Experimental observations of solar neutrinos: from the pp chain to the CNO cycle

Aldo Ianni

Neutrino Frontiers

July 16th, GGI Florence, Italy

Solar Neutrinos

Fundamental paradigm:

The source of energy in the sun makes neutrinos:

 $4p \rightarrow {}^{4}\text{He} + 2e^{+} + 2v_{e} + (24.69 + 2 \cdot 1.022)\text{MeV}$

Hydrogen burning works through: pp-chain reactions CNO bi-cycle

The pp-chain

- 26.2 MeV effective thermal energy/termination (pp-I)
- 9.2x10³⁷ hydrogen/sec
- 612x10⁶ ton/sec of H into He
- assuming 10% of solar mass involved in energy production: timescale ~ 10¹⁰ years
- Dominant in 1st generation stars
- 2nd generation stars might have a different mechanism at work

- A different hydrogen burning mechanism in 2nd generation stars may involve light elements such as carbon and nitrogen
- This idea was originally introduced independently by von Weizsaker and Bethe between 1937 and 1939
- Idea based on the fact that second or third generation stars contain some «heavy» elements such as ¹²C
- ¹²C can indirectly induce fusion of 4 protons to form helium
- The total energy released is the same as for the pp-chain

The CN cycle

$$\begin{array}{l} \circ p + \frac{12}{6}\mathcal{C} \rightarrow \frac{13}{7}N + \gamma \\ \circ \frac{13}{7}N \rightarrow \frac{13}{6}\mathcal{C} + e^{+} + \nu_{e} \ (\leq 1.199 \ MeV, \tau \sim 860 \ s) \\ \circ p + \frac{13}{6}\mathcal{C} \rightarrow \frac{14}{7}N + \gamma \\ \circ p + \frac{14}{7}N \rightarrow \frac{15}{8}O + \gamma \\ \circ \frac{15}{8}O \rightarrow \frac{15}{7}N + e^{+} + \nu_{e} \ (\leq 1.732 \ MeV, \tau \sim 180 \ s) \\ \circ p + \frac{15}{7}N \rightarrow \begin{cases} \frac{12}{6}\mathcal{C} + \alpha \\ \frac{16}{8}O + \gamma \end{cases} \\ \circ \text{ It starts and ends with } \frac{12}{12}\mathcal{C} \end{cases}$$

- hydrogen It starts and ends with ¹²C which is used as a catalyst
- It transforms 4p into helium producing the same energy as • from the pp-chain
- It produces two electron neutrinos ٠
- More efficient at higher internal energy ٠

The CNO bi-cycle • $p + {}^{15}_{7}N \rightarrow \begin{cases} {}^{12}_{6}C + \alpha \\ {}^{16}_{8}O + \gamma \end{cases}$ • $p + {}^{16}_{8}O \rightarrow {}^{17}_{9}F + \gamma$ • ${}^{17}_{9}F \rightarrow {}^{17}_{8}O + e^+ + \nu_e \ (\leq 1.740 \ MeV, \tau \sim 90 \ s)$ • $p + {}^{17}_{8}O \rightarrow \begin{cases} {}^{14}_{7}N + \alpha \\ {}^{18}_{9}F + \gamma \end{cases}$ • The relative probability of (p,α) to (p,γ) in the sun is of order $2x10^3$

- ${}^{14}_{7}N$ produces ${}^{15}_{8}O$ and carbon again
- This branch
 - Negligible contribution to energy production
 - Important for nucleosynthesis of ¹⁶O and ¹⁷O

The CNO «cold» bi-cycle

Solar neutrinos and energy production: fundamental paradigm

• Energy conservation

$$\frac{L_{\odot}}{4\pi (A.U.)^{2}} = \sum_{i} a_{i} \phi_{i}^{\nu}$$
$$L_{\odot} = 3.846 \pm 0.015 \text{ erg/s}$$

At solar temperature

- $\epsilon_{pp} \propto T^4$
- $\epsilon_{CNO} \propto T^{18}$

8 CN cycle 6 log10(L/Lsolar) 2 pp-chain -2 -4 2 3 5 6 7 9 10 4 8 T (10⁷ K)

Can we probe this idea through solar neutrino observations ?

