Light Dark Sector: Inelastic Exploration

Bhaskar Dutta

Texas A&M University

Neutrino Frontiers Workshop, GGI

July 4, 2024

1

Outline

- Introduction
- Dark sector models: Light Mediator and sub-GeV DM
- Light DM at beam dump-based neutrino and large neutrino detector experiments using nuclear inelastic processes → *Line signal* [Phys.Rev.D 106 (2022) 11, 113006, Phys.Rev.Lett. 131 (2023) 11, 111801, 2402.04184]
- Conclusion

Introduction

• New Physics: Dark Matter (DM), Neutrino masses and mixing, various anomalies, e.g., g-2 of muon, MiniBooNE etc

Are they all correlated? Is there a model?

- Where is the new physics scale?
- Many experiments are probing new physics scales: DM direct and indirect detections, LHC, neutrino experiments, beam dump experiments, rare decays, etc.
- Scales higher than 1 GeV can be probed with high sensitivities at the LHC

Introduction

This talk: Investigates scales below 1 GeV

- Anomalies, puzzles can be addressed
- There are many new ideas

Models (a lot of ongoing activities): Light mediators: scalar, pseudo-scalar, vector; sub-GeV DM

This talk will discuss: a few specific well motivated scenarios

• Light DM: Ambient and Laboratory sources

Model 1:SU(2)_L × U(1)_Y × U(1)_{T3R}

Model with a sub GeV DM and Light mediators

E.g., there may be a new symmetry breaking scale around GeV \rightarrow 1st and 2nd generation fermion masses (~MeV to few GeV)

Anomaly free

field	q_{T3R}
q_R^u	-2
q_R^d	2
ℓ_R	2
ν_R	-2
η_L	1
η_R	-1
ϕ	-2

 $SU(2)_L \times U(1)_Y \times U(1)_{T3R}$

 $U(1)_{T3R}$ is broken at 1-10 GeV down to Z_2

→Low mass dark matter, gauge and scalar mediators

Predictions are testable at various low energy experiments

Dark matter is made out of η_1 , η_2 .

$$\eta_1 = -\frac{i}{\sqrt{2}} \begin{pmatrix} \eta_L - \eta_R^e \\ -\eta_L^e + \eta_R \end{pmatrix} \qquad \qquad \eta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} \eta_L + \eta_R^e \\ \eta_L^e + \eta_R \end{pmatrix}$$

Dark Matter (parity odd): $\eta_{1,2}$ and can have small mass gap among η_1 , η_2

Dutta, Ghosh, Kumar, 2019

U(1)_{T3R}

In SM, the Yukawa couplings are hierarchical:

$$\lambda_t^{(SM)} \sim 1, \lambda_c^{(SM)} \sim 10^{-2}, \lambda_{s,\mu}^{(SM)} \sim 10^{-3}, \lambda_{u,d}^{(SM)} \sim 10^{-5}, \lambda_e^{(SM)} \sim 10^{-6}$$

$$\mathcal{L}_{Yuk} = -\frac{\lambda_u}{\Lambda} \tilde{H} \phi^* \bar{Q}_L q_R^u - \frac{\lambda_d}{\Lambda} H \phi \bar{Q}_L q_R^d - \frac{\lambda_\nu}{\Lambda} \tilde{H} \phi^* \bar{L}_L \nu_R - \frac{\lambda_l}{\Lambda} H \phi \bar{L}_L \ell_R - \lambda \phi \bar{\eta}_R \eta_L - \frac{1}{2} \lambda_L \phi \bar{\eta}_L^c \eta_L - \frac{1}{2} \lambda_R \phi^* \bar{\eta}_R^c \eta_R - \mu_\phi^2 \phi^* \phi - \lambda_\phi (\phi^* \phi)^2 + H.c.,$$

$$\mathcal{L} = \dots - \tilde{m}_{\chi_f} \bar{\tilde{\chi}}_f \tilde{\chi}_f - \lambda_{fL} H(\bar{\tilde{\chi}}_f P_L \tilde{f}_L) - \lambda_{fR} \phi^* (\bar{\tilde{\chi}}_f P_R \tilde{f}) + h.c., \qquad \bullet \quad \text{Scalar } \phi \text{ vev } _{V = (-\mu_{\phi}^2/2\lambda_{\phi})^{1/2}} \text{ breaks } U(1)_{\text{T3R}} \text{ to } Z_2,$$

