Towards the discovery of the Diffuse Supernova Neutrino Background Neutrino Frontiers - GGI

Thomas Mueller

Laboratoire Leprince-Ringuet

July 8, 2024

The Galileo Galilei Institute For Theoretical Physics

Centro Nazionale di Studi Avanzati dell'Istituto Nazionale di Fisica Nucleare

Arcetri, Firenze

- Supernova neutrinos & the Diffuse Supernova Neutrino Background (DSNB)
- OSNB detection
- Ourrent status of DSNB searches and next-generation experiments
- Latest results for Super-Kamiokande with gadolinium

- Core-collapse supernovae are among the most cataclysmic phenomena in the Universe and essential elements of the dynamics of the cosmos
- Underlying mechanism still poorly understood and requires knowledge of the core of the collapsing star
- 10⁵⁸ neutrinos emitted in a burst (~ 99% of gravitational binding energy) ⇒ carry unique and unambiguous information about this core

Crab Nebula six-light-year-wide expanding remnant of SN1054

- Core-collapse supernovae are among the most cataclysmic phenomena in the Universe and essential elements of the dynamics of the cosmos
- Underlying mechanism still poorly understood and requires knowledge of the core of the collapsing star
- 10⁵⁸ neutrinos emitted in a burst (~ 99% of gravitational binding energy) ⇒ carry unique and unambiguous information about this core

400 ve 300 L_v [10⁵¹ erg/s] 200 100 30 ve. 25 L, [1051erg/s] 20 15 s25a28 125 10 5 50 v_{μ}, v_{τ} 40 ., [10⁵¹erg/s] 30 20 Crah six ght-vear wide expanding SN1054 -5 10 15 20 tob[ms]

Progenitor star between 11.2 and 25 M_{\odot}

Phys. Rev. D 71, 063003 (2005)

Supernova physics (cont'd)

- So far, only SN1987a in LMC has been detected by neutrino experiments, all current detectors ready to detect one nearby
- If burst happens in the galatic center $\Rightarrow \sim 8000$ neutrinos in Super-Kamiokande... but only few times per century in our galaxy

 \Rightarrow quest for the Diffuse Supernova Neutrino Background (DSNB)

The Diffuse Supernova Neutrino Background

 Composed by neutrinos of all past SN of all flavors whose energies have been redshifted when propagating to the Earth ⇒ information not only on the SN neutrino emission process but also star formation and Universe expansion history

$$\frac{d\phi_{\text{DSNB}}}{dE} = \iint R_{SN}(z, M) \left[\frac{dF\left(E\left(1+z\right), M\right)}{dM} \right] \left| c \frac{dt}{dz} \right| dz dM$$

The Diffuse Supernova Neutrino Background

- Normalisation mostly determined by SN rate, related to cosmic star formation rate
- Shape depends on many parameters :
 - fraction of BH-forming SN,
 - effective neutrino energies (core temperature),
 - the expansion of the Universe
 - neutrino oscillation inside the star (dense matter),
 - neutrino mass-hierarchy,
 - neutrino decay and other NSI
- Rich physics program depending on the precision on the DSNB spectrum measurement

DSNB detection

- Usual detection channel : inverse eta-decay (IBD) $ar{
 u}_e + p o e^+ + n$
- Searched at O(10) MeV, bounded by reactor + spallation background at lower energy and atmospheric neutrinos at higher energies
- In order to disentangle signal from backgrounds, neutron detection in coincidence with the positron is mandatory

Highlight of recent search and prospects

- w/ current detectors
 - Liquid scintillator (LS) : KamLAND (1 kt), Borexino (O(100) t)
 - Water Cherenkov (WC) : **Super-Kamiokande** (22.5 kt), SNO (0.7 kt)
 - Gd-loaded WC detectors : SK-Gd \Rightarrow SK-VI discussed later
- Next generation experiments for DSNB detection
 - WC : Hyper-Kamiokande
 - LS : JUNO

 \overline{v}_e Energy [MeV]

Highlight of recent search and prospects

- w/ current detectors
 - Liquid scintillator (LS) : KamLAND (1 kt), Borexino (O(100) t)
 - Water Cherenkov (WC) : **Super-Kamiokande** (22.5 kt), SNO (0.7 kt)
 - Gd-loaded WC detectors : SK-Gd \Rightarrow SK-VI discussed later
- Next generation experiments for DSNB detection
 - WC : Hyper-Kamiokande
 - LS : JUNO

 \overline{v}_e Energy [MeV]