8 Aldo Ianni - Neutrino Frontiers 2024

10

Solar neutrino spectra

See Francesco Villante at this meeting for further details

Detecting Solar Neutrinos: interaction channels

- Electron capture: $v_e + (A,Z-1) \rightarrow (A,Z) + e^- (\sigma^2 10^{-42} \text{ cm}^2)$
 - charged-current interaction
 - can be associated with a correlated delayed event from the produced (A,Z) nucleus
- Elastic Scattering: $v_x + e^- \rightarrow v_x + e^- (\sigma^{-44} \text{cm}^2)$
 - charged/neutral-current interaction
 - Specific signature for monenergetic neutrinos
- $v_e + d \rightarrow e^- + p + p (E_v \ge 1.44 \text{ MeV}) (\sigma^{-42} \text{ cm}^2)$
- $v_x + d \rightarrow v_x + p + n \ (E_v \ge 2.74 \ MeV)$
 - − Associated with n+d→³H+γ(6.25 MeV) or n+³⁵Cl→³⁶Cl+ Σ γ(8.6 MeV)

Solar Neutrino Experiments: past and present

Detector	Target mass	Threshold [MeV]	Data taking
Homestake	615 tons C_2Cl_4	0.814	1967-1994
Kamiokande II/III	3kton H ₂ O	9/7.5 / 7.0	1986-1995
SAGE	50tons molted metal Ga	0.233	1990-2007
GALLEX	30.3tons GaCl ₃ -HCl	0.233	1991-1997
GNO	30.3tons GaCl ₃ -HCl	0.233	1998-2003
Super-Kamiokande	22.5ktons	5 7 4.5 3.5 3.5 Gd loading 0.01% Gd loading 0.03%	1996-2001 2003-2005 2006-2008 2008-2018 2019-2020 2020-2022 2022-present
SNO	1kton D ₂ O	6.75/5/6/3.5	1999-2006
Borexino	300ton C ₉ H ₁₂	0.2 MeV	2007-2019
SNO+	780 tons of LAB	0.2 MeV	2023-present

Detection of solar neutrinos: exploited reactions

•
$$v_e + {}^{37}\text{Cl} \rightarrow e^- + {}^{37}\text{Ar} (E_{th} = 0.814 \text{ MeV})$$

•
$$v_e$$
 + ⁷¹Ga \rightarrow e⁻ + ⁷¹Ge (E_{th} = 0.233 MeV)

•
$$v_x + e^- \rightarrow v_x + e^- (\sigma_{\nu_e e} \sim 9 \cdot 10^{-45} cm^2 \frac{E_{\nu}}{MeV} \sim 6 \sigma_{\nu_{\mu,\tau} e})$$

•
$$v_e + d \rightarrow e^- + p + p$$
 (E_{th} = 1.442 MeV)

•
$$v_x + d \rightarrow v_x + n + p$$
 (E_{th} = 2.224 MeV)

•
$$v_e + {}^{13}C \rightarrow e^- + {}^{13}N$$
 (E_{th} = 2.22 MeV)

<u>Solar Neutrino Problem (SNP)</u>

Aldo Ianni - Neutrino Frontiers 2024

Backgrounds: classification of radio-isotopes

- <u>Primordial</u>: longlived, ²³⁸U, ⁸⁷Rb, ⁴⁰K, ²³²Th...
- <u>Cosmogenic</u>: produced by cosmic rays (primary and secondary) interactions, ¹⁴C, ³H, ⁷Be, ¹¹C, ³⁹Ar, ...
- <u>Antropogenic</u>: produced by nuclear tests, ⁸⁵Kr, ⁹⁰Sr, ¹³¹I, ¹³⁷Cs...

