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Digital Optical Module (DOM)
‒ Multi-PMT : 31 x 3” PMTs
‒ Gbit/s on optical fiber
‒ Positioning & timing

‒ Rapid deployment
‒ Multiple strings/sea campaign
‒ Autonomous/ROV unfurling
‒ Reusable
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Detection Unit (DU)

‒ 18 DOMs

‒ Low-drag design

https://www.youtube.com/watch?v=tzxHlLgAahE https://www.youtube.com/watch?v=omlFkdCkbYk&t=3s

KM3NeT in the Mediterranean sea 
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Baikal-GVD cluster:
• 8 regular strings, 525 m 

instrumented with OM
• 60m radius
• Inter-cluster string carrying lasers, 

some instrumented with OMs
• Has its own control, trigger and 

readout systems

Presently detector consists of 110 
strings arranged into 14 independent 
detectors - clusters
• 3960 OMs in total

Additional cluster “EXP”:  
• 4 strings with experimental high-

speed DAQ

Baikal-GVD
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Physics with neutrino telescopes

Supernovae 
Explosion

Neutrino
Physics

Dark Matter
& Exotic searches

Cosmic neutrinos
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….

• Signal Model: Neutrino 
Emission from SNe:       
H.-Th. Jank
arXiv:1702.08713  

• Accretion phase: 0.5 s

• Signal in the detector: 
90% due to CC ഥ𝜈𝑒
interaction

• 10 MeV electron release 
its energy in about 5 cm 
of water

• Coherent increase of the 
“light” in the detector.

n from core-collapse supernovae
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n from core-collapse supernovae: background

b-decay: 1-2 PMTs in 20 ns

• 2070 DOMs in one detector building block
• Each DOM is a detector, each with 31 small PMTs

Muons: > 3 PMTs in many
DOMSs within few ms

, # PMTs

KM3NeT: EPJ. C (2021) 81:445
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n from core-collapse supernovae: signal

• 2070 DOMs in one detector building block
• Each DOM is a detector, each with 31 small PMTs

KM3NeT: EPJ. C (2021) 81:445

SN accretion

10 MeV electron: > 4 PMTs

• Number of signal +bck events within
0.5 s in 2070 DUs

• Multiplicity distribution used as proxy 
of the SN n’s  energy spectrum.
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n from core-collapse supernovae: sensitivity

• KM3NeT detection sensitivity as a 
function of the distance to the 
CCSN for the three progenitors 
considered.

• The error bars include the 
systematic uncertainties

KM3NeT: EPJ. C (2021) 81:445
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KM3NeT supernovae alert (online pipeline)

PoS(ICRC2023)1223

• Alert system: 20 s latency 
time

• Trigger threshold: adapt to 
background level 1 fake 
event/week

• Buffer 10 min of data

• Timing of the SN detection 
for triangulation with other 
experiments.
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HE astrophysics with neutrino telescopes

Supernovae 
Explosion

Neutrino
Physics

Dark Matter
& Exotic searches

Cosmic neutrinos
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Energy density of the extragalactic radiation
 R. Hill, K. W. Masui, & D. Scott, Appl. Spectroscopy 72, (2018) 663 
(adapted)

IceCube diffuse n’s
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Adapted from M. Taiuti

electrons

protons, nuclei    

4 n/ 2 g n → 𝑝 + 𝑒− + ҧ𝜈𝑒

• The leading pion carries (on 
average) 1/5 of the proton EK. 

• The 4 light (anti)leptons in π±

decay carries ¼ of its energy:

𝐸𝜈~
𝐸𝛾

2
~
𝐸𝜋
4
~
𝐸𝑝

20

• The pion carries 1/5 of the proton EK. 
• The same relation among 𝐸𝜈 , 𝐸𝛾 , and

𝐸𝑃 energies holds

 Palladino+, Universe 2020, 6,30
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protons, nuclei    

Adapted from M. Taiuti

II) If g-rays escape  the 
source, at  𝐸𝛾 ≳1 TeV are 

strongly attenuated by γγ
interaction with the CMB 
and the Extragalactic 
Background Light (EBL).

