Shedding light on the Δm_{21}^2 tension with supernova neutrinos Rasmi E. Hajjar Muñoz

GGI NEUTRINO FRONTIERS 2024

RH is supported by the Spanish grant FPU19/03348 of Ministerio de Universidades

based on PLB 854 (2024) 138719 and *Phys.Rev.D* 108 (2023) 083011 with Olga Mena and Sergio Palomares-Ruiz

05/07/2024

Main goal of this work: tension?

 2σ

3σ

Δχ

- There is a $\sim 1.5\sigma$ tension between KamLAND and **SK+SNO** measurements.
- KamLAND: reactor neutrinos.
- **SK+SNO**: solar neutrinos sensitive to Sun and Earth matter effects.
- OUR MAIN GOAL: solve tension using SN neutrinos sensitive to Earth matter effects.

 $\sin^2 \theta_{12} = 0.316 \begin{array}{c} +0.034 \\ -0.026 \end{array}$ $\Delta m^2_{21} = 7.54 \begin{array}{c} +0.19 \\ -0.18 \end{array}$ $\times 10^{-5} eV^2$

 $\sin^2 \theta_{12} = 0.310 \pm 0.012$ $\Delta m^2_{21} = 7.49 \begin{array}{c} +0.19 \\ -0.17 \end{array}$ $\times 10^{-5} eV^2$

> Slide extracted from Neutrino18 contribution of Motoyasu Ikeda, SK collaboration

- Now the tension relaxed...
- But in the past this tension was higher!

• $\sim 2.3\sigma$ tension between KamLAND and **SK+SNO** measurements

without the last data inclusion.

With the next galactic SN explosion we can add a measurement on this plane...

With the next galactic SN explosion we can add a measurement on this plane...

...and things could get interesting

 Core-collapse SN is the violent explosion during death of massive stars.

10¹⁸

EeV

• 99% energy of star ($\sim 10^{53}$ erg) is released in the form of neutrinos.

• Excellent source due to high flux and low background when applied temporal cut.

 Core-collapse SN is the violent explosion during death of massive stars.

• 99% energy of star ($\sim 10^{53}$ erg) is released in the form of neutrinos.

• Excellent source due to high flux and low background when applied temporal cut.

Uncertainty on fluxes

Main drawbacks

One direction per detector

Uncertainty on fluxes

Main drawbacks

One direction per detector

Supernova neutrino journey

Supernova neutrino journey

• In order to obtain *p* we need to know neutrino evolution:

$$\mathbb{M}^2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{pmatrix}$$

10⁰ [10⁵⁸ MeV] 10^{-1} 10^{-2} o ^م 10⁻³ 10-4 10^{-5} 40 60 *E_ν* [MeV]

Solar mixing parameters

Fluxes at the detector;

$$\epsilon \equiv \frac{2 E_{\nu} V}{\Delta m_{21}^2} \simeq 0.12 \left(\frac{E_{\nu}}{20 \text{ MeV}}\right) \left(\frac{Y_e \rho}{3 \text{ g/cm}^3}\right) \left(\frac{7.5 \text{ g/cm}^3}{3 \text{ g/cm}^3}\right)$$

 Earth matter effects contain information on the solar mixing parameters: Δm_{21}^2 and Q_{12} .

Fluxes at the detector;

$$\epsilon \equiv \frac{2 E_{\nu} V}{\Delta m_{21}^2} \simeq 0.12 \left(\frac{E_{\nu}}{20 \text{ MeV}}\right) \left(\frac{Y_e}{3 \text{ g/s}}\right)$$

the solar mixing parameters

Fluxes at the detector;

$$\epsilon \equiv \frac{2 E_{\nu} V}{\Delta m_{21}^2} \simeq 0.12 \left(\frac{E_{\nu}}{20 \text{ MeV}}\right) \left(\frac{Y_e}{3 \text{ g/s}}\right)$$

the solar mixing parameters

Solar mixing parameters

Fluxes at the detector;

$$\epsilon \equiv \frac{2 E_{\nu} V}{\Delta m_{21}^2} \simeq 0.12 \left(\frac{E_{\nu}}{20 \text{ MeV}}\right) \left(\frac{Y_e \rho}{3 \text{ g/cm}^3}\right) \left(\frac{7.5 \text{ g/cm}^3}{3 \text{ g/cm}^3}\right)$$

 Earth matter effects contain information on the solar mixing parameters: Δm_{21}^2 and Q_{12} .

