Neutrino mass from Astro- to Particle Physics

Federica Pompa - <u>fpompa@ific.uv.es</u>

Neutrino Frontiers @GGI - Focus Week - 03/07/2024

Weakly interacting particles

Weakly interacting particles

Appearing in three flavors, determined by the outgoing lepton produced by their interactions

Weakly interacting particles

Appearing in three flavors, determined by the outgoing lepton produced by their interactions

Weakly interacting particles

Appearing in three flavors, determined by the outgoing lepton produced by their interactions

"For the discovery of neutrino oscillations, which shows that neutrinos have mass"

From cosmology: <u>DESI Collaboration (2024)</u> $\sum m_{\nu} < 0.072 \text{ eV} (95\% \text{ CL})$

From kinematic measurements: <u>KATRIN Collaboration (2024)</u> KATRIN $\Rightarrow m_{\beta} < 0.45$ eV (90% CL)

Time-of-flight constraints with Supernovae: <u>G.Pagliaroli, F.Rossi-Torres, F.Vissani</u> (Astropart.Phys.Vol33,2010) SN1987A $\Rightarrow m_{\nu} < 5.8 \text{ eV}$ (95% CL)

From $0\nu\beta\beta$ measurements: <u>KamLAND-Zen Collaboration (PRL 130,051801, 2022)</u> KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16$ eV (90% CL)

From cosmology: DESI Collaboration (2024) $\sum m_{\nu} < 0.072 \text{ eV (95\% CL)}$

From kinematic measurements: <u>KATRIN Collaboration (2024)</u> KATRIN $\Rightarrow m_{\beta} < 0.45$ eV (90% CL)

Time-of-flight constraints with Supernovae: <u>G.Pagliaroli, F.Rossi-Torres, F.Vissani</u> (Astropart.Phys.Vol33,2010) SN1987A $\Rightarrow m_{\nu} < 5.8 \text{ eV}$ (95% CL)

From $0\nu\beta\beta$ measurements: <u>KamLAND-Zen Collaboration (PRL 130,051801, 2022)</u> KamLAND-Zen $\Rightarrow m_{\beta\beta} < 0.16$ eV (90% CL)

<u>Alma (Eso/Naoj/Nrao), Nasa/Esa Hubble Space</u> <u>Telescope, Nasa Chandra X-Ray Observator</u>

Core-collapse Supernovae

Already observed!

Neutrino signal from SN1987A

Already observed!

Neutrino signal from SN1987A

Neutrinos factories..

~99% energy released through neutrinos fluxes

Already observed!

Neutrino signal from SN1987A

Neutrinos factories... ~99% energy released through neutrinos fluxes **.... and not only!**

Cosmic Laboratories

unique opportunity to study interactions of elementary particles where new physics may be present

Already observed!

Neutrino signal from SN1987A

No control on when or where the next one will occur!

Cosmic Laboratorie

unique opportunity to study interactions of elementary particles where new physics may be present

Supernova bursts in galaxies $N \gg 1$ $N \sim 1$ Mpc Kpc

Rate $\sim 1/yr$ Rate $\sim 0.01/yr$

Diffuse Supernova Neutrino Background

 $N \ll 1$ Gpc J.Beacom (TAUP2011)

Rate ~ $10^8/yr$

Supernova bursts in <u>near</u> galaxies Diffuse Supernova Neutrino Background $N \gg 1$ $N \sim 1$ $N \ll 1$ nC Kpc We could be very close to the next observation!

Rate $\sim 0.01/yr$ Rate $\sim 1/yr$

Rate ~ $10^8/yr$

R(t, E) =

Detector

Interaction

Detector

Interaction

Source (and propagation!)