Dutta, Ghosh, Gurrola, Judson, Kamon, Kumar, JHEP 03 (2023) 164

• vev is around 1-10 GeV

→ We can have $\lambda_x \sim 0.1 - 1$ since $(\langle H \rangle \langle \phi \rangle) / \Lambda$ helps to fit the fermion masses

U(1)_{T3R}

- New scalar and gauge boson: ϕ' , A' are light in this model
 - The couplings of ϕ' , A' with quarks and leptons are fixed once we choose the vev of $\langle \phi \rangle$ and the A' mass

$$\begin{aligned} \mathcal{L}_{Yuk} &= -m_u \bar{q}_L^u q_R^u - m_d \bar{q}_L^d q_R^d - m_\nu \bar{\nu}_L \nu_R - m_\ell \bar{\ell}_L \ell_R - \frac{1}{2} m_1 \bar{\eta}_1 \eta_1 - \frac{1}{2} m_2 \bar{\eta}_2 \eta_2 \\ & \left(-\frac{m_u}{V} \bar{q}_L^u q_R^u \phi' - \frac{m_d}{V} \bar{q}_L^d q_R^d \phi' - \frac{m_{\nu D}}{V} \bar{\nu}_L \nu_R \phi' - \frac{m_\ell}{V} \bar{\ell}_L \ell_R \phi' - \frac{1}{2} \frac{m_1}{V} \bar{\eta}_1 \eta_1 \phi' - \frac{1}{2} \frac{m_2}{V} \bar{\eta}_2 \eta_2 \phi' + \dots \right. \\ & D_\mu = \partial_\mu + i \frac{g}{2} \tau_a W_{\mu a} + i g' Y B_\mu + i \frac{g T_{3R}}{2} Q_{T_{3R}} A'_\mu, \\ \mathcal{L}_{gauge} &= \frac{1}{4} g_{T_{3R}} A'_\mu (\bar{\eta}_1 \gamma^\mu \eta_2 - \bar{\eta}_2 \gamma^\mu \eta_1) + \frac{m_{A'}^2}{V} \phi' A'_\mu A'^\mu + i g_{T_{3R}} A'_\mu (\phi' \partial^\mu \phi'^* - \phi'^* \partial^\mu \phi) - \frac{1}{2} g_{T_{3R}} j_{A'}^\mu A'_\mu, \end{aligned}$$

A' also mixes with photon and Z

$$Z, \gamma \cdots f_R \rightarrow A'_{\mu}$$

Parameter Space

Various scenarios: Gauge boson (A')-scalar (ϕ') mediators parameter space

• E.g., Muon model: u_R , d_R , v_R , μ_R

Fixes M_{ϕ} =10-100 MeV

- Electron model: u_R , d_R , v_R , e_R
- Similarly, models with second generation quarks

DM Abundance in U(1)T3R

Thermal relic is easier to satisfy due to the existence of two mediators

Various two-body final states:

Resonance/non-resonance:

$m_{A'}$ (MeV)	$m_{\phi'}$ (MeV)	$m_{\eta} \; ({\rm MeV})$	$m_{\nu_s}(\text{MeV})$	$m_{\nu D}$ (MeV)	$\langle \sigma v \rangle ~({\rm cm}^3/{\rm sec})$	$\sigma_{\rm SI}^{scalar}({\rm pb})$	$\sigma_{\rm SI}^{vector}({\rm pb})$
150 180	80 76	$\frac{40}{38}$	10 10	10^{-3} 10^{-3}	3×10^{-26} 3×10^{-26}	$0.58 \\ 0.58$	$\begin{array}{c} 1.17\\ 1.06\end{array}$

Similar Models...