²³⁸U radioactive chain

- ²³⁸U is one of the longlived radioactive elements on Earth
- T_{1/2} = 4.47x10⁹ anni
- 238 U--> 206 Pb+8 α +6 β +51.7MeV
- ²²²Rn (noble gas) -> ²¹⁴Bi (3.2MeV β with many γ-rays)

²³²Th radioactive chain

- ²³²Th is another of the long-lived radioactive elements on Earth
- $T_{1/2} = 14 \times 10^9$ years
- 232 Th--> 208 Pb+6 α +4 β +42.8MeV
- ²³²Th -> ²⁰⁸Tl (2.6 MeV γ-ray largest in natural radioactivity 5 MeV β)

Aldo Ianni - Neutrino Frontiers 2024

(b)

²³²Th

1.41 x 10¹⁰ y

α.

²²⁸Ra

5.75 y

Bi-Po tagging

• Exploit $\beta - \alpha$ decay sequence to infer ²³⁸U and ²³²Th contamination to very low levels (~ 10⁻⁶ µBq/kg) assuming secular equilibrium

An example from Borexino: ²³⁸U from ²¹⁴Bi-²¹⁴Po correlated events: $(7\pm2) \times 10^{-18}$ g/g

Aldo Ianni - Neutrino Frontiers 2024

Sudbury Neutrino Observatory

- Build at 6000 m.w.e.
- 1kton D₂O in 12m acrylic vessel
- 9456 20cm PMTs
- 55% coverage
- 7kton H₂O shielding with 91 PMTs
- 3 phases
 - Pure D₂O
 - Salt
 - 40 vertical Neutral Current Detectors

A few considerations on SNO

- Probe at the same time CC, ES, and NC
- $\phi_{\nu_e}^{CC} \leq \phi_{\nu_e}^{ES}$
- $\phi_{\nu_{\chi}}^{NC} \leq \phi_{\nu_{\rho}}^{SSM}$

In 2001 combining SK and SNO data it was possible to establish a flavor change in solar neutrino propagation

How to detect sub-MeV solar neutrinos in real time

- Due to radioactivity in high purity water (~ 10⁻¹⁵⁻¹⁴ g(U,Th)/g) in Cherenkov detector it is not possible to measure neutrinos below 3.5 MeV
- Make use of an organic liquid scintillator
 - \checkmark 1998: start idea within Borexino collaboration
- Material reach in hydrogen and electrons
 - Good for neutrino-electron ES and inverse-beta decay
- Scintillator = solvent(bulk) + solute
 - Solvent needs to be transparent (low light quenching), high radio-purity
- Light yield ~ 10⁴ photons/MeV
 - $N_{p.e.} \sim 10^4 e^{-6/10} 0.25 0.9 0.3 = 370 p.e./MeV$
 - Energy resolution ~ $0.05/\sqrt{T_e}$

What level of radio-purity ?

- <u>Goa</u>l: observe ⁷Be solar neutrinos (energy ~ 0.86 MeV)
- σ ~ 5x10^{-45} cm^2 and ϕ ~ 5x10^9 cm^{-2} s^{-1}
- Use 100 tons of C_9H_{12} with $4.2x10^{31}$ electrons
- Expected events ~ 70 cpd
- With 100% PSD and 10^{-16} g/g of 238 U and 232 Th: ~76 cpd
- S/B ~ 1 requires extreme radio-purity level $\checkmark \le 10^{-16} \text{ g(U,Th)/g}$ which means order of $\le 10^{-4} \mu \text{Bq/kg}$

Beyond U and Th: ³⁹Ar, ⁸⁵Kr, ²¹⁰Pb, ²²²Rn

Asking for 1cpd/100tons $[0.1 \ \mu Bq/m^3 \text{ in LS}]$ it implies:

- 1. System sealed against ²²²Rn ~10⁻⁴ Bq/ton
- 2. 0.4 ppm 39 Ar in N₂
- 3. 0.2 ppt ⁸⁵Kr in N₂