Solar mixing parameters

Fluxes at the detector;

 Earth matter effects contain information on the solar mixing parameters: Δm_{21}^2 and Q_{12} .

KamLAND $\sin^2 \theta_{12} = 0.316 \pm 0.007$ $\Delta m_{21}^2 = \left(7.54 \,{}^{+0.26}_{-0.24}\right) \times 10^{-5} \,\,\mathrm{eV}^2$ SK+SNO $\sin^2 \theta_{12} = 0.305 \pm 0.007$ $\Delta m_{21}^2 = (6.10 + 0.18) \times 10^{-5} \text{ eV}^2$

Forecasts for a SN burst at 10 kpc.

Current KamLAND allowed regions

Current SK+ SNO allowed regions

- Forecasts for a SN burst at 10 kpc.
- Current KamLAND allowed regions
- Current SK+ SNO allowed regions
 - Forecast assuming as "true=nature" value KamLAND best fit
 - Alleviate tension between reactor and matter effects.

- Forecasts for a SN burst at 10 kpc.
- Current KamLAND allowed regions
- Current SK+ SNO allowed regions
 - Forecast assuming as "true=nature" value KamLAND best fit
 - Alleviate tension between reactor and matter effects.
- Forecast assuming as "true=nature" value SK+SNO best fit
 - Increase tension between reactor and matter effects.

5 errors	
	٩,

5 errors	
	٩,

5-er	'rc)rs					
							9/

- $\Delta m_{21}^2 \left|_{\mathrm{KL}} \Delta m_{21}^2 \right|_{\mathrm{solar}}$ $\sigma_{\rm KL}^2 + \sigma_{\rm SN}^2(c_{\rm z})$
- With SN SOL we can define tension with reactor measurement
- Matter vs Vacuum oscillations measurements

Take home message

A future galactic SN explosion could provide:

 $(\Delta m_{21}^2 \text{ and } \sin^2 \theta_{12}).$

neutrino and reactor antineutrino data.

A competitive measurement of the solar mixing parameters

A solution to the longstanding tension between solar

Take home message

A future galactic SN explosion could provide:

 A competitive measurement of the solar mixing parameters $(\Delta m_{21}^2 \text{ and } \sin^2 \theta_{12}).$

If no equipartition there will be a measurement.

 A solution to the longstanding tension between solar neutrino and reactor antineutrino data.

Take home message

A future galactic SN explosion could provide:

- A competitive measurement of the solar mixing parameters $(\Delta m_{21}^2 \text{ and } \sin^2 \theta_{12}).$
 - If no equipartition there will be a measurement.
- A solution to the longstanding tension between solar neutrino and reactor antineutrino data.

Or if you like new physics the tension could increase!

Shedding light on the Δm_{21}^2 tension with supernova neutrinos **BACKUP SLIDES**

BCK1

Neutrino oscillations in matter

Coherent effect in neutrino propagation

$$\frac{\mathrm{d}\phi_{\nu}(E_{\nu},x)}{\mathrm{d}x} = -i\left(\frac{1}{2}\right)$$

For 2 families and constant density

$$P_{2\nu}(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2(2\theta^m) \sin^2(2\theta^m)$$

$$\Delta^{m} = \sqrt{(\Delta m^{2} \cos 2\theta \mp 2EV)^{2} + (\Delta m^{2} \cos 2\theta \mp 2EV)^{2}}$$