 ${\cal U}$ ${\cal V}$ Mikheyev-Smirnov-Wolfenstein effect A.S.Dighe, A.Y.Smirnov(PRD 62,033007, 2000) $\Phi_{\nu_e} = p \ \Phi^0_{\nu_e} + (1-p) \ \Phi^0_{\nu_x}$ $\Phi_{\nu_x} = \frac{1}{2} [(1-p) \ \Phi^0_{\nu_e} + (1-p) \ \Phi^0_{\nu_x}]$ **NO** $|U_{e3}|^2 |U_{e1}|^2$ $|U_{e2}|^2$ $|U_{e3}|^2$

= 2 eV m_{ν}

Effect of m_{ν}

 $\sqrt{2}$ $\Delta t_i(m_{\nu}) = \frac{D}{2c} \left(\frac{m_{\nu}}{E_i}\right)$

$$t_i = \delta t_i + t_{\text{off}} - \Delta t_i(m_{\nu})$$

DUNE: D = 10 kpc

10 s	50 ms
~ 845	~ 201
~ 1372	~ 54
~ 1222	~ 95

$$M = 8.8 M_{\odot}$$
$$M = 19 M_{\odot}$$

10 s	50 ms
~ 3644	~ 200
~ 5441	~ 88
~ 4936	~ 120

 $m_{\nu} \leq 0.51^{+0.20}_{-0.19} \text{ eV}$ $m_{\nu} \leq 0.91^{+0.30}_{-0.33} \text{ eV}$ $m_{\nu} \leq 2.01^{+0.69}_{-0.55} \text{ eV}$

 $m_{\nu} \leq 0.56^{+0.20}_{-0.21} \text{ eV}$ $m_{\nu} \leq 0.85^{+0.30}_{-0.25} \ {\rm eV}$ $m_{\nu} \leq 1.65^{+0.54}_{-0.40} \text{ eV}$

HK: D = 10 kpc

$M = 8.8 M_{\odot}$	10 s	50 ms
90%IBD	16003	414
ES+10%IBD	3462	249
90%IBD	16223	466
ES+10%IBD	3419	130
90%IBD	16678	573
ES+10%IBD	3491	178

- Hypothetical $(A, Z) \longrightarrow (A, Z+2) + 2e^{-1}$
- Forbidden in the Standard Model : $\Delta L = 2$
- The only known feasible way to prove the Majorana nature of $\boldsymbol{\nu}$

$\Gamma_{\alpha}(m_{\beta\beta}, M_{\alpha i}) = G_{0\nu} \times$

Phase Space Factor (PSF) (kinematic)

- Hypothetical $(A, Z) \longrightarrow (A, Z+2) + 2e^{-}$
- Forbidden in the Standard Model : $\Delta L = 2$
- The only known feasible way to prove the Majorana nature of $\boldsymbol{\nu}$

AS

New Physics

$$(g_A^2 | M_{\alpha i} |)^2 \times \mathcal{E}_{BN}$$

M_{αi} Nuclear Matrix Element (NME)

 $g_{\rm A} = q \, g_{\rm A}^{\rm bare}$

If $0\nu\beta\beta$ mediated by the exchange of a light Majorana ν :

$$\Gamma_{\alpha}(m_{\beta\beta}, M_{\alpha i}) = G_{0\nu} \times$$

Phase Space Factor (PSF) (kinematic)

- Hypothetical $(A, Z) \longrightarrow (A, Z+2) + 2e^{-}$
- Forbidden in the Standard Model : $\Delta L = 2$
- The only known feasible way to prove the Majorana nature of $\boldsymbol{\nu}$

$$(g_A^2 | M_{\alpha i} |)^2$$

 $g_{\rm A} = q \, g_{\rm A}^{\rm bare}$

$$\sim m_{\beta\beta}^2$$

Effective Majorana mass

$$\left|\sum_{j} U_{ej}^2 m_j\right|$$

Nuclear Models and Nuclear Matrix Elements

<u>M.Agostini et all. - Rev.Mod.Phys. 95 (2023) 2, 025002</u>

$$M_{0\nu} = M_{0\nu}^{\rm long}$$

Long-range contribution to the decay rate induced by the exchange of light Majorana ν

- Calculations performed by different groups by assuming $g_{\rm A}^{\rm bare}=1.27$
- Data not available for all the isotopes
- Variation in $M_{0\nu}^{\rm long}$ of a factor ~ 3