I)  Sources may not be g-ray transparent. 
In photo-hadronic  collisions, the dense 
target of is also a target for gg

interaction and subsequent cascading

CMB, EBL
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Background of atmospheric m and n

m dominated 

• Atmospheric m dominates the down flux

• Atmospheric n is irreducible background

• HE cosmic neutrino  may originate from 
the sources or from CRs interacting 
during propagation.

• Single power-law (SPL) parameterization

𝜱𝝂= 𝜱𝒂𝒔𝒕𝒓𝒐

𝑬

𝑬𝟎

−𝜸

• Neutrino oscillations: equipartition 
between 3 flavors at Earth (if pnm).

n dominated 
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Neutrino event topologies (E>1 TeV)
Tracks (𝜈𝜇 + 𝑁 → 𝜇 + 𝑋)

• Good angular resolution 0.1o-1o

• Vertex can be outside the detector
• Muon range in water/ice >5 km @ Em>1 TeV

• Challenging energy estimation

• Vertex inside the detector (starting tracks)
• Use of self-veto

Cascades or Showers (𝜈𝑒 + 𝑁 → 𝑒 + 𝑋 + N.C.)
• Vertex inside the detector 

• EM cascade develops in 10 m in water
• Fully active calorimeter

• better E determination
• Limited angular resolution (few to 15o)
• All flavors for NC

Warning: some event properties (energy, direction,…) 
depends on medium (sea or lake water, ice)
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The IceCube discovery of cosmic neutrinos

nt

 IceCube arXiv:2403.02516v3 M. Spurio: ν telescopes and multimessenger - GGI ν Frontiers 18



IceCube High Energy Starting Events

• Mostly cascades with poor angular resolution (>10° )

• Selection criteria favor events from Southern sky

• Excess of events (>60 TeV) w.r.t. atmospheric background. 

 IceCube PRD 104 (2021), 022002

𝜱𝝂= 𝜱𝒂𝒔𝒕𝒓𝒐

𝑬

𝑬𝟎

−𝜸

Single Power 
Law (SPL)

• The astrophysical origin deduced mainly from their high energies

• A SPL assumed to fit the entire energy range, due to the limited statistics.
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Upward throughgoing tracks

• Upgoing tracks by nm interactions, 9.5 y of data
Northern sky

• Relatively poor (good) energy (direction) estimate

• Excess (E>100 TeV) over the expected distribution for 
background events using an unfolding method

 IceCube ApJ 928 50 (2022)
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Cascades: ne nt CC+NC interactions

• Showers produced by ne and nt interactions, 6.0 y of data

• Relatively poor (good) direction (energy) estimate

• Energy range from 16 TeV to 2.6 PeV, all-sky

• Boosted Decision Tree based rejection of muons

 IceCube PRL. 125, 121104 (2020)
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Enhanced Starting Track Events (ESTES)

• Selection of starting tracks (nm CC) based on a BDT,.

• Energy range from 3 to 500 TeV

• SPL slightly different from North and South sky

 IceCube: arXiv:2402.18026

ESTES (4p)

ESTES (South sky)

ESTES (North sky)
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Baikal-GVD cascades

• Selection of cascades, events from all sky

• To remove the background of atmospheric muons, 
upgoing events selected (mostly South sky)

• Excess w.r.t. atmospheric n’s  > 15 TeV

 GVD: PRD 107 (2023) 042005

ESTES (4p)

ESTES (South sky)

ESTES (North sky)

GVD cascades, 3y
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Diffuse flux: no a Single Power Law

• No clear agreement with SPL from different 
samples, in particular below few tens of TeV.

• This could be attributed to: 

• different energy range of samples

• the different flavor in the samples; 

• (most) of Galactic Plane in South Sky. 

