Microphysics in BNS mergers: status and challenges

Albino Perego

Trento University & INFN-TIFPA

15 July 2024 Neutrino Frontiers Program, Galileo Galilei Institute, Firenze

Header (Default Page Style) 🕂

Codice protocollo: 2022KX2Z3B

Albino Perego, Progetto EMERGE

Bando: PRIN 2022 (D.D. 104/22) Titolo progetto: EMERGE -Neutron star mergers and the origin of short gammaray bursts Ruolo: Partner CUP: E53D23002090006

Finanziato da:

PIANO NAZIONALE DI RIPRESA E RESILIENZA PNRR Missione 4 "Istruzione e Ricerca" - Componente C2 - Investimento 1.1 "Fondo per il Programma Nazionale di Ricerca e progetti di Rilevante Interesse Nazionale (PRIN)"

A brief overview about BNS mergers and their microphysics

BNS merger in a nutshell: dynamics

Credit: D. Radice; Radice, Bernuzzi, Perego 2020 ARNPS, Bernuzzi 2020 for recent reviews

- inspiral: driven by GW emission
- GW-dominated phase:
 - $L_{GW} \sim 10^{55} erg/s$

at merger

- for $q \sim 1$, $v_{\rm orb}/c \approx \sqrt{C} \sim 0.39 (C/0.15)^{1/2}$
- ▶ NS collision $E_{kin} \rightarrow E_{int}$
- copious ν production: $L_{\nu} \sim 10^{53} \text{erg/s}$

e.g. Zappa et al 2018 PRL

- $(\mathcal{C} \equiv M/R)$ and $q = M_1/M_2$
 - Eichler+ 89, Ruffert+ 97, Rosswog & Liebendoerfer 03
- viscous phase: MHD viscosity + ν emission

BNS merger in a nutshell: ejecta

ejecta:

- a few percent of $M = M_A + M_B$
- ▶ neutron rich, i.e. $Y_e < 0.5$ and typically $Y_e \ll 0.5$
- expelled by different mechanisms, acting on different timescales

 $Y_e = n_e/n_B \approx n_p/\left(n_p + n_n\right)\!\!:$ electron fraction

BNS merger in a nutshell: ejecta

ejecta:

- a few percent of $M = M_A + M_B$
- neutron rich, i.e. $Y_e < 0.5$ and typically $Y_e \ll 0.5$
- expelled by different mechanisms, acting on different timescales
- dynamical ejecta ($t \sim 1 5$ ms)
 - tidal & shock heated ejecta
 - \triangleright $\langle v \rangle \sim 0.2 0.3c$
 - $M_{\rm ej} \sim 10^{-4} 10^{-2} M_{\odot}$
- disk winds $(t \sim 0.05 10s)$
 - neutrinos, MHD
 - \blacktriangleright $\langle v \rangle \sim 0.1c$
 - up to $M_{\rm ej} \sim 0.1 0.4 M_{\rm disk}$

• spiral wave winds $(t \sim 0.01 - 1s)$

• m = 1, 2 spiral mode in the remnant

$$\triangleright \langle v \rangle \sim 0.2c$$

•
$$\dot{M} \sim 0.1 M_{\odot}/\mathrm{s}$$

acting until BH formation

top: ϕ -angular momentum radial flux

bottom: spiral wind ejecta mass

Nedora et al ApjL 2019

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

r-process nucleosynthesis in BNS ejecta

- ejecta: ideal site for *r*-process nucleosynthesis
- ▶ at low entropy ($s \leq 40k_b$ /baryon), Y_e dominant parameter
- ▶ Y_e influenced by weak interactions involving neutrinos, e.g.

$$p + e^- \leftrightarrow n + \nu_e \qquad n + e^+ \leftrightarrow p + \bar{\nu}_e$$

observable in

- kilonova: light curve (opacity) and spectra (absorption lines)
- chemical enrichment

Microphysics in BNS merger simulations: EoS

finite temperature, composition dependent Equation of State (EoS), in nuclear statistical equilibrium

relevant degrees of freedom

minimal set : n, p, e^{\pm}, γ

some present challenges:

- nuclear interaction above saturation density
- finite temperature treatment
- are we including all the relevant species?
 - ► hyperons, quarks → phase transition?
 - pions
 - muons

for pions and muons: Vijayan+ PRD 23, Fore & Reddy 20

Microphysics in BNS merger simulations: neutrinos

Radiation transport

- non trivial GR radiation hydrodynamics
- state of the art: energy-integrated two-moment (M1) scheme with analytic closure for energy density and fluxes
 - supplemented by fenomenological transport eq for number density
 - Accurate methods
 - consistent solution in optically thin/thick regimes
 - X computationally expensive
 - X closure-related artifacts

e.g. Foucart+ 16a,b PRD, Radice+ 22 MNRAS, Musolino+ 24 MNRAS, Schianchi+ 24 PRD

- for several years, energy-integrated hybrid leakage (opacially thick) + M0 (optically thin) scheme
 - supplemented by fenomenological transport eq for number density
 - conceptually easier than M1
 - ▶ ✓ computationally cheaper \rightarrow several tens of simulations
 - X more approximate
 - X lack of trapped neutrinos

e.g. Sekigichi+ 15 PRD, Radice+ 16 MNRAS, Radice+ 18 ApJ

Microphysics in BNS merger simulations: reactions

collision integral for the radiation HD equations

$$\mathcal{S}^{\mu} = (\eta - \kappa_a J) \, u^{\mu} - (\kappa_a + \kappa_s) \, H^{\mu}$$

j: emissivities, κ_{a,s}: absorption & scattering (stimulated) opacities
starting from "standard set" of reactions

$$\begin{array}{c} p+e^{-}\rightarrow n+\nu_{e}\\ n+e^{+}\rightarrow p+\bar{\nu}_{e}\\ N+\nu\rightarrow N+\nu\\ e^{-}+e^{+}\rightarrow \nu+\bar{\nu}\\ N+N\rightarrow N+N+\nu+\bar{\nu}\end{array}$$

energy integrated, analitycal expressions from simplified reaction kernels

Radice+ 16 MNRAS using Ruffert+ 97 A&A or Rosswog & Liebendoerfer +03 MNRAS

energy integarted tabulated rates

Foucart+ 16 PRD using NuLib O'Connor& Ott 10 CQG

E integration: LTE conditions + correction for optically thin conditions

see e.g. Foucart+ 16 PRD or Radice+ 22 MNRAS

detailed balance necessary to predict correct equilibrium → how to do it with approximated, energy-integrated rates?

Albino Perego

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

Outline of the talk

Accurate microphysics & neutrino modeling in BNS mergers is crucial.

Why?

- direct neutrino detection: implausible
- however, microphysics & neutrinos impact on many aspects/observables related to mergers
- key input to study detailed nuclear and neutrino physics
- what do we know about neutrino emission from BNS mergers?
 - characterizing neutrino luminosities and mean energies in BNS mergers

Cusinato et al 2022 EPJA

- where can neutrinos have an impact on merger observables?
 - e.g. nucleosynthesis \rightarrow Sr in kilonova spectra, 60 Fe and 244 Pu in ocean sediments

Perego et al 2022 ApJ; Chiesa et al 2024 ApJL

- are we including all the relevant species in the EOS?
 - the potential impact of muons

Loffredo et al 2023 A&A

are we including all the relevant reactions and reaction physics?

Neutrino luminosities from BNS mergers

Simulation sample

66 BNS merger simulations (51 BNS models) from the CoRe database

Gonzales et al arxiv:221016366

- ▶ $M_{\rm tot} \in [2.6, 3.438] M_{\odot}$
- ▶ 6 different finite *T*, composition depedent EOS
- ▶ *q* ∈ [1.0, 1.82]
- different resolutions:
 - mostly, $\Delta x = 185$ m
 - ► 15: $\Delta x = 246$ m
 - ► 2: $\Delta x = 123$ m

homogeneous numerical setup

- WhyskyTHC code
- neutrino treatment:
 - leakage+M0
 - extraction of ν emission properties at the edge of computational domain: luminosities, number luminosity, mean energies

Radice+ 16 MNRAS, Radice+ 18 ApJ

Radice+ 2011,13,14

Neutrino emission: qualitative overview

Cusinato et al, EPJA 2022

a) PC b) short lived c) delayed collapse d) long lived

Albino Perego

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

Tidal deformation during the inspiral phase

NS in external, inhomegeneous gravitational field \Rightarrow tidal deformation

$$Q_{i,j} = -\lambda \mathcal{E}_{i,j}$$
$$\lambda = \left(\frac{2}{3} \frac{R^5}{G} k_2\right)$$