Future experiments - Hyper-Kamiokande

- 258 kton WC detector @ Kamioka, Japan
- Will start data taking in 2027
- Expected > 4σ in 10 years due to its large volume and upgraded phototubes (×2 eff.)

arXiv:1805.04163 [physics.ins-det]

Future experiments - Hyper-Kamiokande (cont'd)

Cavern excavation on June 11, 2024

Future experiments - JUNO

- 20 kton LS detector @ Jianmen, China \Rightarrow construction finished in 2024
- \bullet Assuming 80% signal efficiency and effective background reduction using muon veto and PSD method \Rightarrow S/B ~3.5
- 5σ within 10 years for optimistic prediction

Pinched Fermi-Dirac

JCAP 10 (2022) 033

11/28

Latest Super-Kamiokande results with Gd

The Super-Kamiokande experiment

- 50 kton water Cherenkov detector (currently doped with Gd)
- Located in Kamioka, Japan, under Mt. Ikenoyama : 1 km rock overburden (2.7 km water equivalent)
- Optically divided into an inner detector (ID) with a fiducial volume of 22.5 kton and an outer detector (OD), instrumented with
 - ID : \sim 11000 inward facing large 20"-PMTs, 40% photo-coverage
 - OD : 1885 8"-PMTs primarily used as veto

Running for more than 25 years and still has a lot to teach !

Neutrino detection with water Cherenkov detectors

Muon

Electron

courtesy of SK collaboration

Neutrino detection with water Cherenkov detectors

Detector phases

• SK experiment has collected data during 7 phases

Phase	Period	Event
SK-I	1996.4 to 2001.7	Start of the experiment
SK-II	2002.10 to 2005.10	20% photo-coverage after accident
SK-III	2006.7 to 2008.8	Full photo-coverage (40%) restored
SK-IV	2008.9 to 2018.5	Upgraded electronics
SK-V	2019.1 to 2020.8	Detector upgraded for Gd-loading
SK-VI	2020.8 to 2022.6	0.01% Gd-doping
SK-VII	since 2022.6	0.03% Gd-doping

- Highly versatile multi-purpose experiment in the MeV TeV range : solar & atmospheric neutrinos, supernovae neutrinos, DSNB, neutrino astrophysics, proton-decay, dark matter, beam neutrino (T2K)
- Regarding the search for the DNSB, neutron tagging is only possible since SK-IV period with its upgraded electronics

The SK-Gd upgrade

Motivations

- Improve neutron detection at SK
- SK-IV: neutron tagging possible but inefficient
- Dissolve Gd sulfate in water to enhance neutron signal : very high neutron capture cross-section + 8 MeV photon cascade

Upgrade process

- 2002: first proof of concept
- 2009: small scale prototype detector started (EGADS)
- 2018: SK detector refurbishment (SK-V)
- 2020: SK detector w/ 0.01% Gd (SK-VI)
- 2022: SK detector w/ 0.03% Gd (SK-VII, currently running)
- SK detector w/ 0.1% Gd?

Gd in Super-Kamiokande - Status and perspectives

Gd in Super-Kamiokande - Status and perspectives

Figure 5: Reconstructed energy for spallation neutrons candidates for runs with and without Gd in the lower region of the detector (left) and capture time of the neutron candidates (right).

Background sources

Atmospheric neutrinos

- NCQE interactions (inducing nuclear γ ray) is the main atm. ν background $\lesssim 20~{\rm MeV}$
- at higher energies \gtrsim 30 MeV CCQE interactions and π production dominate, mostly Michel- e^- from invisible μ/π decay (up \sim 50 MeV)
- ν_e/ν_μ CC can be largely reduced using neutron tagging
- $\bar{\nu}_e$ CCQE are irreducible \Rightarrow sets the analysis upper threshold

Cosmic ray muon spallation

- 2700 mwe $\Rightarrow \sim$ 2 Hz of muon in SK inducing spallation of 16 O
- misidentification of decays of produced radioactive isotopes as IBD
- below 20 MeV spallation events are 10⁶ times higher than DSNB events
- drastically reduced by neutron tagging apart from βn emitters and accidental coincidence

8 Reactor neutrinos

 $\bullet~$ Irreducible, overwhelm DSNB events \lesssim 8 MeV \Rightarrow sets the analysis lower threshold

Solar neutrinos

- ν_e from the *pp* chain (⁸B & *hep*) up to \sim 20 MeV
- $\bullet\,$ easily removed using neutron tagging and directional cuts using $\theta_{\rm Sun}$

