Spin-Flavor Precession Phase Effects in Supernova

Yamaç Pehlivan

MSGSÜ Physics Department

Neutrino Frontiers Workshop The Galileo Galilei Institute for Theoretical Physics Florence July 2024

Based on: 2208.06926 with T. Bulmuş

Neutrino Magnetic Moment

image credit: Mohapatra, 2004.

• From minimally extended standard model:

$$\mu_{\nu_{\alpha}} = 3.2 \times 10^{-19} \mu_B \left(\frac{m_{\nu_{\alpha}}}{eV}\right)$$

- Earth based limits from enhancement of $e \frac{(-)}{\nu}_e$ scattering:
 - GEMMA collaboration (2013): $\mu_{\bar{\nu}_e} < 2.9 \times 10^{-11} \mu_B$
 - Giunti & Ternes (2023): $\mu_{\nu_e} < 1.3 \times 10^{-11} \mu_B$
- Astrophysics (cooling of Red giants through plasmon decay):
 - ▶ Raffelt (1990), Arceo-Diaz *et al* (2015): $\mu_{\bar{\nu}_e} < 2 \times 10^{-12} \mu_B$

Majorana neutrinos, two flavors

- Majorana neutrinos, two flavor picture
 - Negative helicity $\longrightarrow \nu_e$ and ν_x
 - Positive helicity $\longrightarrow \bar{\nu}_e$ and $\bar{\nu}_x$
- μB mixes *neutrino* and *antineutrino* degrees of freedom.
- Flavor diagonal component of μ identically vanish.

$$H_{\mu} = \mu B \left(\left| \nu_{e} \right\rangle \left\langle \bar{\nu}_{x} \right| + \left| \bar{\nu}_{x} \right\rangle \left\langle \nu_{e} \right| - \left| \nu_{x} \right\rangle \left\langle \bar{\nu}_{e} \right| - \left| \bar{\nu}_{e} \right\rangle \left\langle \nu_{x} \right| \right).$$

• *B* is the component perpendicular to neutrino momentum.

• Density matrix:
$$\rho = \begin{pmatrix} \rho_{ee} & \rho_{ex} & \rho_{e\bar{e}} & \rho_{e\bar{x}} \\ \rho_{xe} & \rho_{xx} & \rho_{x\bar{e}} & \rho_{x\bar{x}} \\ \rho_{\bar{e}e} & \rho_{\bar{e}x} & \rho_{\bar{e}e} & \rho_{\bar{e}x} \\ \rho_{\bar{x}e} & \rho_{\bar{x}x} & \rho_{\bar{x}\bar{e}} & \rho_{\bar{x}\bar{x}} \end{pmatrix}$$

• Hamiltonian:
$$H(r) = \begin{pmatrix} H_{\nu\leftrightarrow\nu}(r) & 0 & \mu B(r) \\ \frac{H_{\nu\leftrightarrow\nu}(r)}{0} & -\mu B(r) & 0 \\ \mu B(r) & 0 & H_{\bar{\nu}\leftrightarrow\bar{\nu}}(r) \end{pmatrix}_{\text{flavor}}$$

Supernova Model

 $Y_e = 0.45$ SFP resonance happens before the MSW resonance.

Supernova Model

• Solid lines:

- $6M_{\odot}$ helium core presupernova model of Nomoto *et al* (1987)
- Parametric shock a la Fogli et al (2003).
- Dotted lines: Best exponential fit to $n(r) = n_0 e^{-r/r_{mat}}$

• Magnetic field profile: $B(r) = 10^{15} G \left(\frac{50 \text{km}}{r}\right)^2$

SFP and MSW resonances

Adiabatic Evolution

• Adiabatic evolution is completely determined by the energy spectrum.

$$H(r) |r_1\rangle = E_1(r) |r_1\rangle$$
 $H(r) |r_2\rangle = E_2(r) |r_2\rangle$

- If a neutrino starts in an energy eigenstate, it stays in the same eigenstate
- Density operator in energy eigenbasis:

$$\rho(\mathbf{r}) = |\psi\rangle \langle \psi| = |\mathbf{r}_1\rangle \langle \mathbf{r}_1| = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}_E$$

Partial violation of adiabaticity

- A partial violation of adiabaticity
 - P = Landau-Zener jumping probability
 - ▶ α = Stoke's phase
- Density operator in energy eigenbasis:

$$\rho(r) = \begin{pmatrix} 1-P & \text{phases} \\ \text{phases} & P \end{pmatrix}_{E} \xrightarrow{r \longrightarrow \infty} \begin{pmatrix} 1-P & 0 \\ 0 & P \end{pmatrix}_{\text{mass}}$$

• Off-diagonal terms $\sim e^{-(r/r_{
m coh})^2}$ with $r_{
m coh} \sim 10^6$ km.