Q_{i,j} quadrupolar moment

•
$$\mathcal{E}_{i,j} = \partial_{i,j}^2 \Phi$$
 tidal field

- *k*₂ quadrupolar tidal polarizability
- R radius of the star

Tidal effect in GW signal encoded in linear combinations of λ 's: $\tilde{\Lambda}$ and κ_2

$$\tilde{\Lambda} = \frac{16}{13} \left[\frac{(M_A + 12M_B)M_A^4 \Lambda_2^{(A)}}{(M_A + M_B)^5} + (A \leftrightarrow B) \right]; \ \Lambda_2^{(i)} = \left(\frac{c^2}{M_i} \right)^5 \lambda_{(i)}; \quad i = A, B$$

$$\kappa_2^T = \kappa_2^A + \kappa_2^B \cdot \kappa_2^i = \frac{1}{3} x_i^4 (1 - x_i) \Lambda_2^{(i)}, x_i = M_i / M_{\text{tot}} \quad i = A, B$$

see, e.g., Damour, Les Houches Summer School on Gravitational Radiation 1982; Flanagan & Hinderer PRD 77 2008, Bernuzzi et al PRD 2012

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

GW luminosities and energetics of BNS

Zappa, Bernuzzi, Radice, Perego, Dietrich PRL 2018

how luminous/energetics are BNS at merger?

- $L_{\rm GW,peak} \lesssim 10^{-3} L_P$ with $L_P = c^5/G \approx 3.63 \times 10^{59} {\rm erg \, s^{-1}}$
- significantly smaller than BBH
- prompt collapses: largest L_{GW,peak}
- $L_{\rm GW,peak}(q^2/\nu^2)$ correlates with κ_2^L
 - κ^L₂: combinations of quadrupolar tidal polarizabilities

$$\nu = M_A M_B / (M_A + M_B)^2 \le 1/4$$

Albino Perego

Neutrino emission: peak luminosity

non-PC BNS mergers

- main $\tilde{\Lambda}$ dependence: for $q \gtrsim 1$, L_{peak} decreases for increasing $\tilde{\Lambda}$
- further influence on q

PC mergers

- separated brench with weaker dependence on $\tilde{\Lambda}$
- $L_{\nu,\text{peak}}$ increases for increasing $\tilde{\Lambda}$, probably related with q
- similar dependence for $\langle L_{\nu} \rangle_{10 \text{ ms}}$

Cusinato et al, EPJA 2022

Neutrino emission: peak luminosity VS peak width

• first (main) peak: well described by Gaussian profile of FWHM $\Delta t_{\text{peak}} \sim \Gamma = 2\sqrt{2 \ln 2} \sigma$

$$L = L_{\rm peak} \exp\left(-\frac{(t - t_{\rm peak})^2}{2\sigma^2}\right)$$

• Γ behaves similar to L_{peak} • $\Rightarrow \Delta E_{\text{peak}} \approx L_{\text{peak}} \Gamma \approx \text{constant}$

Cusinato et al, EPJA 2022

Neutrino emission: correlations

- (initial) $\bar{\nu}_e$ dominance over the other flavors
- good correlation between luminosities in different flavors
- partial correlation between L_{ν} and L_{GW} , mitigated by q and broken by PC binaries

Cusinato et al, EPJA 2022

Neutrino emission: mean energies

Cusinato et al, EPJA 2022

results compatible with previous outcomes

e.g. Ruffert+97 A& A, Rosswog & Liebendoerfer 03 MNRAS, Foucart+ 16 PRD

- mean v energy at infinity: robust behavior wrt BNS parameters
- robust hierarchy, reflecting ν 's decoupling conditions

e.g. Endrizzi et al 2021 EPJA

 indication that post-merger remnant partially looses memory of the merging binary (for non-PC)

Albino Perego

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

Nucleosynthesis in BNS mergers and their observables

Strontium in AT2017gfo early spectra

observed spectra from AT2017gfo at 1.5-4.5 day: identification of strontium

$$M_{
m Sr}\sim 1-5 imes 10^{-5} M_{\odot}$$

Blackbody + Sr II Sen Srn ····· Blackbody 50 $cm^{-2} \Lambda^{-1}$] + offset -40 1.5 days 30 fsets 2.5 days 0.04 Fa [10⁻¹ 0.144 4.5 day cm^2. 4000 5500 7500 10500 14500 20000 Observed wavelength [Å]