Supernova neutrino fluxes

 $F_{\nu_e}^{\mathrm{D}} = p$ • Fluxes at detectors are a combination of fluxes at production: $F_{\bar{\nu}_e}^{\rm D} = \overline{p}$

Vacuum probabilities

$$p_{\text{vac}}^{\text{NO}} \equiv P_{\text{vac}}(\nu_{3} \rightarrow \nu_{e}) = |U_{e3}|^{2} = \sin^{2} \theta_{13}$$

$$\overline{p}_{\text{vac}}^{\text{NO}} \equiv P_{\text{vac}}(\overline{\nu}_{1} \rightarrow \overline{\nu}_{e}) = |U_{e1}|^{2} = \cos^{2} \theta_{12} \cos^{2} \theta_{13}$$

$$p_{\text{vac}}^{\text{IO}} \equiv P_{\text{vac}}(\nu_{2} \rightarrow \nu_{e}) = |U_{e2}|^{2} = \sin^{2} \theta_{12} \cos^{2} \theta_{13}$$

$$\overline{p}_{\oplus}^{\text{NO}} \equiv P_{\oplus}(\overline{\nu}_{1} \rightarrow \overline{\nu}_{e}) \simeq \cos^{2} \theta_{13} (1 - \overline{P}_{\oplus}^{2\nu})$$

$$p_{\oplus}^{\text{IO}} \equiv P_{\oplus}(\nu_{2} \rightarrow \nu_{e}) \simeq \cos^{2} \theta_{13} P_{\oplus}^{2\nu}$$

$$\overline{p}_{\oplus}^{\text{IO}} \equiv P_{\oplus}(\nu_{2} \rightarrow \nu_{e}) \simeq \cos^{2} \theta_{13} P_{\oplus}^{2\nu}$$

$$\overline{p}_{\oplus}^{\text{IO}} \equiv P_{\oplus}(\overline{\nu}_{3} \rightarrow \overline{\nu}_{e}) \simeq \sin^{2} \theta_{13}$$

$$F_{\nu_e}^{0} + (1-p) F_{\nu_x}^{0} \qquad F_{\nu_x}^{D} = \frac{1-p}{2} F_{\nu_e}^{0} + \frac{1+p}{2} F_{\nu_e}^{0}$$
$$F_{\bar{\nu}_e}^{0} + (1-\bar{p}) F_{\nu_x}^{0} \qquad F_{\bar{\nu}_x}^{D} = \frac{1-\bar{p}}{2} F_{\bar{\nu}_e}^{0} + \frac{1+\bar{p}}{2} F_{\nu_x}^{0}$$

Constant density probabilities

Detector configurations

HK ER CHERENKOV)	JUNO (LIQUID SCINTILLATOR)
$\bar{\nu}_e + p \rightarrow e^+ + n$,	IBD: $\bar{\nu}_e + p \to e^+ +$
$\nu_e + {}^{16}\mathrm{O} \rightarrow e^- + \mathrm{X}$,	$\nu_e C - CC: \nu_e + {}^{12}C \to e^- +$
$\bar{\nu}_e + {}^{16}\mathrm{O} \rightarrow e^+ + \mathrm{X}$,	$\bar{\nu}_e C - CC: \bar{\nu}_e + {}^{12}C \rightarrow e^+ +$
$\nu + e^- \rightarrow \nu + e^-$.	$\nu - e^- \text{ES}: \nu + e^- \to \nu + e$
$= 2.94 \cdot 10^{34}$	$N_t^p = 1.47 \cdot 10^{33}$
ERGY RESOLUTION	GOOD ENERGY RESOLUTIO
.9 IBD	0.95 IBD
$+ \nu_{\rho}O - CC +$	$0.05 \text{ IBD} + \nu_{\rho} O - CC$
$CC + \nu - e^{-}ES$	$+\overline{\nu}_e O - CC + \nu - e^-E$

