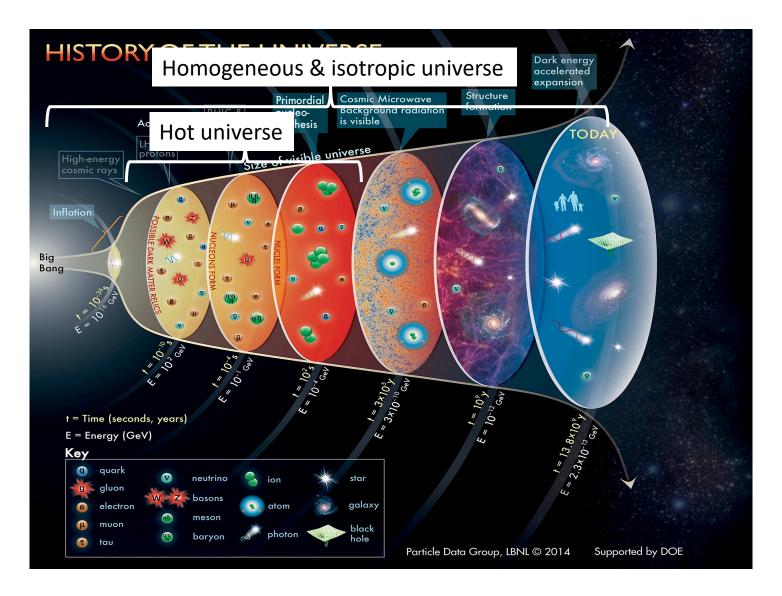
Accelerated or decelerated expansion happens when:

Acceleration 
$$\sum_{\alpha} (\rho_{\alpha} + 3P_{\alpha}) < 0$$
 
$$w_{\rm eff} = \frac{\sum_{\alpha} P_{\alpha}}{\sum_{\alpha} \rho_{\alpha}} < -\frac{1}{3}$$
 Deceleration 
$$\sum_{\alpha} (\rho_{\alpha} + 3P_{\alpha}) > 0$$
 
$$w_{\rm eff} = \frac{\sum_{\alpha} P_{\alpha}}{\sum_{\alpha} \rho_{\alpha}} > -\frac{1}{3}$$

# 2. The hot universe and the cosmic neutrino background...







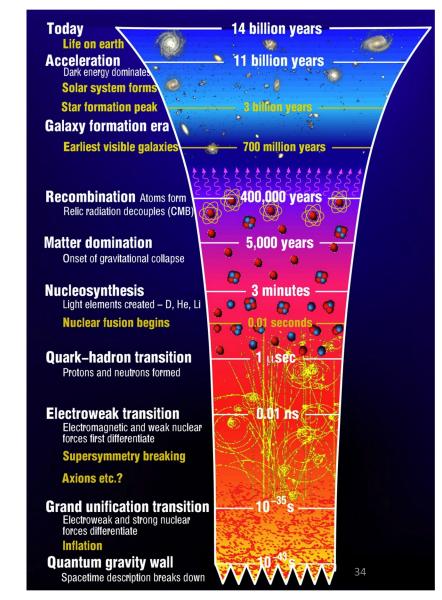
#### The hot universe...

The early universe was a **very hot and dense place**.

- Particle interactions (e.g., scattering) can happen very frequently.
- What interactions are available depends on the particle physics theory.
- But if an interaction rate (per particle) far exceeds the Hubble expansion rate,

$$\Gamma_{\rm int} \gg H$$

the interaction can be taken to be in a state of equilibrium.



# Classic example: weak interaction...

Say you have a gas of ultra-relativistic particles with temperature T.