Qı Rar Ap

Νι

Ene Func

Bo

		⁷⁶ Ge	⁸² Se	^{100}Mo	¹³⁰ Te	¹³⁶ Xe
	N1	2.89	2.73	_	2.76	2.28
	N2	3.07	2.90	-	2.96	2.45
Iclear Shell	N3	3.37	3.19	_	1.79	1.63
	N4	3.57	3.39	_	1.93	1.76
	N5	2.66	2.72	_	3.16	2.39
	Q1	5.09	_	_	1.37	1.55
uasiparticle ndom Phase proximation	Q2	5.26	3.73	3.90	4.00	2.91
	Q3	4.85	4.61	5.87	4.67	2.72
	Q4	3.12	2.86	_	2.90	1.11
	Q5	3.40	3.13	_	3.22	1.18
	Q6	_	_	_	4.05	3.38
	E1	4.60	4.22	5.08	5.13	4.20
ergy-Density	E2	5.55	4.67	6.59	6.41	4.77
Stional theory	E3	6.04	5.30	6.48	4.89	4.24
nteracting	11	5.14	4.19	3.84	3.96	3.25
oson Model	2	6.34	5.21	5.08	4.15	3.40

Nuclear Models and Nuclear **Matrix Elements**

<u>M.Agostini et all. - Rev.Mod.Phys. 95 (2023) 2, 025002</u>

 $M_{0\nu} = M_0^{\rm long}$

Long-range contribution to the decay rate induced by the exchange of light Majorana ν

whice by the second sec Calculations performed by assuming

- he isotopes Data no
- of a factor ~ 3

En Func

Bo

		^{76}Ge	⁸² Se	¹⁰⁰ <i>Mo</i>	¹³⁰ Te	¹³⁶ Xe
	N1	2.89	2.73		2.76	2.28
	N2	3.07	2.90		2.96	2.45
Nuclear Shell Model	N3	3.37	3.19	-	1.79	1.63
	N4	3.57	3.39			1.76
	N5	2.66	273	nr	3.16	2.39
	Q1	er		-	1.37	1.55
Quasiparicle and connase Approximation	nu	5.26	3.73	3.90	4.00	2.91
	Q3	4.85	4.61	5.87	4.67	2.72
	Q4	3.12	2.86	_	2.90	1.11
	Q5	3.40	3.13	_	3.22	1.18
	Q6	_	-	_	4.05	3.38
	E1	4.60	4.22	5.08	5.13	4.20
Energy-Density	E2	5.55	4.67	6.59	6.41	4.77
anctional theory	E3	6.04	5.30	6.48	4.89	4.24
Interacting	11	5.14	4.19	3.84	3.96	3.25
Boson Model	12	6.34	5.21	5.08	4.15	3.40

Short-range contribution

V.Cirigliano et al, Phys.Rev.Lett.120,202001

To renormalize the $0\nu\beta\beta$ amplitude due to light Majorana ν exchange

$$M_{\alpha i} = M_{\alpha i}^{\text{long}} + M_{\alpha i}^{\text{short}} = M_{\alpha i}^{\text{long}}(1 + n_{\alpha i})$$

Unknown value and sign leading either to an enhancement or suppression of the expected decay rate

(Hints for + sign = best scenario) <u>M.Agostini et all. - Rev.Mod.Phys. 95 (2023) 2, 025002</u>

		Nuclear Shell Model %	Quasiparticl Random Pha Approximatic %
	^{76}Ge	$15 \div 42$	32÷73
hort	⁸² Se	$15 \div 42$	$30 \div 70$
$i \longrightarrow n_{\alpha i} \in$	^{100}Mo	_	$49 \div 108$
ong di	¹³⁰ <i>Te</i>	$17 \div 47$	34 ÷ 77
	¹³⁶ Xe	$17 \div 47$	$30 \div 70$

L.Jokiniemi et all. - Phys.Lett.B 823 (2021) 136720

Current picture...

- Impact of the short-range term
- Uncertainties on both the size and sign of $|n_{\alpha i}|$

(In some cases) already touching the IMO region!