• A segmented fit of the IceCube data (tracks+ 
cascades) seems represent data better: 
spectral features visible (between 20-30 TeV)

 IceCube: PoS(ICRC23)1064

 IceCube: arXiv:2402.18026

• The starting tracks sample (new) agrees with 
segmented fit above the 30 TeV feature

• ANTARES data also are more compatible with 
some change of slope at 20-30 TeV. See:

 ANTARES arXiv:2407.00328 
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Mediterraneo

Point Sources: catalog of >0.1 TeV g-rays

South sky

http://tevcat.uchicago.edu/

Today: 336 objets
• 94 Galactic (<15 kpc)

Out of the Galactic Plane: AGN
• 8 AGN with 0.5<z<1
• 18 AGN with 0.2<z<0.5
• 28 AGN with 0.1<z<0.2
• 23 AGN with 0.001<z<0.1
• 7 GRBs (transient)

• Blazars are powerful AGN with 
relativistic jets directed at the Earth.

• Not all blazars are g-ray sources, but 
they constitute the dominant population

• Seyfert are visible galaxies with active 
nuclei (unusually bright core regions). 

Plot to fill with n sources
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nm from the blazar TXS 0506+056 (I)

• An electromagnetic follow-up campaign followed 
the IC nm event (angular resolution < 1o)

• FERMI-LAT and MAGIC observations indicate that 
this event correlate with the blazar (BL Lac object or 
FSRQ?) TXS 0506+056 at redshift z=0.3365

• After the coincident event, a n-flare but without 
associated g-rays found in archival IceCube data.

• A further analysis of archival IceCube data revealed 
a precedent ν burst with excess of (13±5) events. 

• No significant EM flaring activity during the ν burst 

 IceCube:Science 361 (2018)eaat1378

 IceCube:Science 361 (2018)eaat2890

• Two potential n flares of very different nature

• Not simple theoretical interpretation
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IceCube 2p sr sky survey

• NGC 1068 (M77), close AGN (10-14 Mpc), not TeV g-rays

• TXS 0506+056, z=0.336 (1.8 Gpc), g-rays from 80 to 400 GeV

• PKS 1424+240, z=?

NGC-1068
• Neutrino candidates vs. 

(angular distance)2 from 
source. 

• 79±22 events in excess

• 110 selected sources. Found 3 sources with > 3σ pre-trial.   

• Use of up-going muon tracks

• The astrophysical origin of the n excess deduced mainly from 
directional clustering, not from their high energies

 IceCube:DOI 10.1126/science.abg3395 (2022)
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Results of neutrino sky map

Spectral Energy Distribution of IC diffuse flux and of NGC and TXS sources. 

• NGC 1068: neutrino energies in a range not well measured with the diffuse flux.

• Best-fit spectral index of γ = 3.2±0.2, softer than the diffuse flux 

• TXS 0506+056 is >100 times farther away than 
the near NGC 1068: there are at least two 
populations of neutrino sources that differ in 
luminosity by orders of magnitude.

• The TXS 0506+056 time-integrated emission in 
10 y has pre-trial of 3.5 σ (i.e. ns=5).

• The Science 2018 result provided evidence for 
transient emission with ns = 13±5 in 6 months.

• If the TXS 0506+056 findings are both corrects, 
the population of HE (100 TeV range) n’s could 
be significantly influenced by transients

My estimation, assuming the 
flux of transient flare

 IceCube:DOI 10.1126/science.abg3395 (2022)
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Origin of the (diffuse) extragalactic n’s

Sources candidates
• AGNs jets: about 1-10% of the AGNs. Blazars=jets 

towards the Earth.  TXS 0506+056
• AGNs cores (Seyfert,…): n produced in an optically 

thick region that absorbs g-rays. NGC 1068
• GRBs (or choked/low-luminosity GRBs)
• Starburst galaxies  
• Tidal Disruption Events (TDEs)
• Clusters of galaxies
• Galaxy & Galaxy Cluster mergers
• Beyond the Standard Model (BSM)
• …

To identify n sources, different strategies are adopted in IceCube, ANTARES, Baikal-GVD and KM3NeT:

• searches for multiplets of events from close directions in the sky

• searches for temporal and spatial correlations with transients

• cross-correlation of n angular distribution with catalogs

• the analysis of the neutrino angular power spectrum

For a recent review: see the 377 refs in

 Fiorillo, Universe 2024, 10, 149

 Becker Tjus, Merten, Phys. Rep. 872 (2020) 1 
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Open problems with the identification of sources

• Public catalogues have also been used by many authors in >>377 refs

• Positive correlations (also >3s) between n and selected catalogues have 
disappeared or significantly reduced after a new release of n candidates appears. 