Similar models of light gauge mediators: $L_{\mu} - L_{\tau}$, $U(1)_{B}$, $U(1)_{L}$, $U(1)_{B-L}$.

Battel, Niverville, Pospelov, Ritz, 2014, Kaplan, Luty, Zurek, 2009, Bi, He. Yuan, 2009, Park Kim Park, 2016, Foldenauer, 2019, Dutta, Ghosh, Kumar, 2019

• Photons and new gauge boson mix via $\varepsilon F^{\mu\nu}F'_{\mu\nu}$

[These models have constraints from beam dump, low energy accelerators, g-2, astrophysical and cosmological constraints]

• These light mediators can decay into v's, DM and various SM particles

Another example: Model 2

One can utilize the Higgs- sector based new physics to have a light scalar (1GeV)

- Higgs sector is extended (No additional gauge symmetry)
- In various models, we can have a larger Higgs sector, e.g., LR, grandunified models etc.
- We extend the Higgs sector most generally by a doublet, triplet, and a singlet

$$\phi_1:\left(2,\frac{1}{2}\right), \qquad \phi_2:\left(2,\frac{1}{2}\right), \qquad \phi_s:(1,0), \qquad \Delta: (3,1),$$

Higgs Potential

We choose the Higgs basis from the minimization condition, where only one of the Higgs doublets get a non zero vev, the triplet VEV is constrained by the ρ parameter, singlet VEV is unconstrained

Dhysical particles	Mass values	
r hysicar particles	and descriptions	
	$m_h = 125.5 \mathrm{GeV},$	
	this is the SM Higgs; –	$\mathcal{L}_{Yukawa} \supset \nu^{c}_{i}(y_{\nu})_{ij} \Gamma \nu_{i} h_{k} + f_{i}(y_{f})_{ij} \Gamma f_{i} h_{k}$
	$m_{h_1} = 0.001 \text{ GeV},$	$-1 \ a \ a \ a \ a \ a \ a \ a \ b \ b \ b$
Neutral scalars:	very light scalar,	
h, h_1, h_2 and h_3	neccessary for our analysis;	
	$m_{h_2} = 500 \text{GeV},$	· · <i>(</i> 1 · 1 · 1 · 2 · 2
	$m_{h_3} = 600 \text{ GeV}$	i, j: flavor indices: $1, 2, 3$
	they satisfy the LHC bounds.	fuda
		J. u, u, e
	$m_{s_1} = 500 \text{GeV},$	h_{1} : h. h. h. h. h. h. s. h. s. s.
Neutral pseudo-scalars:	$m_{s_2} = 500 \text{GeV},$	
s_1, s_2 and s_3	$m_{s_3} = 600 \text{GeV},$	
	they satisfy LHC bounds.	There can be additional heavy neutrinos
		There can be additional neavy neurinos
Single charged coolars:	$m_{h_1^{\pm}} = 500 \text{ GeV},$	(N) in this model with v_{NDH} couplings
Single charged scalars. $b^{\pm} b^{\pm}$	$m_{h_{2}^{\pm}} = 600 \text{ GeV},$	(-) $=$ $ -$
n_1, n_2	in agreement with LHC bounds.	
		Dutta Chash Li Thompson Vorma
Double charged scalars:	$m_{h_3^{\pm\pm}} = 500 \text{ GeV},$	Dutta, Ghosh, Li, Thompson, verma,
$h_3^{\pm\pm}$	satisfying LHC limits.	_ JHEP 03 (2023) 163,
		Phys Roy D 100 (2010) 11 115006
		I HYSINCYIL IUU (4017) II, IIJUUU