• The Weak interaction rate per particle is estimated to be

$$\Gamma_{
m int}=n\langle\sigma v
angle\sim G_F^2T^5$$
   
 Number density Relative velocity  $v{\sim}1$  of scattering Cross-section  $\sigma{\sim}G_F^2T^2$  centres  $n{\sim}T^3$ 

The Hubble expansion rate is

$$H = \sqrt{\frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha}} \sim \frac{T^2}{m_{\text{planck}}}$$
Planck mass

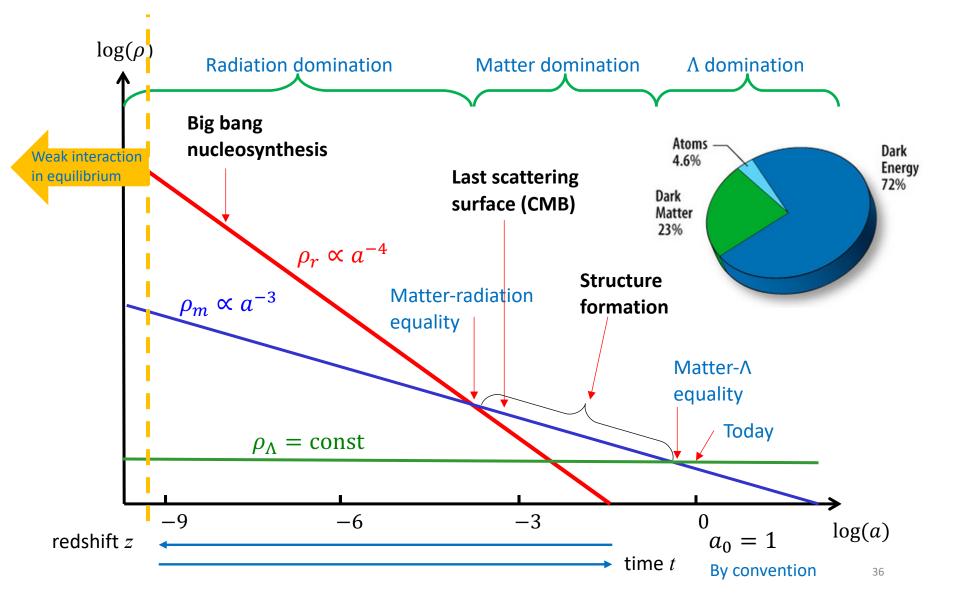
$$G_F \sim 10^{-5} \, \text{GeV}^{-2}$$
  
 $m_{\text{pl}} \sim 10^{19} \, \text{GeV}$ 

Ratio increases with temperature

$$\frac{\Gamma_{\rm int}}{H} \sim m_{\rm planck} G_F^2 T^3 \sim \left(\frac{T}{1 \text{ MeV}}\right)^3$$



Weak interactions are in equilibrium at  $T \gg 1$  MeV.



### Equilibrium thermodynamics...

In the ideal gas limit, when an interaction is in equilibrium, all participating particles have phase space distributions described by one of the equilibrium forms:

$$f(p) = \text{Phase space distribution} \qquad \qquad f_{\text{eq}}(p) = \frac{1}{\exp[(E(p) - \mu)/T] \pm 1} \qquad \qquad + \text{Fermi-Dirac} \\ - \text{Bose-Einstein} \qquad \qquad \qquad - \text{Bose-Einstein}$$

- All participating particles in that interaction have the same temperature T.
- Their chemical potentials satisfy  $\sum_{\text{initial}} \mu_i = \sum_{\text{final}} \mu_i$ .
- In standard cosmology  $\mu$  is generally related to the  $\sim 10^{-10}$  matterantimatter asymmetry; for most applications, it suffices to set  $\mu=0$ .

## Equilibrium thermodynamics...

Given its phase space distribution f(p), it is straightforward to find a particle species' bulk properties:

Number density: 
$$n_{\alpha} = \frac{g_{\alpha}}{(2\pi)^3} \int d^3 \, p \, f_{\alpha}(\vec{p})$$
Internal d.o.f.