Super-Kamiokande DSNB analysis - Reduction steps

Super-Kamiokande DSNB analysis - Reduction steps

Data Quality

Remove poorly reconstructed events, Rn events, events with OD activity

Spallation Background

Remove long-lived, high-energy, spallation isotopes (⁸Li, ⁸B, ⁹Li, ⁹C) remove events near "neutron clouds"

Atmospheric Background

Remove multi-cone prompt events remove μ/π events

Neutron Tagging [2 different ML algorithms BDT/NN]

all reductions applied

The very first results with Gadolinium (0.01%)

- Quick analysis for proving power of neutron tagging with Gd
- 552.2 days with 0.01% Gd concentration (SK-VI)
- Cut-based neutron tagging \Rightarrow 36% n-tag efficiency
- Requires $N_n = 1$ to select IBD candidates, dominant background is NCQE

• Close to 2970 days of pure water (SK-IV) \rightarrow SK-Gd era is moving us along quickly!

The very first results with Gadolinium (0.01%)

- Quick analysis for proving power of neutron tagging with Gd
- 552.2 days with 0.01% Gd concentration (SK-VI)
- Cut-based neutron tagging \Rightarrow 36% n-tag efficiency
- Requires $N_n = 1$ to select IBD candidates, dominant background is NCQE

• Close to 2970 days of pure water (SK-IV) \rightarrow SK-Gd era is moving us along quickly!

Analysis improvement

- Additional 404 days with 0.03% Gd (SK-VII)
 ⇒ 956 days of SK-Gd data
- New reduction for NCQE events that targets multi-cone events
 - \Rightarrow remove \sim 90% of NCQE

- Boosted Decision Tree (already used in SK-IV)
- Neural Network (new)

 $\Rightarrow > 60\%$ n-tag efficiency in SK-VII

Binned analysis - SK-Gd energy spectrum and combination w/ SK-IV

956 days of SK-Gd + 2970 days Model independent analysis Only use $N_n = 1$ events

Differential upper limit for $9.3 < E_{\nu} < 31.3$ MeV World stringent sensitivity

 CLs ≡ p_{S+BG}/(1 − p_{BG}) upper limits are conservative by construction

$$\phi_{90} = \frac{N_{90}}{\sigma_{\rm IBD} \ T \ \epsilon_{\rm IBD} \ N_p \ \Delta E}$$

- Limits are highly similar in the various energy bins for BDT / NN analysis
- Differences are driven either by neutron tagging technique and/or the evaluation of accidental coincidences
- This result takes into account the correlation between SK phases due to the same backgrounds and their predicted levels per bin
- In the near future, we expect appreciable sensitivity to a wide variety of models...

Spectral fitting analysis - Fit procedure

• We fit the number of observed events (N_s, \vec{N}_b) that maximizes the following extended likelihood :

$$\mathcal{L}\left(\mathsf{data} \,|\, \textit{N}_{s}, \vec{\textit{N}}_{b}, \vec{\varepsilon}\right) = \mathcal{L}(\vec{\varepsilon_{0}} | \vec{\varepsilon}) \times e^{-\sum_{j \in s+b}\textit{N}_{j}} \times \prod_{i=1}^{\textit{N}_{data}} \sum_{j \in s+b}\textit{N}_{j} \cdot \mathsf{PDF}_{j}\left(\textit{E}^{i}, \theta^{i}_{\textit{C}}, \textit{N}^{i}_{\mathsf{tagged} \textit{n}} \,|\, \vec{\varepsilon}\right)$$

with 3 regions in θ_C and 2 regions in $N_{\text{tagged }n}$

- Systematics encoded as shape nuisance parameters ($\bar{\varepsilon}$) :
 - ε_{CCQE} : ν_e CC spectrum in the signal region
 - $\varepsilon_{\text{spall}}$: spallation PDF in the signal region
 - $\varepsilon_{\text{NCQE}}$: relative normalization between signal / high- θ_{C} region
 - ε_{ntag} : relative normalization of spectra between the 2 n-tag regions
- Statistical approach chosen : frequentist inference

Spectral fitting analysis - SK-VI best fit

Spectral fitting analysis - Fit results (all phases + BDT)