... and future prospect

<u>M.Agostini et all. - Rev.Mod.Phys. 95 (2023) 2, 025002</u>

- **IMO** completely explored!
- Big impact of the sho
- Uncertainties on both
- LEGEND-1000 (^{76}Ge

Sensitivity @ $3\sigma (\Delta \chi_{tot}^2 = 9)$

	⁷⁶ Ge	<u>LEGEND-1000</u>
	¹³⁶ Xe	<u>nEXO</u>
ort-range term	^{100}Mo	<u>CUPID</u>
h the size and sign of $ n_{\alpha i} $	¹³⁰ Te	<u>SNO+II</u>
$e) + nEXO ({}^{136}Xe)$	⁸² Se	<u>SuperNEMO</u>

Take-home message

Future $0\nu\beta\beta$ setups able to prove or rule out the inverted mass ordering region for many NME models in the light-Majorana neutrino exchange scenario.

Short-range contribution and huge uncertainties from nuclear theory affect considerably the $m_{\beta\beta}$ sensitivities of next-generation experiments.

The neutrino signal coming from the Supernova neutronization burst, visible only in the ν_{ρ} spectrum, constitutes a fundamental tool to constrain the neutrino mass in a model-independent way.

Take-home message

The neutrino signal coming from the Supernova or SN20 or burst, visible only in the ν_e spectrum, constituted wait for SN20 or burst, visible Be prepared and model-independent way.

Future $0\nu\beta\beta$ setups able to prove or rule out the inverted mass ordering for many NME models in the light-Majorana part Physicange scena Nuclear Physicange scena Short-range New hints from Nuclear theory af considerably the $m_{\beta\beta}$ sensitivities of next-generation experiments. Future $0\nu\beta\beta$ setups able to prove or rule out the inverted r rdering region scenario. e uncertainties from nuclear theory affect

Backup Supernova parameters uncertainties: luminosity

M.Kachelriess, R.Tomas, R.Buras, H.-Th.Janka, A.Marek, M.Rampp (PRD 71,063003, 2005)

The neutronization burst results to be a robust, model independent prediction of the Supernova models.

Very slight variations as a function of progenitor mass (left panel), microphysics of neutrino interactions (middle panel) and equation of state (right panel).

Backup Supernova parameters uncertainties: mean energy

M.Kachelriess, R.Tomas, R.Buras, H.-Th.Janka, A.Marek, M.Rampp (PRD 71,063003, 2005)

The neutronization burst results to be a robust, model independent prediction of the Supernova models.

Very slight variations as a function of progenitor mass (left panel), microphysics of neutrino interactions (middle panel) and equation of state (right panel).

Backup

Dependency on SN distance: $\sim \frac{1}{D^2}$

$$\Phi_{\nu_e} = p \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0$$

$$\Phi_{\nu_x} = \frac{1}{2} [(1-p) \ \Phi_{\nu_e}^0 + (1-p) \ \Phi_{\nu_x}^0]$$

 ${\cal V}$

	p	\bar{p}
NO	$ U_{e3} ^2$	$1 - P_{2e}(E, \cos \theta)$
ΙΟ	$P_{2e}(E,\cos\theta)$	$ U_{e3} ^2$

 $P_{2e}(E,\cos\theta) = \mathcal{T}_{e\beta} \cdot U_{e2}$ $\mathcal{T}_{\alpha\beta} = \mathcal{T}(\overline{P_{det}P_1}) \,\mathcal{T}(\overline{P_1P_2}) \cdots \mathcal{T}(\overline{P_MP_{prod}})$

ν_e channel – IO

Backup

Mikheyev-Smirnov-Wolfenstein effect <u>A.S.Dighe, A.Y.Smirnov (PRD 62,033007, 2000)</u>

Adiabatic or partially adiabatic neutrino flavor conversion in medium with varying density

Current picture

<u>E.Lisi, A.Marrone - Phys.Rev.D 106 (2022) 1, 013009</u>

$$\Delta \chi_r^2(\Gamma_\alpha) = a_r (\Gamma_\alpha)^2 + b_r \Gamma_\alpha + c_r$$

$$\Gamma_\alpha(m_{\beta\beta}, M_{\alpha i}) = G_{0\nu} (g_A^2 |M_{0\nu}|)^2 m_{\beta\beta}^2$$