Energy density:  $\rho_{\alpha} = \frac{g_{\alpha}}{(2\pi)^3} \int d^3 \, p \, E f_{\alpha}(\vec{p})$ 

Pressure:  $P_{\alpha} = \frac{g_{\alpha}}{(2\pi)^3} \int d^3 \, p \, E f_{\alpha}(\vec{p})$ 

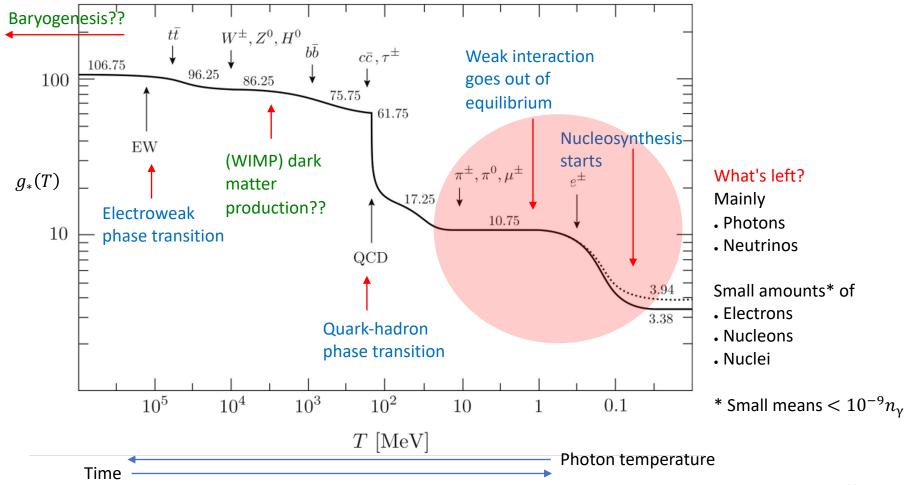
The energy density of a non-relativistic particle species is highly suppressed!

 We can therefore express the Hubble expansion rate in the early universe as:

$$H^{2}(t) = \frac{8\pi G}{3} \sum_{\alpha} \rho_{\alpha} \equiv \frac{8\pi G}{3} \frac{\pi^{2}}{30} g_{*}(T_{\gamma}) T_{\gamma}^{4}$$
Photon temperature

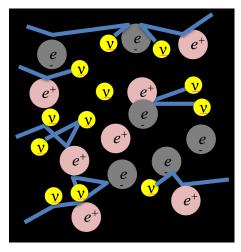
 $g_*$  is a temperature-dependent function, dominated by relativistic species, specific to a particle physics theory.  $_{38}$ 

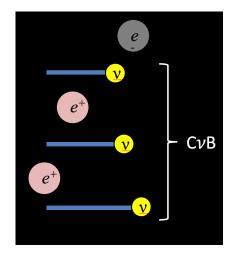
#### $g_*$ of the standard model of particle physics:



### Cosmic neutrino background ...

The CvB is formed when neutrinos decouple from the cosmic plasma.



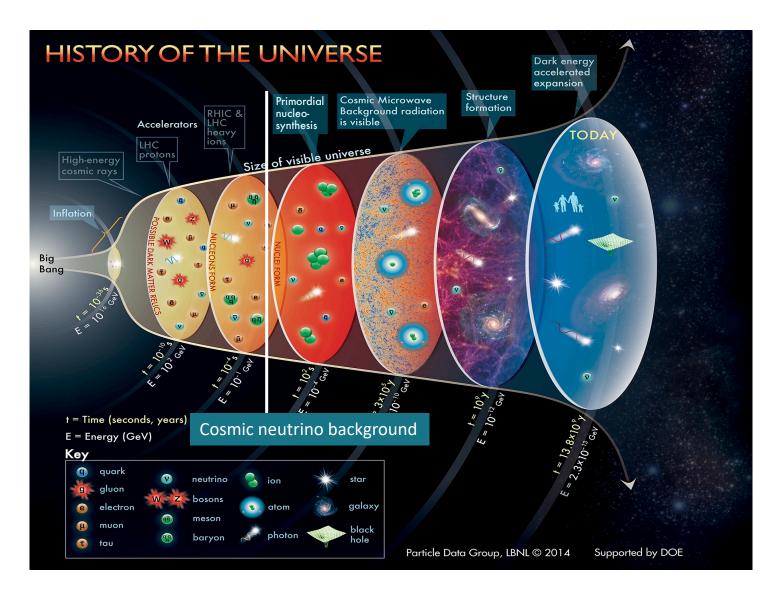


Neutrinos "free-stream" to infinity.