²¹⁰Pb and ²¹⁰Po are often found not in equiibrium due to a different chemistry

Borexino experiment overview

Borexino: liquid scintillator filling

Borexino Expected Solar v Spectrum

Spectrum with irreducible backgrounds

Aldo Ianni - Neutrino Frontiers 2024

Borexino operations and achievements

Aldo Ianni - Neutrino Frontiers 2024

Borexino radio-purity

lsotope	Spec. in LS	After filling	After purification
²³⁸ U	≤ 10 ⁻¹⁶ g/g	(5.3±0.3) 10 ⁻¹⁸ g/g	≤ 9.4 10 ⁻²⁰ g/g
²³² Th	≤ 10 ⁻¹⁶ g/g	(3.8±0.8) 10 ⁻¹⁸ g/g	< 5.7 10 ⁻¹⁹ g/g
¹⁴ C/ ¹² C	≤ 10 ⁻¹⁸	(2.7±0.1) 10 ⁻¹⁸ g/g	no change
⁴⁰ K	≤ 10 ⁻¹⁸ g/g	≤ 0.4 10 ⁻¹⁸ g/g	
⁸⁵ Kr	≤ 1 cpd/100ton	30± 5 cpd/100ton	≤ 5 cpd/100ton
³⁹ Ar	≤ 1 cpd/100ton	<< ⁸⁵ Kr	<< ⁸⁵ Kr
²¹⁰ Po	not specified	~ 8000 cpd/100ton	no change
²¹⁰ Bi	not specified	~ 20-70 cpd/100ton	20±5 cpd/100ton

 $A_{BX} \sim 40 \text{ cpd/100ton}$ in ⁷Be ROI

$$A_{BX} \sim 5 \times 10^{-9} \text{ Bq/kg}$$

The β-like energy spectrum

Aldo Ianni - Neutrino Frontiers 2024

Tagging and removing ¹¹C cosmogenic background

Remove ¹¹C and ²¹⁰Po

Aldo Ianni - Neutrino Frontiers 2024

30

Multivariate fit example: simultaneous fit of pp, 7Be and pep

Borexino vs Solar Standard Model

See Francesco Villante at this meeting for further considerations

Challenge for CNO solar neutrino observation in Borexino

Towards CNO neutrinos observations: ackground from nylon vessel

Convective currents can carry radioactive isotopes from the nylon vessel into the Fiducial Mass

2. Due to convection

Thermal insulation and temperature control

Borexino Water Tank with insulation

Temperature as a function of time in different volumes of the detector

Goal: reduce seasonal and external activity effects to avoid convective currents

²¹⁰Po background in Borexino

- ²¹⁰Po rate in Borexino in cpd/100tons from bottom to top
- 3 tons cubes within 3m sphere
- 1. Beginning of thermal insulation
- 2. Water re-circulation loop in Water Tank off
- 3. Active temperature control system on
- 4. Change set point in the active control system
- 5. Air temperature control system in underground Hall

CNO solar neutrinos

- Energy window: 0.32-2.64 MeV
- Fit energy spectrum and radial distribution
- Free pars: CNO, ⁸⁵Kr, ¹¹C, ⁴⁰K, ²⁰⁸TI, ²¹⁴Bi, ⁷Be
- pep constrained to 2.74±0.04 cpd/100ton
- ²¹⁰Bi constrained ≤ 11.5±1.3 cpd/100ton
- Data set July 2016 Feb 2020
- 1072 days of livetime
- Selection cuts:
 - Muon and muon daughters
 - FV (R < 2.8 m && -1.8m<z<2.2m)
 - TFC (remove ¹¹C)

 $R(CNO) = 7.2^{+2.9} - 1.7 \text{ cpd}/100 \text{ ton}$ Null hypothesis (CNO=0) rejected at 5.1σ

Nature 587 (2020) 577-582

CNO with directionality

- Phys.Rev.Lett. 128 (2022) 9, 091803, Phys.Rev.D 108 (2023) 10, 102005
- Detected PMT-hit pattern of selected event with position of the sun
- CID (Correlated Integrated Directionality) method
- CID can be used with full Borexino statistics data set