 $\chi^2_{\rm tot}(m_{\beta\beta}) = \sum \Delta \chi^2_r(m_{\beta\beta})$

 $\Delta \chi_{\text{tot}}^2(m_{\beta\beta}) = \chi_{\text{tot}}^2(m_{\beta\beta}) - \chi_{\text{tot,min}}^2(m_{\beta\beta})$

 $\Delta \chi^2_{ii}$

Future prospect

<u>M.Agostini et all. - Rev.Mod.Phys. 95 (2023) 2, 025002</u>

$$S_{\alpha i}(m_{\beta \beta}, M_{\alpha i}) = \ln 2 \cdot N_A \cdot \varepsilon_{\alpha} \cdot \left(\frac{T}{1 \text{ yr}}\right) \cdot \widetilde{\Gamma}_{\alpha}(m_{\beta \beta}, M_{\alpha i})$$

$$B_{\alpha} = b_{\alpha} \cdot \varepsilon_{\alpha} \cdot \left(\frac{T}{1 \text{ yr}}\right)$$

$$[\varepsilon] = \text{mol} \cdot \text{yr} \quad [b] = \frac{\text{events}}{\text{mol} \cdot \text{yr}} \qquad N_{\alpha i} = S_{\alpha i} + B_{\alpha}$$

$$\downarrow$$

$$n_{\beta \beta}, M_{\alpha j}; \ m_{\beta \beta}^{\text{True}}, M_{\alpha i}^{\text{True}}) = 2 \sum_{\alpha} \left(N_{\alpha j} - N_{\alpha i}^{\text{True}} + N_{\alpha i}^{\text{True}} \ln \frac{N_{\alpha i}^{\text{True}}}{N_{\alpha i}}\right)$$

Backup

 $\Delta \chi_r^2(\Gamma_\alpha) = a_r (\Gamma_\alpha)^2 + b_r \Gamma_\alpha + c_r$

E.Lisi, A.Marrone - Phys.Rev.D 106 (20

Nuclide	Experiment	a_r	b_r	c_r	$T_{1/2}^{90}/10^{26} { m yr}$
$^{76}\mathrm{Ge}$	GERDA MAJORANA	0.000 0.000	4.871 2.246	0.000 0.000	$\begin{array}{c} 1.8\\ 0.83\end{array}$
¹³⁰ Te	CUORE	0.257	-0.667	0.433	0.22
¹³⁶ Xe	KamLAND-Zen EXO-200	$14.315 \\ 0.443$	0.000 - 0.342	0.000 0.066	$\begin{array}{c} 2.3\\ 0.35\end{array}$

Updated with recent results

(UZZ) I, (UI)

Backup

$$S_{\alpha i}(m_{\beta \beta}, M_{\alpha i}) = \ln 2 \cdot N_A \cdot \varepsilon_{\alpha} \cdot \left(\frac{T}{1 \text{ yr}}\right) \cdot \Gamma_{\alpha}(m_{\beta \beta}, M_{\beta \beta})$$
$$B_{\alpha} = b_{\alpha} \cdot \varepsilon_{\alpha} \cdot \left(\frac{T}{1 \text{ yr}}\right)$$

<u>M.Agostini et all. - Rev.Mod.Phys. 95 (2023) 2, 025002</u>

Experiment	Isotope	$arepsilon$ $\left[{ m mol} \cdot { m yr} ight]$	b [events/(mol·y)]	$\frac{\text{PSF}}{[\text{yr}^{-1} \text{ eV}^{-2}]}$
LEGEND-1000 SuperNEMO CUPID SNO+II	76 Ge 82 Se 100 Mo 130 Te 126	8736 185 1717 8521	$4.9 \cdot 10^{-6}$ $5.4 \cdot 10^{-3}$ $2.3 \cdot 10^{-4}$ $5.7 \cdot 10^{-3}$	$2.36 \cdot 10^{-26}$ $10.19 \cdot 10^{-26}$ $15.91 \cdot 10^{-26}$ $14.2 \cdot 10^{-26}$
nEXO	¹³⁰ Xe	13700	$4.0 \cdot 10^{-5}$	$14.56 \cdot 10^{-26}$

 $M_{\alpha i}$)