

Supernova neutrinos and neutrino nonradiative decay

PILAR IVÁÑEZ BALLESTEROS (SHE/HER)

PHD SUPERVISOR: DR. M. C. VOLPE

APC – UNIVERSITÉ PARIS CITÉ

Supernova neutrinos

Neutrino non-radiative decay

Results:

2

- SN1987A [P.I.B. and Volpe, PLB847 (2023) 138252]
- DSNB [P.I.B. and Volpe, PRD107 (2023) 023017]

GGI - NEUTRINO FRONTIERS

Supernova neutrinos

Neutrino non-radiative decay

3

Results: • SN1987A

• DSNB

GGI - NEUTRINO FRONTIERS

Supernova neutrinos

- **Powerful source of neutrinos**: $\sim 10^{53}$ erg emitted in all flavours (99% of gravitational binding energy!)
 - interesting information can be obtained if we detect these neutrinos!
- We are sensitive to galactic supernova, BUT these are **rare events** (1-3 per century)
- Only detection was SN1987A (50 kpc away)
 - <u>24 events</u> detected by Kamiokande-II, IMB and Baksan [Hirata *et al.*, 1987] [Bionta *et al.*, 1987] [Alekseyev *et al.*, 1988]

Evolution of SN 1987A. Hubble Space Telescope https://www.esa.int/About_Us/ESAC/The_evolution_of_SN_1987A

The Diffuse Supernova Neutrino Background (DSNB)

[Abe *et al.*, 2021]

DSNB: all neutrinos and antineutrinos emitted by <u>all past core-</u> collapses in the observable Universe.

Current upper limits for the DSNB flux:

• SK I-IV data: 2.6
$$\bar{\nu}_e$$
 cm⁻² s⁻¹ (E _{ν} > 17.3 MeV)

19 $\nu_e \text{ cm}^{-2} \text{ s}^{-1}$ (E_{ν} \in [22.9, 36.9] MeV) SNO data: [Aharmin *et al.*, 2020]

 $10^3 v_x \text{ cm}^{-2} \text{ s}^{-1} (\text{E}_v > 19.3 \text{ MeV})$ SK data: [Lunardini and Peres, 2008] Improve sensitivity [Suliga *et al.*, 2022]

Dark Matter detectors: $10 v_{\gamma} \text{ cm}^{-2} \text{ s}^{-1}$

Latest SK results for the DSNB search considering phases I-VII.

```
See Thomas Mueller's
presentation on Monday 8<sup>th</sup> July
```

Neutrino emission from a single collapse: $F_{\nu}(E, M)$

- Emission depends on: outcome of the collapse, progenitor characteristics...
- Flux at the neutrinosphere, $F_{\nu_{\alpha}}^{0}$:
 - It can be parametrised by a power-law distribution [Keil et al., 2003]
 - > Luminosity of $L_{\nu_{\alpha}} \sim 10^{52} \text{ erg}$
 - $\succ \langle E_{\nu} \rangle : \text{average energy} (\sim 9 18 \text{ MeV}) \rightarrow \langle E_{\nu_e} \rangle < \langle E_{\overline{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$

- Flavour effects inside supernova:
 - Still under study: shock wave effects, $\nu \nu$ interactions... see e.g. the review Volpe (2023)
 - > We considered only the **Mikheev-Smirnov-Wolfenstein (MSW) effect**: describes the <u>flavour transformations</u> due to the ν -matter interactions.

We have assumed to be <u>adiabatic</u> $\rightarrow F_{\overline{\nu}_l} = F_{\overline{\nu}_e}^0$; $F_{\overline{\nu}_i} = F_{\overline{\nu}_h} = F_{\nu_x}^0$ [Wolfenstein, 1978] [Mikheev and Smirnov, 1986]

DSNB flux

see e.g. [Beacom, 2010], [Priya and Lunardini, 2017], [Møller et al., 2018], [de Gouvêa et al., 2020], ...

(BHFC)

 $15~M_{\odot}$ $22~M_{\odot}$

 $15 M_{\odot}$

(NSEC)

l 1.2 I

 $8 M_{\odot}$

 $8 M_{\odot}$

• $f_{BH} = 0.41$

(NSFC)

 $25 M_{\odot}$ $27 M_{\odot}$

$$\phi_{\nu}(E) = \int_{0}^{z_{max}} \frac{dz}{H(z)} \int_{8 M_{\odot}}^{125 M_{\odot}} dM \hat{R}_{SN}(z, M) F_{\nu}(E', M) \qquad E' = E(1 + z)$$
Hubble parameter:
accounts for Universe
expansion. We consider
a ACDM model.
Supernova rate:
proportional to the star
formation rate. The

formation rate. The normalization of SNR is one of the largest uncertainties of the DSNB

(BHFC)

 $40 M_{\odot}$

(BHFC)

 $125 M_{\odot}$

 $125\,M_{\odot}$

 $125 \, M_{\odot}$

DSNB flux

see e.g. [Beacom, 2010], [Priya and Lunardini, 2017], [Møller et al., 2018], [de Gouvêa et al., 2020], ...

$$\phi_{\nu}(E) = \int_{0}^{z_{max}} \frac{dz}{H(z)} \int_{8\,M_{\odot}}^{125\,M_{\odot}} dM\,\dot{R}_{SN}(z,M)F_{\nu}(E',M) \qquad E' = E(1+z)$$