Aldo Ianni - Neutrino Frontiers 2024

CNO neutrinos from Borexino

²¹⁴Bi constraint

Directionality

Combined No CNO excluded at 8σ

CNO rate 6. 7^{+2.0}_{-0.8} cpd/100t (stat+sys) Flux: 6. 7^{+2.0}_{-0.9} x 10⁸ cm⁻² s⁻¹

CNO rate 7. 2^{+2.5+1.2} cpd/100t (stat. +syst)

CNO rate **6**. $7^{+1.2}_{-0.7}$ cpd/100 tons Flux: **6**. $7^{+1.2}_{-0.8} \times 10^8$ cm⁻² s⁻¹

Solar neutrinos: observations vs theory

Sorgente	Flusso [cm ⁻² s ⁻¹] SSM-HZ	Flusso [cm ⁻² s ⁻¹] SSM-LZ	Flusso [cm ⁻² s ⁻¹] Data
pp (BX)	5.98(1±0.006)×10 ¹⁰	6.03(1±0.005)×10 ¹⁰	6.1(1±0.10)×10 ¹⁰ w/o luminosity constraint
pep (BX)	1.44(1±0.009)×10 ⁸	1.46(1±0.009)×10 ⁸	1.27(1±0.17)×10 ⁸ (HZ CNO) 1.39(1±0.15)×10 ⁸ (LZ CNO)
⁷ Be (BX)	4.93(1±0.06)×10 ⁹	4.50(1±0.06)×10 ⁹	4.99(1±0.03)×10 ⁹
⁸ B (SK+SNO)	5.46(1±0.12)×10 ⁶	4.50(1±0.12)×10 ⁶	5.35(1±0.03)×10 ⁶
CNO (BX)	4.88(1±0.11)×10 ⁸	3.51(1±0.10)×10 ⁸	6.7 ^{+1.2} -0.7×10 ⁸
p-value (pp, Be, B)	0.96	0.43	

SNO+

From J. Maneira at Neutrino 2024

POSTER 416 / G. MILTON

Conclusions

- 56 years of solar neutrino observations
- Fundamental results on neutrino physics and astrophysics
- More to come with SuperKamiokande and SNO+
- Future observations with HyperKamiokande, DUNE, and JUNO
- Observation of solar neutrinos with dark matter detectors already started through neutrino-nucleus coherent scattering (see IDM 2024)

Thank you!

Added material

Paradigm of the Luminosity Constraint

Spiro and Vignaud, 1990

$$4p \rightarrow \begin{cases} \frac{4}{2}He + 2\nu_{pp} + 26.20 \ MeV \\ \frac{4}{2}He + \nu_{pp} + \nu_{Be} + 25.60 \ MeV \\ \frac{4}{2}He + \nu_{pp} + \nu_{B} + 19.70 \ MeV \end{cases}$$

 $\frac{L_{sun}}{4\pi d^2} = 8.4946 \cdot 10^{11} \frac{MeV}{cm^2 s} = \sum_i a_i \phi_i = 19.7 \ MeV \ \phi_B + 25.6 \ MeV \phi_{Be} + \frac{26.2 \ MeV}{2} \left(\phi_{pp} - \phi_{Be} - \phi_B\right)$

1 = 0.922 f_{pp} + 0.07 f_{Be} + 0.00004 f_B with $f_i = \phi_i / \phi_{SSM}$

Luminosity constraints and CNO neutrinos

$$\begin{array}{c} {}^{12}_{6}C~(p,\gamma)~{}^{13}_{7}N \\ M({}^{12}_{6}C) + M({}^{1}_{1}H) - M({}^{13}_{7}N) = 1.944~MeV \\ {}^{13}_{7}N \rightarrow {}^{13}_{6}C + e^{+} + \nu_{e} \\ M({}^{13}_{7}N) - M({}^{13}_{6}C) - \langle E_{\nu} \rangle = 2.22~MeV - 0.707~MeV = 1.513~MeV \\ a_{N} = 3.457~MeV \end{array}$$