 $(T_{\odot core} \sim 1 \text{ keV})$ 

Above  $T \sim 1$  MeV, even weakly-interacting neutrinos can be produced, scatter off  $e^+e^-$  and other neutrinos, and attain thermodynamic equilibrium

Below  $T \sim 1$  MeV, expansion dilutes plasma, and reduces interaction rate: the universe becomes transparent to neutrinos.



### Particle content at 0.1 < T < 10 MeV...

The particle content and interactions at 0.1 < T < 10 MeV determine the properties of the CvB.

• QED plasma: 
$$e^{\pm}$$
,  $\gamma$ 

• 3 families of  $\nu+\bar{\nu}$ :  $\begin{array}{ccc} \nu_e, \bar{\nu}_e, \\ \nu_\mu, \bar{\nu}_\mu, \\ \nu_\tau, \bar{\nu}_\tau \end{array}$ 

Weak interactions (in equilibrium @

T > O(1)MeV):

EM interactions (always in equilibrium @ 0.1 < T < 10 MeV):

$$e^{+}e^{-} \leftrightarrow \gamma \gamma$$
 $e^{+}e^{-} \leftrightarrow e^{+}e^{-}$ 
 $e^{\pm}e^{\mp} \leftrightarrow e^{\pm}e^{\mp}$ 
 $e^{\pm}e^{\pm} \leftrightarrow e^{\pm}e^{\pm}$ 
 $\gamma e^{\pm} \leftrightarrow \gamma e^{\pm}$ 

Coupled @ T > O(1)MeV  $\nu_{\alpha}e^{\pm} \leftrightarrow \nu_{\alpha}e^{\pm}$   $\nu_{\alpha}\bar{\nu}_{\alpha} \leftrightarrow e^{+}e^{-}$ 

 $\begin{array}{ll} \nu_{\alpha}\nu_{\beta} \leftrightarrow \nu_{\alpha}\nu_{\beta} \\ \\ \nu_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \nu_{\alpha}\bar{\nu}_{\beta} \\ \\ \bar{\nu}_{\alpha}\bar{\nu}_{\beta} \leftrightarrow \bar{\nu}_{\alpha}\bar{\nu}_{\beta} \end{array} \qquad \alpha,\beta = e,\mu,\tau$ 

Weak interactions (in equilibrium @ T > O(1)MeV)

### Particle content at 0.1 < T < 10 MeV...

The particle content and interactions at 0.1 < T < 10 MeV determine the properties of the CvB.

• QED plasma: 
$$e^{\pm}$$
,  $\gamma$ 

• 3 families of  $\nu+ \overline{\nu}$ :  $\begin{array}{ccc} \nu_e, \overline{\nu}_e, \\ \nu_\mu, \overline{\nu}_\mu, \\ \nu_\tau, \overline{\nu}_\tau \end{array}$ 

EM interactions (always in equilibrium @ 0.1 < T < 10 MeV):

$$e^{+}e^{-} \leftrightarrow \gamma\gamma$$

$$e^{+}e^{-} \leftrightarrow e^{+}e^{-}$$

$$e^{\pm}e^{\mp} \leftrightarrow e^{\pm}e^{\mp}$$

$$e^{\pm}e^{\pm} \leftrightarrow e^{\pm}e^{\pm}$$

$$\gamma e^{\pm} \leftrightarrow \gamma e^{\pm}$$

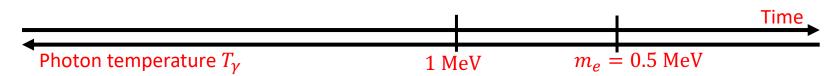
Decoupled @  $T \ll O(1)$ MeV  $v_{\alpha}v_{\beta}$   $v_{\alpha}v_{\beta}$   $v_{\alpha}v_{\alpha}v_{\beta}$   $v_{\alpha}v_{\alpha}v_{\beta}$   $v_{\alpha}v_{\alpha}v_{\beta}$   $v_{\alpha}v_{\alpha}v_{\beta}$ 

$$T \ll O(1)$$
MeV):  
 $v_{\alpha}v_{\beta} \leftrightarrow v_{\alpha}v_{\beta}$   
 $v_{\alpha}\bar{v}_{\beta} \leftrightarrow v_{\alpha}\bar{v}_{\beta}$   $\alpha, \beta = e, \mu, \tau$   
 $\bar{v}_{\alpha}\bar{v}_{\beta} \leftrightarrow \bar{v}_{\alpha}\bar{v}_{\beta}$ 