Light DM in Model 1 and 2

- Both Models have light DM and light mediators
- Address various anomalies, g-2, MiniBooNE (heavy neutrino, dark sector) Dutta, Ghosh, Kumar, PRD 2022; Dutta, Kim, Remington, Thomson, Van de Water, PRL, 2022
- Contains NSIs and associated phenomenologies

Dutta, Ghosh, Li, Thompson, Verma; JHEP, 2023; Dutta, Ghosh, Kelly, Li, Thompson, Verma, 2024; Dutta, Goswami, Karthikeyan, Kelly, To appear

Light DM in Model 1 and 2

Model 1: New particles: ϕ' , A', light DM, Mediators couple to first generation quarks and second generation leptons

Model 2: neutrino interactions, light scalars/pseudo-scalars, light DM (N), NSI interactions, mediator coupling to fermions are arbitrary

Both light DM and mediators can be probed in various low energy experiments, Electron, proton beam-dump based experiments and large scale neutrino detectors

- ➤ We will explore light DM at neutrino experiments (using mesons etc. to produce light mediators → DM), COHERENT, CCM, JSNS²
- Ambient DM in large neutrino detector, e.g., JUNO, Borexino, DUNE, HyperK

Light Mediators at SBL $\,\mathcal{V}\,$ Expts.

Neutrino experiments can be versatile

Beam dump-based (proton beam) [ongoing]: 800 MeV-3 GeV: COHERENT (Oakridge), CCM (LANL), JSNS2(JPARC) Detectors, CsI, LAr, NaI, Ge

Fermilab SBN program: 120 GeV NUMI, 8 GeV BNB beams (ongoing)

DUNE (120 GeV)

- Many experiments with proton beams have different beam energies using various detectors at different locations
- FASER, FASERv, SND are ongoing

New physics at v experiments

New physics at v experiments

PHYSICS REPORTS No. 3 (1962) 151-21)5. Bandyopadhyay, Ghosh, Roy, PRD 105 (2022) 11, 115039.

$$L \supset -g_{\phi(a)ff}\bar{f}(i\gamma^5)f\phi(a) - g_{A'ee}\bar{f}\gamma^{\mu}fA'_{\mu}$$

- Charged meson decay: quarks and lepton couplings
 - ➢ Not helicity suppressed → both electron and muon final states contribute
 - Needs to include all the internal bremsstrahlung diagrams IB_i (i=1,23)
 - Satisfy the experimental constraint from **PIENU** (pions) and **NA62**(Kaons)

$$\eta^0, \pi^0 \to \gamma A'_{\mu}$$
 Neutral meson decays

- Charged pion contribution can be larger than the neutral pion even without the focusing horns
- Important for stopped pion and mesons decay-in-flight experiments

New physics

- There can be more production processes, e.g., $\nu + N \rightarrow \nu_s + N$ (coherently enhanced) using $\overline{\nu}_s \sigma_{\mu\nu} F^{\mu\nu} \nu$
- Nuclear de-excitation lines at lower mass target (lower beam energy)
- Neutrons can be used: Bremsstrahlung, neutrons on target, etc. to produce light mediators

Dev, Dutta, Han, Karthikeyan, Kim, 2311.10078

Low mass DM at v experiments

Dark matter particles can be produced in the lab

 \rightarrow Dark gauge bosons, scalars decay into dark matter

- Low threshold detectors would be useful
- Lot more dark matter particles compared to direct detection experiments
- Low mass dark matter can be investigated
- Problem: Neutrinos also produce same signals → Neutrino floor?