956 days SKITEV Combined Results $954 \rightarrow 10$ SK4 -> TV + YLA VE DSNB (Horiuchi+09) DSNB flux [cm⁻².s⁻¹] Best fit rate : 2.9 events.vear⁻¹ Statistical and systematic errors || DSNB model: Horiuchi+09 (6 MeV, max) SK Phase 99.7% C.L. SK-I • 90% C.L. upper limit : SK-II 5.0 events.vear⁻¹ SK-III SK-IV REIMMARY SK-VI - SK-VII Best fit flux (> 17.3 MeV): Combined 1.4 cm⁻².year⁻¹ $2 \ln \frac{\mathcal{L}}{\mathcal{L}_{max}}$ • 90% C.L. upper limit : 95% C.L. 2.5 cm⁻².vear⁻¹ • Combined (stat. + syst.) $\sim 2.3 \sigma$ excess 68% C.L. DSNB flux [cm⁻².s⁻¹]

Spectral fitting analysis - Confidence levels (SK I to IV, SK-VI to VII)

Currently dominated by statistical error, model-dependent analysis is (almost) model-independent

Summary and perspectives

- DSNB flux carries valuable information about not only the supernova neutrino flux, but also the history of star formation, cosmic-expansion and neutrino properties
- \bullet Worldwide neutrino detectors sensitive to $\mathcal{O}(10)$ MeV running and foreseen to observe the DSNB
- Super-Kamiokande experiment published first results for the SK-Gd era in 2023
- Latest updates of DSNB search in SK-Gd presented @ Neutrino 2024 conference (and today !)
- No significant DSNB signal, however, some excess appears to be visible in the signal region : 2.3σ from the best-fit
- New work started to lower the analysis threshold, requires a consequent work on the spallation PDF
- Looking forward to discovery of DSNB in the next decade !!

BACK-UP SLIDES

Spectral fitting analysis - Upper limits

Super-K DSNB analysis: Reduction steps

("1st reduction"

Data Quality

- Only keep events that are well reconstructed by BONSAI (bsgood>0.5).
- Event reconstruction becomes difficult near the walls he detector (dwall>200cm).
- Radon contamination is concentrated near the detector walls (dwall+effwall).
- Focus on events without OD activity that would be associated with cosmic ray muons (trigger requirements).

M. Harada and A. Santos - 31 May 2024 - SK CM

Super-K DSNB analysis: Reduction steps

- Spallation isotopes with longer half-lives are more difficult to reject since it is harder to associate them to a parent muon.
- Isotopes without neutrons can be largely rejected when tagging neutron captures.
- Li-9 produces a neutron in an IBD-like signal.

M. Harada and A. Santos - 31 May 2024 - SK CM

Super-K DSNB analysis: Reduction steps

- Remove events within 1 ms a muon passing through the tank (time cut).
- Remove events within 4 m to a low-energy event (multiple-spallation).
- Remove events identified within/close to a "neutron cloud" created by passing muons.
- Apply a set of energy-dependent box cuts and spallation likelihood cuts.

Super-K DSNB analysis: Reduction steps

- Atmospheric neutrino interactions can produce multi-cone prompt events.
- Heavy charged leptons near the Cherenkov threshold have small opening angles.
- θ_c: Opening angle assuming one cone.

(IBD-like single-cone $\theta_c \approx 42^\circ$) (μ

$(\mu/\pi$ -like single cone near threshold)

Th. A. Mueller (LLR)

M. Harada and A. Santos - 31 May 2024 - SK CM

Super-K DSNB analysis: Reduction steps

- Atmospheric neutrino interactions can produce multi-cone prompt events.
- Heavy charged leptons near the Cherenkov threshold have small opening angles.
- θ_c: Opening angle assuming one cone.

M. Harada and A. Santos - 31 May 2024 - SK CM

Super-K DSNB analysis: Reduction steps

 Atmospheric neutrino interactions can produce multi-cone prompt events.

M. Harada and A. Santos - 31 May 2024 - SK CM

10

Super-K DSNB analysis: Reduction steps

- Atmospheric neutrino interactions can produce multi-cone prompt events.
- Multiple scattering goodness (MSG): a repurposed variable capable of distinguishing between likely single- and multi-cone events.

M. Harada and A. Santos - 31 May 2024 - SK CM

11

Super-K DSNB analysis: Reduction steps

- IBD events will have low PMT activity before the main prompt peak, unlike some double-peak atmospheric neutrino backgrounds (maxpre).
- μ/π decays can be tagged as "decay electrons" (nmue).
- Heavy charged leptons will deposit more charge-per-PMT than IBD at higher energies (q50/n50).
- These particles will also create clearer Cherenkov rings than lighter e^{\pm} (L_{clear}).

0.35 0.40 0.45 Ring Clearness

Super-K DSNB analysis: Reduction steps

- The Boosted Decision Tree (BDT) neutron tagging tool was used in the 2021 DSNB paper and was updated for SK-Gd.
- The Neural Network (NN) tool has been introduced as a new technique in SK-Gd for the DSNB analysis.
- These two techniques are used in SK-Gd analysis.