• The n catalogs released by Collaborations are “work in progress” as they can be 
improved in the future

• The accuracy of reconstruction of the n properties is limited by systematics: new 
refined statistical analysis, improved reconstruction/ calibration can lead to a 
significant improvements in n direction/energy.

• The reduction of “>3s” is true also for the TXS 0506+056 burst (arXiv:2307.14559)

• Analysis of data of independent experiments, with uncorrelated systematic 

errors, could be recommended to reduce incorrect associations

• Warning for young researchers: the machine learning involves a training 

dataset with characteristics based on MC simulations can be affected by the 

medium properties (water is more homogeneous that ice, but it needs 

calibrations) M. Spurio: ν telescopes and multimessenger - GGI ν Frontiers 30



The Galaxy is not a neutrino desert  IceCube: DOI: 10.1126/science.adc9818

The model predictions depend on:
• distribution and emission 

spectrum of cosmic-ray (CR) 
sources in the Galaxy, 

• the properties of CR diffusion in 
the interstellar medium, 

• the spatial distribution of target 
gas. 

• Each neutrino emission model converted to a spatial template and convolved with the 
detector acceptance and the angular uncertainty, to produce a specific spatial PDF
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The Galaxy is not a neutrino desert

• IceCube compared three diffuse emission models 
(based on ν production associated with CRs and γ-rays)
from the Galactic plane to a background-only 

hypothesis

• Cascades with poor angular precision

 IceCube: DOI: 10.1126/science.adc9818

• Model-dependent result, due to the impossibility to 
evaluate the background using data.

• Three results produced on the flux integrated over 
the whole sky: a factor of x 4-6 difference @1 TeV.
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The Galactic ridge

Most of the signal from the Galactic Ridge 

|b|<2o and |l|<30o= 
1

172
× 4𝜋 sr

Each model yields a different signal 
contribution in this region

• 12% of the total signal by p0 model

• 30%-40% in the KRAg .

Sun
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ANTARES as a «telescope»

• Robust and model-independent measurement (On-
Off method) possible due to the Earth rotation

• Use upgoing track-like events (better direction)

• Observed a 2.2σ excess from signal region

• IceCube signal from the Ridge (𝝐𝒓𝒊𝒅𝒈𝒆 model-

dependent) 𝜱𝒓𝒊𝒅𝒈𝒆(𝐆𝐞𝐕 𝐜𝐦
−𝟐𝐬−𝟏𝐬𝐫−𝟏)

= 𝜱𝒂𝒍𝒍 𝒔𝒌𝒚 ∙ 𝝐𝒓𝒊𝒅𝒈𝒆/∆Ω

|b|<2o and |l|<30o

1 flavour

 ANTARES: PLB841 (2023) 137951

 ANTARES PoS(ICRC2023)1084/1103
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Galactic and extragalactic neutrinos (I)  IceCube: PoS(ICRC2023)017

Normalized for unit solid angle
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Galactic and extragalactic neutrinos (II)

Averaged over the whole 4p with the 
same weigh (my incorrect approx.)

 IceCube: PoS(ICRC2023)017

 IceCube: science.adc9818
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Galactic and extragalactic neutrinos (III)
 IceCube: PoS(ICRC2023)017

 Fang, Halzen-arXiv:2404.15944

LHAASO-KM2A

ARGO-YBJ

Tibet

Tibet A region: 
|b|<5o , 25o <|l|<100o =0.23 sr
Points: γ-ray experiments. 
Blu line: ν (3 flavors) and
Red line : γ-ray prediction as in 
arXiv:2404.15944

Tibet A
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Galactic and extragalactic neutrinos (IV)

ANTARES 68% allowed

Galactic Ridge: 
|b|<2o and -30o <|l|<30o = 0.073 sr
Brown line: ν (3 f) ANTARES 
measurement in the Ridge region. 
Green line: ν (3 f) KRAγ5 extrapolation of 
IceCube measurement in the Ridge 
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The “multimessenger” online alert system

Data 
filter

Track 
reco

Time and charge of 
all PMTs over 

threshold to the 
computer farm (100 

km away)

Tasks running in parallel: 
output within few sec 

Shower 
reco

Online 
Calibration

(charge, time, positioning)

SN 
identification

Data 
monitorin

g

“L0” 
buffering

Alert 
sending

1

Online 
searches

2
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Limits on ν correlated with GW170817

• No coincident neutrinos observed by IceCube, 
ANTARES or Auger.