Results for the integrated flux in $\text{cm}^{-2}\text{s}^{-1}$ for the fiducial case $(f_{BH} = 0.21)$ and the most optimistic case $(f_{BH} = 0.41)$ in brackets:

	ΝΟ	ΙΟ	UPPER LIMITS
$\overline{oldsymbol{ u}}_{e}$	0.77 ± 0.30	0.63 ± 0.25	2.6
($E_{ u} > 17.3 \; { m MeV}$)	[1.02 \pm 0.41]	[0.75 \pm 0.3]	(SK)
ν _e	0.20 ± 0.08	0.18 ± 0.08	19
(22.9 < E < 36.9 MeV)	[0.24 ± 0.09]	[0.23 ± 0.09]	(SNO)

Flux of \bar{v}_e on Earth for different f_{BH} in absence of decay. The band shows the uncertainty of the SNR normalisation. Results obtained using 1D SN simulations from Garching group.

Supernova neutrinos

Neutrino non-radiative decay

9

Results: • SN1987A

• DSNB

2

GGI - NEUTRINO FRONTIERS

Neutrino nonradiative decay

 $\nu_j \longrightarrow \nu_i (\overline{\nu}_i) + X$

range:

where $m_j > m_i$ and X is a very light (pseudo)scalar particle (e.g. Majoron).

Neutrino fluxes deplete over a distance L due to decay by a factor: $\exp\left(-\frac{m_i L}{\tau_i E}\right)$

experiments. Figure taken from P.I.B. and Volpe, PLB 2023.

DSNB has <u>unique sensitivity</u> to this decay in the

$$\frac{\tau}{m} \in \left[10^9 - 10^{11}\right] \text{s/eV}$$

[Ando, 2003], [Fogli *et al.*, 2004], [de Gouvêa *et al.*, 2020], [Tabrizi and Horiuchi, 2021]

Mass ordering cases

Decay patterns

Supernova neutrinos

Neutrino non-radiative decay

Results:

• SN1987A

• DSNB

Limits on τ/m from SN1987A data

[P.I.B. and Volpe, PLB847 (2023) 138252] (b) NO - SH <u>7D likelihood analysis</u> of SN1987A data to obtain τ/m ${\cal L}_p/{\cal L}_{max})$ o → Parameters considered: $L_{\nu_{\alpha}}$, $\langle E_{\nu_{\alpha}} \rangle$ with $\nu_{\alpha} = \nu_{e}$, $\bar{\nu}_{e}$, ν_{x} and $\tau/_{m}$ Normal ordering: no sensitivity See Yvonne Wong's presentation • Inverted ordering: $\frac{\tau}{m} \ge 1.2 \times 10^5 \text{ s/eV}$ at 90% CL. for limits from cosmology (a) IO Profile likelihood ratios from the 7D likelihood 10^{6} 50 10^{4} 10^{8} $\tau/m ~(s/eV)$ analysis of SN1987A events: (a) inverted ordering, (b) normal ordering and strongly (c) NO - QD 40 hierarchical masses, (c) normal ordering and $\left(\mathcal{L}_{max} ight)$ quasidegenerate masses. 30 $-2\log\left(\mathcal{L}_p/\mathcal{L}_{max} ight)$ The curves correspond to the analysis: $(\mathcal{L}_p/$ including Baksan data and background data 5 log (5 (dot-dashed line); without Baksan data and with background (solid line); 10 2 with Baksan data and without background data (dotted line); and, without Baksan data and background data. 10^{6} 10^{4} 10^{8} 10^{6} 10^{8} 10^{4} $\tau/m ~(s/eV)$ $\tau/m \; (s/eV)$

How can we detect the DSNB?

• Detection of $\bar{\nu}_e$ flux \rightarrow **Inverse Beta Decay** (IBD)

$$\bar{\nu}_e + p \rightarrow n + e^+$$

- > Super-Kamiokande + Gd, Hyper-Kamiokande, JUNO
- > Backgrounds: reactor $\overline{\nu}_e$ (low energies) and atmospheric ν (high energies)

• Detection of v_e flux \rightarrow **neutrino absorption in** ⁴⁰Ar

 $\nu_e + {}^{40} Ar \rightarrow {}^{40} K^* + e^-$

- > Deep Underground Neutrino Experiment (DUNE)
- > Backgrounds: solar neutrinos (low energies) and atmospheric v_e (high energies)

DUNE (40 kton)

Predictions for the DSNB: Normal Ordering

* Results obtained for our fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

[P.I.B. and Volpe, PRD107 (2023) 023017]

Predictions for the DSNB: Inverted Ordering

* Results obtained for our fiducial case, $f_{BH} = 0.21$. The bands show the uncertainty of the SNR normalisation.

[P.I.B. and Volpe, PRD107 (2023) 023017]

Main results and conclusions

Investigation of <u>neutrino nonradiative decay and its effects on supernova neutrinos</u> using a $\frac{3\nu}{100}$ framework and considering both NO and IO.

SN1987A: 7D likelihood analysis of the data to obtain limits on τ/m

DSNB: for the first time <u>3v framework</u> + <u>dependence on the SN progenitors</u> and <u>uncertainty from the SN rate</u>. Prediction for the number of events at different experiments: **SK-Gd**, **HK**, **JUNO and DUNE**

P. Iváñez-Ballesteros and M.C. Volpe, PRD107 (2023) 023017, arXiv:2209.12465 P. Iváñez-Ballesteros and M.C. Volpe, PLB847 (2023) 138252, arXiv:2307.03549