Phase Effect

- The neutrino may already be in a superposition of two energy eigenstates before the resonance
- A relative phase is acquired by the components

$$\rho(\mathbf{r}) = \begin{pmatrix} |\alpha|^2 & \alpha\beta^* e^{-i\int (E_1 - E_2)d\mathbf{r}} \\ \alpha^*\beta e^{i\int (E_1 - E_2)d\mathbf{r}} & |\beta|^2 \end{pmatrix}_E$$

Phase Effect

In the diagonal we have the phase

$$\phi = lpha - \int_0^{\mathsf{res}} (E_1(r) - E_2(r)) dr$$

This phase depends very sensitively on neutrino energy and on external conditions.

 $-1 \leq e^{-i\phi} \leq 1 \Longrightarrow$ uncertainty in survival probabilities after decoherence.

Appearance of phase effect in SFP ($\theta = 0$)

$$\rho(\infty) = \left(\begin{array}{c} |\alpha|^2 (1-P) + |\beta|^2 P \pm \sqrt{P(1-P)} \operatorname{Re}(\alpha \beta^*) & 0\\ 0 & |\beta|^2 (1-P) + |\alpha|^2 P \mp \sqrt{P(1-P)} \operatorname{Re}(\alpha \beta^*) \end{array}\right)_{\text{mass}}$$

Survival probability at Earth: $P_{\nu_{\alpha} \rightarrow \nu_{\alpha}}(\infty) = \text{Classical probability} \pm \text{ phase effect}$

- t = 5s post-bounce.
- Red and ± : Analytically expected
- Black dots: Numerical results with slightly varied (\sim %0.1) conditions
- Detecting many neutrinos
 - \longrightarrow averaging
 - \longrightarrow ignore the phase effect

SFP phase effect appears with only one partially adiabatic SFP resonance

Y.Pehlivan (MSGSÜ)

 Neutrinos are already born into superpositions of energy eigenstates if μB is large.

$$H(r) = \begin{pmatrix} H_{\nu \leftrightarrow \nu}(r) & 0 & \mu B(r) \\ -\mu B(r) & 0 \\ \mu B(r) & 0 & H_{\overline{\nu} \leftrightarrow \overline{\nu}}(r) \end{pmatrix}_{\text{flavor}}$$

• Phase effects associated with MSW resonances need two partially adiabatic MSW resonances.

11/17

MSW and SFP resonances ($\theta \neq 0$)

 $P_B = LZ$ jumping probability for SFP resonance $P_M = LZ$ jumping probability for MSW resonance

 $t = 1 \, s$

 $t = 2 \, s$

t = 3 s

t = 4 s

 $t = 5 \, s$

50

Y.Pehlivan (MSGSÜ)

Neutrino Frontiers GGI '24 13/17

SFP phase effect can appear with "adiabatic" resonances

- For large μB , SFP resonance becomes adiabatic. Phase effect should be lost.
- But SFP broadens and overlaps with MSW resonance.
- Turns into a three level QM problem.

MSW resonance is universal, SFP resonance is not

$$\sin^2 2\theta_M = \frac{(\frac{\delta m^2}{2E_\nu} \sin 2\theta)^2}{(\frac{\delta m^2}{2E_\nu} \sin 2\theta)^2 + (\frac{\delta m^2}{2E_\nu} \cos 2\theta - \frac{\sqrt{2}G_{F^n}}{m_n} Y_e)^2}$$

$$\sin^{2} 2\theta_{B} = \frac{(2\mu B)^{2}}{(2\mu B)^{2} + (\frac{\delta m^{2}}{2E} \cos \theta - \frac{\sqrt{2}G_{F}n}{m_{n}}(1-2Y_{e}))^{2}}$$

- At larger post-bounce times both resonances move inward.
- MSW resonance width is unaffected (universal)
- SFP resonance becomes wider with stronger magnetic field

Observability of phase effects: DUNE event rates

Neutrino Frontiers GGI '24 16 / 17

Observability of phase effects: DUNE event rates

Conclusions:

- SFP phase effects appear earlier than MSW phase effects.
- May appear even when all resonances are seemingly "adibatic."
- Investigation of coupling effects \implies observability?
- Changing electron fraction?
- Coupling with collective oscillations?