Watson+ 18 Nature, Gillanders+ 22 MNRAS

Sr in AT2017gfo spectra: Watson et al Nature 2018

22/40

Strontium in AT2017gfo early spectra

observed spectra from AT2017gfo at 1.5-4.5 day: identification of strontium

$$M_{
m Sr}\sim 1-5 imes 10^{-5} M_{\odot}$$

- nucleosynthesis yields from targeted simulations including neutrinos (leakage+M0 scheme)
 - Sr robustly produced for $0.2 \lesssim Y_e \lesssim 0.4$
 - unequal mass BNS model disfavored
 - q = 1 dynamical ejecta account for a large fraction of Sr
 - assuming $m_{\rm Sr} \sim 5 \times 10^{-5} M_{\odot}$, $\Delta t_{\rm wind} \lesssim 4 \, {\rm ms}$
 - our results suggest GW170817 remnant survived only a few tens of ms

⁶⁰Fe and ²⁴⁴Pu detection in crust sediments

- observation of r-process abundance patterns traceable to single events has the potential to shed light on their production site
- detection of live radioactive isotopes in sediments features a non-trivial temporal dependence from their decay profile

analysis of deep-sea crust sample delivered to Earth within the past few million years

- identification of (175 ± 15) ²⁴⁴Pu (τ = 116.3Myr) atoms
- simultaneous signal of 60 Fe ($\tau = 3.8$ Myr)
- $\blacktriangleright~^{244}Pu/^{60}Fe = (53\pm 6)\times 10^{-6}$

How can we interpret the more recent peaks?

Wallnet+21 Science

Supernova VS kilonova origin?

- ⁶⁰Fe usually synthesized in (standard) CCSNe
- ²⁴⁴Pu synthesized in rare events
 - kilonovae from compact binary mergers
 - special CCSN?
- single source or multiple sources?

- explosive event(s) in Local Bubble
- previous analysis seem to exclude a nearby KN as possible single source

Wang+21 used i) BNS modelels forming a BH & ii) isotropized ejecta

Supernova VS kilonova origin?

- ⁶⁰Fe usually synthesized in (standard) CCSNe
- ²⁴⁴Pu synthesized in rare events
 - kilonovae from compact binary mergers
 - special CCSN?
- single source or multiple sources?

- explosive event(s) in Local Bubble
- previous analysis seem to exclude a nearby KN as possible single source

Wang+21 used i) BNS modelels forming a BH & ii) isotropized ejecta

Modeling of long lived BNS mergers

Selection of simulations targeted to GW170817 ($M_{chirp} = 1.188 M_{\odot}$), producing a long lived remnant:

- 6 distinct binaries
 - ▶ $q = M_A/M_B \in [0.7, 1.]$
- ► GRHD (WhiskyTHC code) Radice+ 2011,13,14
- finite-*T*, composition dependent nuclear EOSs: HS(DD2), SFHo, BLh, SRO(Sly4)

CompOse & stellarcollapse websites, Logoteta et al 2021

neutrino treatment

Radice 2016 MNRAS

- leakage in opt. thick conditions
- M0 in opt. thin conditions
- effective treatment for turbulent magnetic viscosity (GRLES) Radice 2018 ApJL
- single maximum resolution: dx = 185m

Bernuzzi et al. MNRAS 2020

Iron to plutonium ratio from simulations

- ⁶⁰Fe and ²⁴⁴Pu from dynamical ejecta & spiral-wave wind
- polar angle dependence: inefficient mixing assumption
- ▶ color band: spiral wave wind duration $t_{wind} \in [50, 200]$ ms
- BNS merger occurring 3.5 Myr ago

Chiesta et al. ApJL 2024

- similar trend for all simulations
- 2 models match observed ratio
- crucial presence of spiral wave wind and neutrino effects to produce also iron group nuclei

Albino Perego

Do distance and time matters?

$$\mathcal{F}_{i} = f_{\text{dust},i} \frac{m_{\text{ej},i}^{\text{iso}}(\tilde{\theta}, t_{\text{wind}}) / (A_{i}m_{u})}{4\pi D_{\text{rad},i}^{2}} e^{-t/\tau_{i}}$$

- ► *F*: measured fluence on Earth
- $f_{\text{dust},i} \approx 0.5$: fraction of atoms forming dust

Chiesta et al. ApJL 2024 accepted

radioactivity distance compatible with local bubble and fading radius
 no fine tuning wrt time within ± 1 Myr