M. Harada and A. Santos - 31 May 2024 - SK CM

13

Super-K DSNB analysis: Reduction steps

- Both the BDT and the NN achieve less than 0.1% mistag rates for neutron tagging efficiencies above 60% in SK7.
- Note: The exact conditions/inputs that bring the BDT/NN to these final performances are not the same.

M. Harada and A. Santos - 31 May 2024 - SK CM

14

Super-K DSNB analysis: Reduction steps

Binned analysis - SK-IV energy spectrum

Comments on the likelihood

Construction of the likelihood :

$$\mathcal{L}\left(\left.\operatorname{data}\mid N_{s},\vec{N_{b}},\vec{\varepsilon}\right)=\prod_{i=1}^{N_{\mathrm{data}}}PDF_{S+B}\left(E^{i},\theta_{C}^{i},N_{n}^{i}\mid\vec{\varepsilon}\right)$$

where

$$PDF_{S+B}\left(E^{i},\theta_{C}^{i},N_{n}^{i}\,|\,\vec{\varepsilon}\right) = \sum_{j\,\in\,S+B}f_{j}\cdot PDF_{j}\left(E^{i},\theta_{C}^{i},N_{n}^{i}\,|\,\vec{\varepsilon}\right) \quad \text{with} \quad \sum_{j}f_{j} = 1 \quad (\text{by definition})$$

The maximization of this likelihood does not allow for determining the absolute normalisation. This can be overcome by using the extended likelihood (for N_{data} events, coming from Poisson distributions with mean N_i). We add following term in the likelihood

$$\frac{\left(\sum_{j} N_{j}\right)^{N_{\text{data}}} e^{-\sum_{j} N_{j}}}{N_{\text{data}}!}$$

We obtain

$$\mathcal{L}\left(\left.\mathrm{data}\left|\right.N_{s},\vec{N_{b}},\vec{\varepsilon}\right.\right) = \frac{\left(\sum_{j}N_{j}\right)^{N_{\mathrm{data}}}e^{-\sum_{j}N_{j}}}{N_{\mathrm{data}}!}\prod_{i=1}^{N_{\mathrm{data}}}\sum_{j\in S+B}f_{j}\cdot PDF_{j}\left(E^{i},\theta_{c}^{i},N_{n}^{i}\left|\vec{\varepsilon}\right.\right)$$

Disregarding the constant term N_{data} ! which has no influence in the maximization and moving the term $\left(\sum_{j} N_{j}\right)^{N_{\text{data}}}$ within the product, we obtain :

$$\mathcal{L}\left(\left|\operatorname{data}|\left|N_{s},\vec{N_{b}},\vec{\varepsilon}\right.\right)=e^{-\sum_{j}N_{j}}\prod_{i=1}^{N_{\mathrm{data}}}\left(\sum_{j}N_{j}\right)\sum_{j\in S+B}f_{j}\cdot PDF_{j}\left(E^{i},\theta_{C}^{i},N_{n}^{i}\mid\vec{\varepsilon}\right)$$

By definition

$$f_j = \frac{N_j}{\sum_j N_j} \quad \Leftrightarrow \quad N_j = \left(\sum_j N_j\right) f_j$$

and therefore

$$\mathcal{L}\left(\operatorname{data}|N_{s},\vec{N_{b}},\vec{\varepsilon}\right) = e^{-\sum_{j}N_{j}}\prod_{i=1}^{N_{\mathrm{data}}}\sum_{j \in S+B}N_{j} \cdot PDF_{j}\left(E^{i},\theta_{C}^{i},N_{n}^{i} \mid \vec{\varepsilon}\right)$$

The last term is a penalty term in the likelihood to take into account our prior knowledge on the systematic parameters $\vec{\varepsilon}$. The final likelihood is :

$$\mathcal{L}\left(\left.\operatorname{data}\left|\left.N_{s},\vec{N_{b}},\vec{\varepsilon}\right.\right)\right.=\mathcal{L}\left(\vec{\varepsilon}_{0}\left|\left.\vec{\varepsilon}\right\right)e^{-\sum_{j}N_{j}}\prod_{i=1}^{N_{\mathrm{data}}}\sum_{j\in S+B}N_{j}\cdot PDF_{j}\left(E^{i},\theta_{C}^{i},N_{n}^{i}\left|\left.\vec{\varepsilon}\right.\right)\right.\right)$$

Th. A. Mueller (LLR)

Towards the discovery of the DSNB