Weak interactions (**not** in equilibrium @

Weak interactions (**not** in equilibrium @  $T \ll O(1)$ MeV)

**Events** 

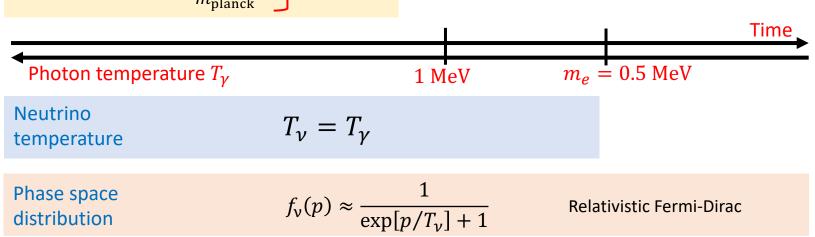


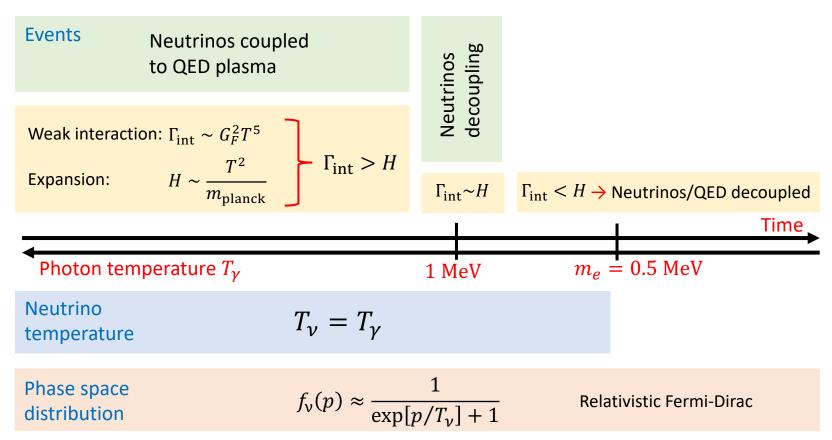
Neutrino temperature

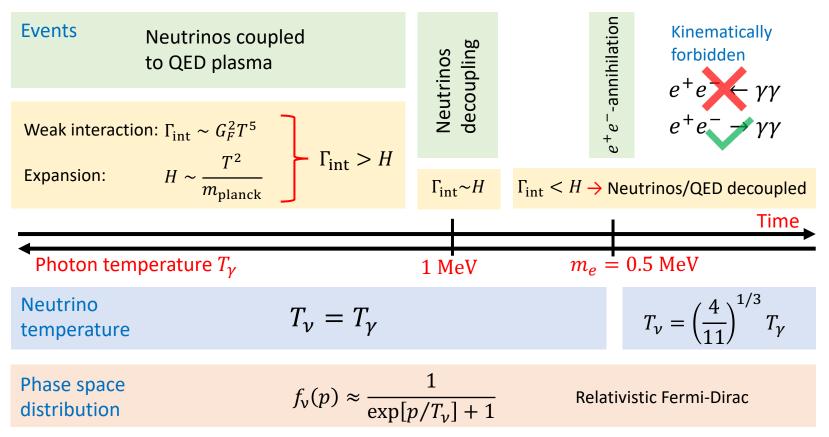
Phase space distribution