• Consistent with predicted neutrino flux from internal 
shocks and off-axis viewing angle
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The KM3NeT highest energy event
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A >10 PeV event in KM3NeT

• Event 1°above horizon, as expected since earth opaque to PeV n’s;

• 3672 / 10630 PMTs (35%) triggered

• Muons simulated at 10 PeV almost never generate this much light
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Cascades along the trajectory
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• Light profile consistent with at least 3 large 
energy depositions along the muon track

• Characteristic of stochastic losses from very 
high energy muons

• Space-time distribution of light consistent 
with shower hypothesis associated with 
these energy depositions



Summary
• A diffuse flux of cosmic n’s firmly established by 

IceCube. A simple power law seems not represent 
all data samples. Good news, i.e.: statistics increases

• Below few tens of TeV, small tension in the data. Still 
insufficient precision/sensitivity 

• Two sources significantly detected, but extragalactic 
sources/class of sources still not identified.

• Caveat: the sources of >100 TeV n’s could be 
dominated by transients, if TXS orphan flare correct

• Existence of galactic neutrinos with 1<E<100 TeV
established. 

• Impossible to disentangle the contribution of CR 
diffusion from that of sources. More precise results 
from Northern telescopes using upgoing nm tracks.

|b|<2o and |l|<30o

1 flavour

• The ongoing activities (IceCube, KM3NeT, Baikal-GVD) and in the future IceCube Gen2 and (may be) 
other telescopes in the North will contribute to clarify these fundamental aspects for HE astrophysics.

• NT are discovery experiments: surprises are always possible
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Conclusions
46

• Multimessenger astrophysics is the joint effort to understand HE phenomena using CRs, γ-
rays, neutrinos, gravitational waves, in addition to EM radiation.

• Multimessenger is a difficult task due to the differences in the experiments (visibility, duty 
cycles, sensitivity, time response,…). Information brokers are of fundamental importance.

• Electrons and hadrons are at the origin of EM radiation and n’s, respectively. 

• In the extreme universe more energy seems to be emitted in n’s than in γ-rays

• A significant fraction of extragalactic IceCube n’s seems to be produced in sources obscured 
to HE γ-rays: this is unexpected and represents a great opportunity for a “new” astronomy.

• New actors (LHAASO, CTA,KM3NeT, IceCubeGen2,…) will play a fundamental role for this

• IceCube and ANTARES started to observe Galactic n’s: the Galaxy is NOT a neutrino desert

• Today, astroparticle physics with multimessenger probes is paving the way for the future of 
particle physics, after the next generation of collider.

• Only knowing the beams (=accelerators and space medium), we will have the opportunity 
to study the underlying properties of particles and interactions
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Multimessenger synergies
47

Neutrino telescopes: 
ANTARES, IceCube, 
KM3NeT, GVD…  
• Mutual follow-up
• Confirmation of sources, 

improve significance 

VHE γ-ray telescopes:
HAWC, LHAASO…
- All-sky monitoring
- Provide triggers
HESS, MAGIC, CTA…
- Follow-up (not easy access)

γ-ray telescopes: Fermi-LAT
- All-sky complete monitoring
- Provide also transient triggers

X-ray telescopes: Swift, 
INTEGRAL, SVOM, ATHENA…
- Provide transient triggers 
(GRB, AGN, Novae…)
- ToO program 

Optical telescopes: 
TAROT, MASTER, LCOGT, 
ZTF, LSST…
- Easy access follow-up 
- large error box
- Characteristation of 

potential counterpart 
with spectroscopy 
(nature, redshift…)

Radio telescopes: Parkes,
MWA, Lofar, Nenufar, 
ASKAP, SKA, VLBI…
- Provide triggers (FRB…)
- Follow-up
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