Impact of muons in BNS merger remnants

Muons in NSs and BNS mergers

muons are relevant in cold NSs

$$\mu_{\ell}[\text{MeV}] \sim 131.5 \left(\frac{Y_{\ell}}{0.05}\right)^{1/3} \left(\frac{n_b}{0.2 \text{ fm}^{-3}}\right)^{1/3} \qquad \mu_{\mu}[\text{MeV}] \sim 106 + 28 \left(\frac{Y_{\mu}}{0.01}\right)^{2/3} \left(\frac{n_b}{0.2 \text{ fm}^{-3}}\right)^{2/3}$$

and cold, β-equilibrated NS EOS usually include muonsCCSN and BNS merger conditions allows (anti)muon presence

Bollig+ PRL 2017, Bollig+ PRL 2020, Fischer+ 2020 PRD

however, state-of-the-art BNS simulations do not include muons

Estimating the impact of muons

Our aim:

to estimate the impact of muons on the merger remnant and on the trapped neutrino component in post-processing

Our post-processin method:

- consider early post-merger outcome of 4 GW170817 simulations
 - neutrino radiation: leakage+M0 scheme
 - muons and trapped neutrinos not included
- include (anti)muons in the EOS
- from the simulations output, infer $(Y_{l,e}, Y_{l,\mu}, u)$
- solve the system:

$$\begin{cases} Y_{l,e} &= Y_e + Y_{\nu_e} - Y_{\bar{\nu}_e} \\ Y_{l,\mu} &= Y_{\mu} + Y_{\nu_{\mu}} - Y_{\bar{\nu}_{\mu}} \\ u &= \sum_i e_i \quad i = \{N's, e^{\pm}, \mu^{\pm}, \gamma, \nu\} \end{cases}$$

w.r.t. (Y_e, Y_μ, T)

Muons in the remnant

- muons present for $\rho \gtrsim 10^{13} {
 m g \ cm^{-3}}$
- bulk of muons from the cold NSs
- muons also created during merger via thermal processes and weak reactions
- $\blacktriangleright\,$ net muon fraction: $\sim 30\% \div 70\%$ of net electron fraction, depending on the nuclear EOS

Muons in the remnant

- muons present for $ho \gtrsim 10^{13} {
 m g \ cm^{-3}}$
- bulk of muons from the cold NSs
- muons also created during merger via thermal processes and weak reactions
- $\blacktriangleright\,$ net muon fraction: $\sim 30\% \div 70\%$ of net electron fraction, depending on the nuclear EOS

Trapped neutrinos in the remnant

ρ > 10¹⁴g cm⁻³: ν̄'s dominate ⇒ ν̄_μ most abundant, followed by ν̄_e
 ρ ~ 10^{13÷14}g cm⁻³: ν's dominate ⇒ ν_μ most abundant, followed by ν_e

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

Trapped neutrinos in the remnant

ρ > 10¹⁴g cm⁻³: ν̄'s dominate ⇒ ν̄_μ most abundant, followed by ν̄_e
 ρ ~ 10^{13÷14}g cm⁻³: ν's dominate ⇒ ν_μ most abundant, followed by ν_e

- ν gas properties determined by equilibrium μ_{ν} 's (\rightarrow degeneracy parameter $\eta_{\nu} = \mu_{\nu}/T$)
- ► decompression of cold *n*-rich matter: matter leptonization → *v̄* dominance
- possible non-trivial dependence on EOS: larger Y_v for BLh due to larger symmetry energy

Influence on remnant pressure

- variation of *P* due to μ's and trapped ν's (wrt P_{sim})
- P change due to both trapped neutrinos & muons
- non-trivial dependence on EOS
- asymmetric effect for $q \ll 1$

What's next?

Are we including all the relevant reactions?

- $\blacktriangleright \ \nu + e^{\pm} \rightarrow \nu + e^{\pm}$
- very relevant in core collapse and PNS spectra

► $\lambda_{en} = \sqrt{\lambda_{tot}\lambda_{inel}} \rightarrow \tau_{en} \rightarrow neutrino-surfaces: \tau_{en} = 2/3$

Courtesy of F. Mazzini (Master Student)

Neutrino Frontiers Program, GGI, Firenze, 15/07/2024

Summary & Conclusions

- neutrinos are key players in BNS mergers
- accurate neutrino modeling necessary to interpret BNS observables
 - nucleosynthesis
 - kilonovae and sediments
- numerical simulations have dramatically improved over the last few years, but much work still needed
 - relevant EoS degrees of freedom
 - relevant reactions and accurate/consistent physics

necessary input for future studies, including neutrino oscillation

Perego et al, ApJ 2022

Chiesta et al. ApJL 2024 Neutrino Frontiers Program, GGI, Firenze, 15/07/2024