**Events Neutrinos** coupled to QED plasma

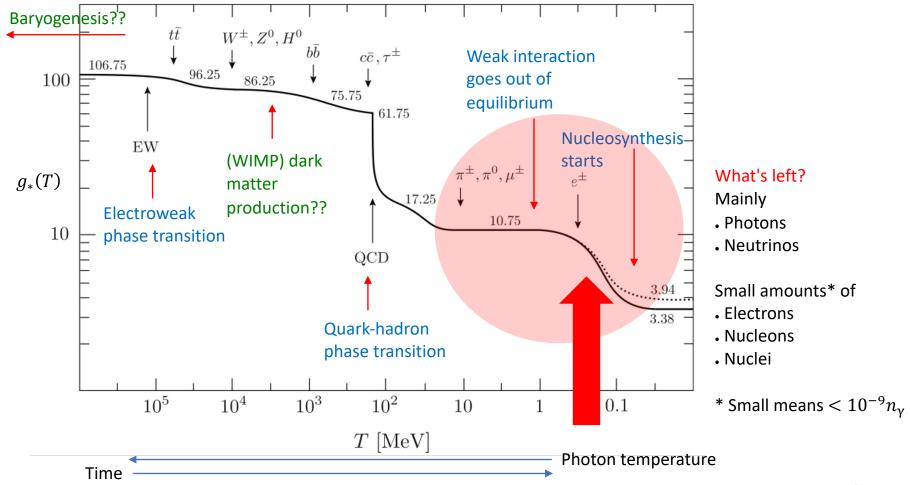
Weak interaction:  $\Gamma_{\rm int} \sim G_F^2 T^5$  Expansion:  $H \sim \frac{T^2}{m_{\rm planck}}$   $\Gamma_{\rm int} > H$ 

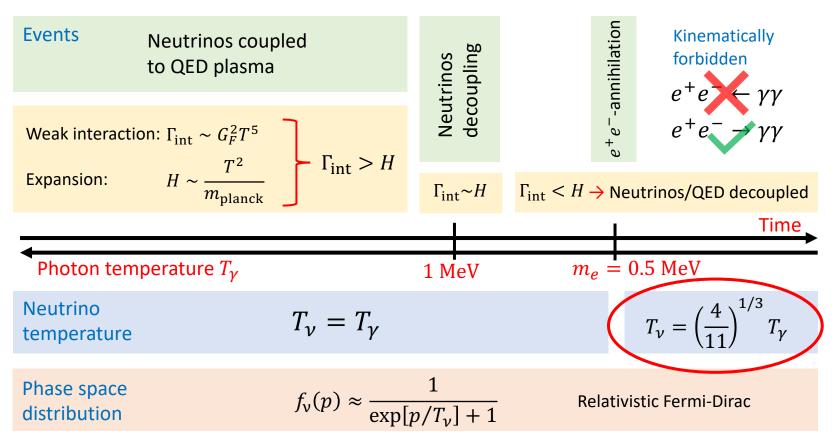






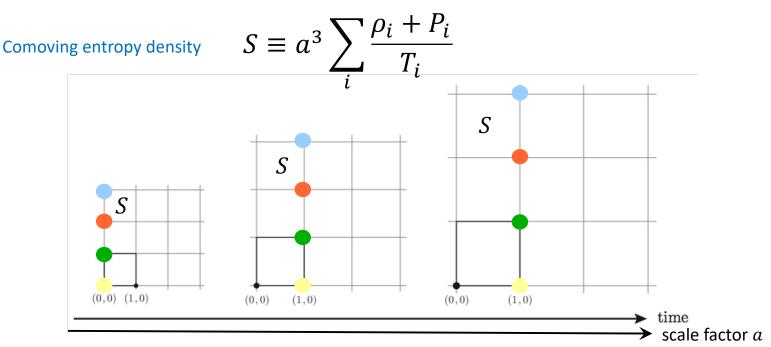
#### $g_*$ of the standard model of particle physics:

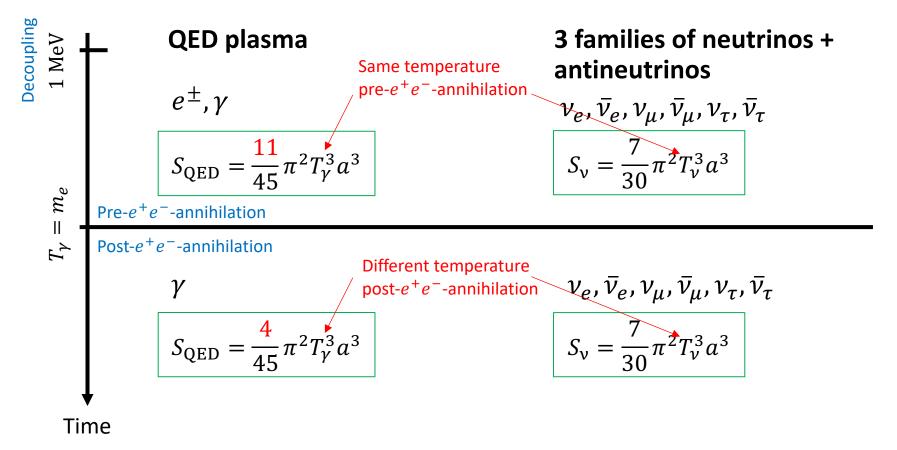


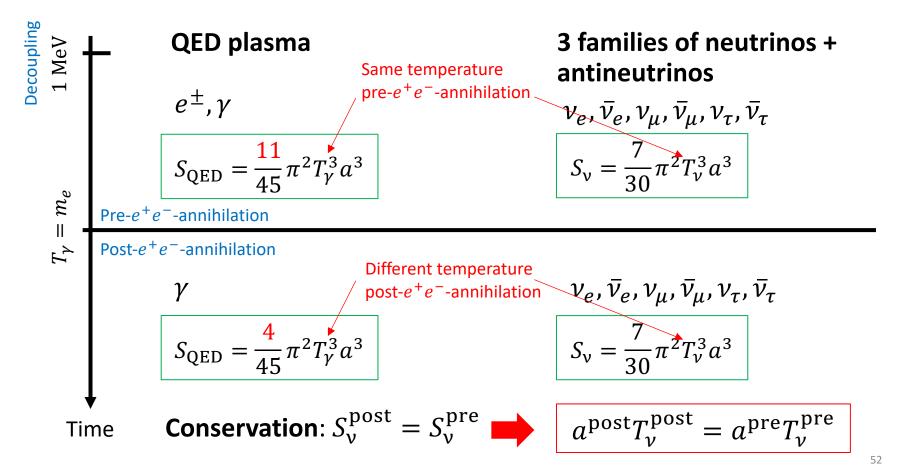


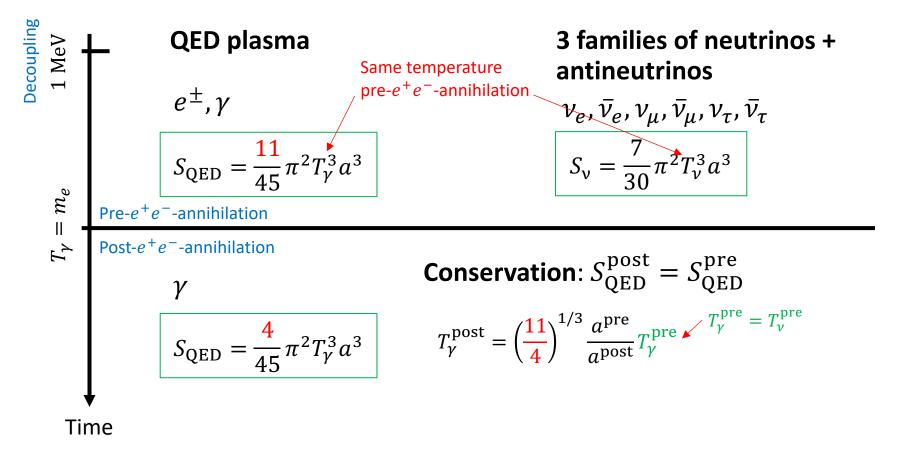
### Comoving entropy density & conservation...