Ex. KeV signal at COHERENT, CCM

Prompt: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$

Delayed:
$$\mu^+ \rightarrow e^+ + \overline{\nu_{\mu}} + \nu_e$$

COHERENT: CsI data:2018

COHERENT (2017)

No CEvNS rejected at 6.7σ: CsI (2020): 11.6σ

COHERENT (2020)

- No CEvNS rejected at 3.8σ : LAr
- New results using Ge [2024]: 3.9 σ

The ongoing CEvNS experiments, COHERENT, CCM etc. are probing DM

Deniverville, Pospelov, Ritz, PRD, 2015, Ge, Shoemaker, JHEP, 2018, Dutta, Kim, Liao, Park, Shin, Strigari, PRL, 2020

- Both neutrinos, DM produce nuclear/electron recoils: how to distinguish them?
- The timing and energy recoil measurement at COHERENT, CCM, JSNS² can be used

Another method:

Use the delayed neutrinos (T>2.2 μ s) to determine the background-related uncertainties \rightarrow predict the backgrounds in the prompt window

- The first method needs to know the time t_0 very well
- The second method assumes no NSI in the neutrino spectra

COHERENT uses the second method while CCM uses the first method

COHERENT: CsI (14.6 kg): 3.2 x10²³ POT, CCM 120: LAr (7ton): 1.79 x10²⁰ POT (Engineering run)

Here the mediators do not need electron interactions

MeV signal – Light DM

DM (χ) can be scalar/fermion

We use Bigstick: Shell Model code for this calculation

B. Dutta, Wei-Chih. Huang, J. Newstead, V. Pandey, Phys.Rev.D 106 (2022) 11, 113006

MeV signal - DM

 Cross-section can be calculated: Using shell model code, e.g., BIGSTICK, Experimental measurements

B. Dutta, W. Huang, J. Newstead, V. Pandey, Phys.Rev.D 106 (2022) 11, 113006

MeV Signal - DM

We use BIGSTICK: SDPF-NR interaction for Ar

For elastic scattering:

$$\frac{d\sigma_{\rm el}^{DM}}{dE_r} = \frac{e^2 \epsilon^2 g_D^2 Z^2}{4\pi (E_\chi^2 - m_\chi^2) (2m_N E_r + m_{A'}^2)^2} F^2(q^2) \\ \times \left[2E_\chi^2 m_N \left(1 - \frac{E_r}{E_\chi} - \frac{m_N E_r}{2E_\chi^2} \right) + E_r^2 m_N \right]$$

- The signal is now in the MeV Region (not KeV), neutrino background is easy to overcome
- The signal is a line signal
- Impact of threshold is different

10 ⁻³²									
10 ⁻³³	ſ								
[2 [2 [2]] δ		C							and the second
10	F					[Elastic ⁴⁰	Ar	
10 ⁻³⁷							Elastic ¹³ Elastic ¹² Elastic ¹² Inelastic Inelastic	³ Cs ⁷ I ⁴⁰ Ar ¹³³ Cs	
	30	40	50 Dark	60 Matter er	70 hergy E_{χ} [N	80 feV]	90	10	0

Scattering	Experiment	Elastic	Inelastic	Ratio
v-40 Ar	COHERENT	2.27×10^{2}	3.15	7.21×10
ν -40 Ar	CCM	1.91×10^{4}	2.65×10^{2}	7.21×10
$\nu - {}^{133}Cs$	COHERENT	1.16×10^{3}	1.52×10^{-2}	7.65×10^{3}
$\nu - {}^{127}I$	COHERENT	$1.06 imes 10^3$	3.75×10^{-1}	2.81×10^{3}
χ- ⁴⁰ Ar	COHERENT	1.18	1.13×10^{-1}	1.04×10
χ- ⁴⁰ Ar	CCM	9.92×10	9.52	1.04×10
χ- ¹³³ Cs	COHERENT	4.11	4.91×10^{-3}	8.38×10^{2}
χ- ¹²⁷ Ι	COHERENT	3.87	1.16×10^{-2}	3.33×10^{2}

MeV signal-Light DM

- The cross-section for the line signal is smaller compared to the elastic signal
- The background is small
- threshold requirement is $\sim 0.5-10 \text{ MeV}$
- \rightarrow Better sensitivity of the parameter space

