Neutrino physics at dark matter detectors

Louis E. Strigari Texas A&M University Mitchell Institute for Fundamental Physics and Astronomy

GGI Neutrino Frontiers July 4, 2024

Opportunities for astrophysical and terrestrial neutrino physics

Solar neutrinos

Next generation neutrino detection

Search for Coherent Elastic Scattering of Solar ⁸B Neutrinos in the XENON1T Dark Matter Experiment

XENON collaboration, PRL 126 (2021) 091301: 2012.02846 [hep-ex]

A Measurement of Solar pp Neutrino Flux using PandaX-4T Electron Recoil Data

Pandax collaboration, 2401.07045

Flavor composition of solar neutrinos

Nityasa Mishra & L. Strigari PRD 2023

Beyond tree level: ⁸B solar neutrinos

Radiative corrections to the CEvNS cross section induce small flavor dependences [Marciano & Sirlin 1980; Sehgal 1985; Tomalak et al. 2021]; Charge radius contribution in CEvNS [Cadeddu et al. 2018; de Romeri et al. 2023]

Flavor-dependent corrections introduce a small day/night asymmetry in solar neutrino rate [Nityasa Mishra & L. Strigari PRD 2023]

Beyond tree level: ⁸B solar neutrinos

Brdar & Xu PLB 2024

MAX. HILL HEIGHT = 70' EXTRACTION

Beyond tree level: 7Be solar neutrinos

Larger scale experiment similar to Borexino, e.g. JUNO, may be sensitive to non-unitarity in 3-flavor oscillations [K. Kelly, N. Mishra, M. Rai, LS 2024]

Time variation of solar neutrino flux

Dark matter modulation should be out of phase with solar neutrino modulation [Davis 2014]

Time variability should be observable in G3 Xenon detector for electron and nuclear recoils [Zhuang, Strigari, Jin, Sinha, 2023, 2024]

Low-energy atmospheric neutrinos

Solar and geomagnetic effects

Time variation and geomagnetic effects depend on detector location [Zhuang, Strigari, Lang PRD 2021]

Low energy atmospheric neutrino fluxes

Solar and geomagnetic effects at DUNE and Hyper-Kamiokande

- Over 11-year solar cycle, statistical significance for observing time modulation of atmospheric neutrinos is 4.8σ for DUNE and 2.0σ for HK.
- Flux measurements at both DUNE and HK important for understanding systematics and oscillations in low-energy atmospheric neutrinos.

Terrestrial CEvNS Experiments

Silicon CCDs

Outgoing Particle

20201

....

	2017	2010	2019	2020	2021	2022	2023	2024	2025	2020	2021	2020	2029	20308
Reactor Neutrino Soi	irces													_
artlepool Site				BG studie	s									
ngra Site				location &	shielding	upgrades								
HOOZ Site		BG studies	5	Site	Prep	Operation	s							
ONNIE	40 g			10 g skipp	100g skip	per	1 kg skipp	Der		10kg skip	per			
NUS														
INER							1							
ED-100							1							
EXONO			PIRI	E R&D				1						
UCLEUS						10g CaW	04 & A120	kg-scale]]	kg: Ge+ Si		1			
ENON						and and					1			
EWSG			Fe	asability S	tudies									
ICOCHET				1										
Ar			D	etector R&	D									
pallation Neutrino S	Sources													
NS FTS	1.1 MW	1.4	4 MW upg	rade		1.7 MW u	pgrade	Ep=1.3 G	eV Upgrad	e		2.0 MW u	pgrade	
NS STS			10				-							
ujan Center							30 ns Upp	rade						
SS								1						
OHERENT - CsI		Observation	n.'											
- LAI	20 k	eV threshol	d			7	50 kg			10	T			
- Ge				16 k	g			100 kg						
- Nal	c .				3.3 T				Crvo NaI					1
ENON@SNS							100 kg							1
CM - 1st detector											1			
- 2nd detector	r			1 -										
3 Solar Neutrinos		· · · · ·												
Cenon NT														
Z														
uperCDMS										1				
arkside-LM														
mospheric and Dif	hise Superr	iova Neutrin	no Backgro	ouind										
ARWIN														
alactic Supernova 1	Neutrinos (Only												
arkside-20k														
ARGO														

CEvNS cross section measurements

First detection of coherent elastic neutrino-nucleus scattering on germanium

Flavor separation of CEvNS

Sterile neutrinos and CEvNS

Sterile neutrinos: Anderson et al. 2012; Dutta et al. 2016; Blanco, Machado, Hooper 2019; Miranda et al. 2020

Bisset, Dutta, Huang, LS, arXiv: 2310.13194

CEvNS with directional detectors

Neutrino energy reconstruction

Lisotti et al, 2404.03690

Neutrino physics opportunities with dark matter detectors

- 8B solar neutrinos likely to be the first astrophysical measurement of CEvNS
- Opportunities for atmospheric neutrinos at dark matter detectors
- Flavor dependencies in CEvNS, and future precision measurements
- Opportunities with CEvNS and terrestrial detectors
- CEvNS experiments using decay inflight