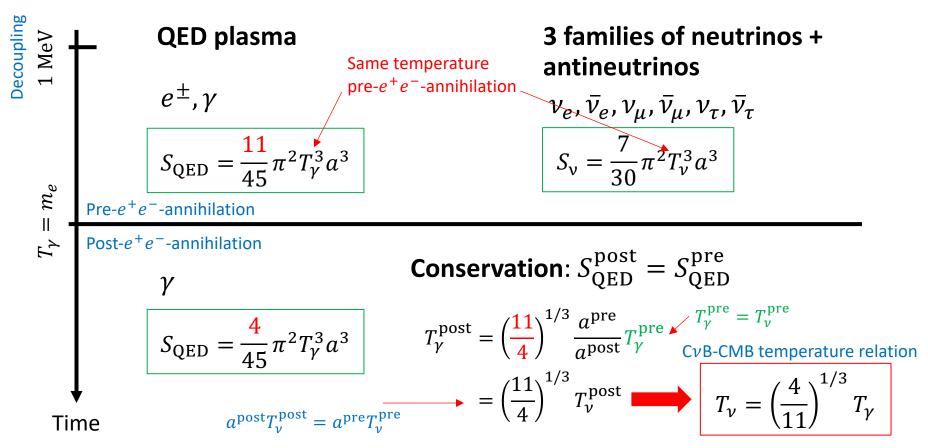
Where expansion is **quasi-static** so that equilibrium is maintained, the comoving entropy density S is approximately conserved.











### Evolution of the $C\nu B...$

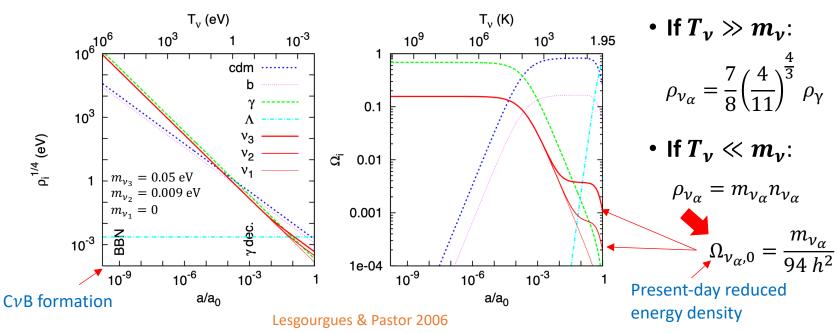
At formation  $(T \sim O(1) \ MeV \gg m_{\nu})$ , the **CvB phase space distribution** is well described by the relativistic Fermi-Dirac distribution:

$$f_{\nu}(p) \approx \frac{1}{\exp[p/T_{\nu}] + 1}$$
 with  $T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\nu}$   $\rightarrow T_{\nu,0} = 1.95 \text{ K} = 1.7 \times 10^{-4} \text{ eV}$ 

- Since the  $C\nu B$  do not scatter anymore, only the following can happen:
  - Temperature redshift:  $T_{\nu} \propto a^{-1}$
  - Momentum redshift:  $p \propto a^{-1}$
- $\rightarrow f_{\nu}(p)$  must always take the same relativistic FD form, even after the C $\nu$ B has become NR with redshift (a consequence of Liouville's theorem).
- $\rightarrow$  The **comoving number density** remains constant:  $n_{\nu_{\alpha},0} = \frac{6}{4} \frac{\zeta(3)}{\pi^2} T_{\nu,0}^3 = 112 \text{ cm}^{-3}$

### Evolution of the $C\nu B...$

But the CvB energy density depends on kinematics, scaling as  $\rho \propto a^{-4}$  when the neutrinos are relativistic, and like  $\rho \propto a^{-3}$  when NR.



### Summary of the $C\nu B...$

Standard hot big bang predicts a cosmic neutrino background with the properties:

• Temperature: 
$$T_{\nu,0} = \left(\frac{4}{11}\right)^{1/3} T_{\text{CMB},0} = 1.95 \text{ K} = 1.7 \times 10^{-4} \text{ eV}$$

• Present-day number density per family: 
$$n_{\nu,0}=\frac{6}{4}\frac{\zeta(3)}{\pi^2}T_{\nu,0}^3=112~\mathrm{cm}^{-3}$$

• Energy density:

• If neutrinos are relativistic: 
$$\rho_{\nu_{\alpha}} = \frac{7}{8} \left(\frac{4}{11}\right)^{\frac{4}{3}} \rho_{\gamma}$$

• If neutrinos are non-relativistic: 
$$\Omega_{\nu,0} = \sum \frac{m_{\nu}}{94 \ h^2 \text{eV}}$$
 Present-day reduced energy density