	1		1		<u> </u>	1	1	/	
Experiment	E_{beam}	POT	Target	Detector:					
	[GeV]	$[yr^{-1}]$		material	mass	distance	angle	runtime	E_r^{th}
KARMEN	0.8	1.16×10^{22}	Ta	CH ₂	56 t	17.7 m	100°	4 years	10 MeV
COHERENT [†]	1	6.0×10^{23}	Hg	NaI[T1]	3.5 t	22 m	120°	3 year	∼few keV
CCM^{\dagger}	0.8	7.5×10^{21}	W	Ar	7 t	20 m	90°	3 years	25 keV
PIP2-BD [†]	2	$9.9 imes10^{22}$	С	Ar	100 t	15 m	N/A	5 years	20 keV

- For Carbon, we use the measurement (KARMEN) of the 15.1 MeV line (in the neutral current data),
- We use the BIGSTICK calculations

MeV signal-Light DM

KARMEN:

Fig 3 Fnergy distribution of neutrino (white area) and back-

 ${}^{12}C(\nu_{\mu}\nu_{\mu}'){}^{12}C^{*}(1^{+},1;15.1 \text{ MeV})$

The background will be reduced by 1/100 in CCM200 for the same POT

MeV signal – DM: COHERENT & CCM

- We use CCM 120 background measurements and projections for CCM 200 (for MeV region)
- t < 200 ns, prompt window reduces the neutrino background down to O(1) events
- Rescale the shell model prediction to be consistent with the experiment, **W. Tornow et al.**, 2210.14316
- A lower threshold detector will help to improve the sensitivity in the elastic channel

B. Dutta, W. Huang, J. Newstead, Phys.Rev.Lett. 131 (2023) 11, 111801

MeV signal – Light DM: COEHERNT & CCM

- Karmen seems to be providing the best limit with the observation Is the neutron background correctly estimated?
- CCM 200 is measuring the MeV scale electromagnetic signal

Direct Detection: Light DM&Med

Various ways of probing Sub-GeV DM:

Bringmann, Pospelov, 2018

Ema, Sala, Sato, 2018

Dent, Dutta, Newstead, Shoemaker, 2019

Low mass DM (up to 10 GeV) becomes energetic \rightarrow detection becomes easier

- Since light DM comes to the detector with higher energy, threshold does not matter
- → Large scale neutrino detectors can be used
- We can use this boosted DM for inelastic nuclear scattering

Dent, Dutta, Newstead, Shoemaker, 2019

Direct Detection: Light DM

		N	1. 4		
Experiment	Target	Mass (kt)	Time (yr)	Eres 1 MeV	Eth MeV
Hyper-K	water	188	10	2	4.5
DUNE	Ar	40	10	2	5
JUNO	CH_2	20	10	0.1	0.5
Borexino	CH_2	0.1	5.6	0.2	0.2
DUNE	p,n(Ar)	40	10	-	50
JUNO	р	20	10	-	15
Borexino	р	0.1	1.22	-	12.3
LZ	Xe	0.0055	0.167	-	0.001
DarkSide-20k	Ar	0.02	5	-	0.03

Large v detectors: Larger threshold compared to the DM detectors

Large v detectors : Light DM

- Solid lines denote the inelastic channel, while dashed lines are elastic channels.
- We use the hadronic interactions. ٠

B. Dutta, W. Huang, D. Kim J. Newstead, J. Park, I. Shaukat Ali, 2402.04184

Large v detectors : Light DM

Outlook

- Light mediator models can explain various anomalies and puzzles
- Many model possibilities
- M(new physics) < GeV is not easy to probe, e.g., LHC mostly probe M> GeV
- Various experiments provide interesting possibilities for searching low-scale models
- Sub-GeV DM with light mediators is searched via elastic channels in direct detection and beam dump-based experiments
- Inelastic nuclear searches (line measurements) can provide a very good ability to probe light DM in ongoing experiments. Also, other processes, e.g., Atomki anomaly, axion/DM absorption at reactors, beam dumps etc.