Luminosity constraint refined

Bahcall, 2002; Vissani et al 2020

 1 H(p,e ${}^{+}v_{e}$) 2 H and 1 H(p e ${}^{-}$, v_{e}) 2 H have time scale of order 10 10 yr and 10 12 yr, respectively

 2 H(p, γ)³He and 3 He(3 He,2p)⁴He have time scale of order 10⁻⁸ yr and 10⁵ yr, respectively

So both ²H and ³He are in kinetic equilibrium, dn/dt = 0. This implies that:

 $R_{pp} + R_{pep} = R_{33} + R_{34} + R_{31}$ with $R_{ij} = \frac{\langle \sigma v \rangle_{ij} n(i)n(j)}{1 + \delta_{ij}}$ the reaction rate

$$\frac{L_{sun}}{4\pi d^2} = a_{pp}\phi_{pp} + a_{pep}\phi_{pep} + \frac{a_{33}}{2}(\phi_{pp} + \phi_{pp} - \phi_{hep} - \phi_{Be} - \phi_B) + a_{hep}\phi_{hep} + (a_{34} + a_{e7})\phi_{Be} + (a_{34} + a_{17})\phi_B + a_N\phi_N + a_0\phi_0$$

 $1 = 0.922f_{pp} + 0.002f_{pep} + 0.073f_{Be} + 0.00004f_B + 0.0011f_N + 0.0052f_O$

50 Aldo Ianni - Neutrino Frontiers 2024

Purification of the liquid scintillator

Borexino makes use of three methods to remove impurities from the liquid scintillator (U, Th, K, ²¹⁰Po, ²¹⁰Bi, ⁸⁵Kr, ²²²Rn)

¹⁴C activity estimation

From 2nd cluster events > 8μs to avoid afterpulses from PMTs 40 ± 1 Bq

 $^{14}C/^{12}C = (2.7\pm0.1) \times 10^{-18}$

Beta spectrum with shape factor: $1+1.24(Q_{\beta}-T)$

Spectral measurement of pp neutrinos

Aldo Ianni - Neutrino Frontiers 2024

The Super-Kamiokande experiment

- World leading water Cherenkov detector
- 50 kton of water in total and 32 kton in inner detector
- 22.5kton Fiducial Volume
- 11,146 50cm PMTs with 40% coverage
- Outer detector with 3m water and 1885 20cm PMTs
- Energy scale, angular distribution, and vertex position calibrate by a LINAC, injecting e⁻ from 5 to 16 MeV
- ${\rm ^{16}O}(n,p){\rm ^{16}N}$ and ${\rm ^{16}N}$ decay (Q_{\beta}=10.4 MeV) used for energy calibration
- Initial threshold at 5 MeV was reduced to 4 MeV by removing convection currents in inner detector, reducing Radon propagation
- In 2020 detector loaded with $Gd_2(SO_3)_3$ at 0.01% wt

Expected events in Super-Kamiokande

- Rate = Flux(E) × Cross-Section × Target
- For Super-K: 22.5 kton of water
- 8B neutrinos on average ~ 7.6 MeV above 5 MeV
- Flux ~ $5x10^6$ cm²/s, fraction above 5 MeV = 0.7
- Cross-section ~ 6.8x10⁻⁴⁴ cm² @ 7.6 MeV
- Target electrons: (N_A/18)×10×22.5×10⁹=7.5×10³³
- ~ 150 cpd/FM

$$\frac{data}{theory} = 0.44486 \pm 0.0062$$

Most precise ⁸B flux measurement, 1.4%

Day-Night asymmetry = -3.3±1.0±0.5 %

SNO Neutral Current Trilogy

Pure D ₂ O	Salt	³ He Counters		
Nov 99 – May 01	Jul 01 – Sep 03	Nov 04 – Nov 06		
$n+d\tot+\gamma$	$n + {}^{35}CI \rightarrow {}^{36}CI + \Sigma \gamma$	$n + {}^{3}He \rightarrow t + p$		
(E _γ = 6.25 MeV)	(E _{Σγ} = 8.6 MeV)	proportional counters		
	enhanced NC rate	σ = 5330 b		
PRL 87, 071301 (2001)	and separation	event-by-event		
PRL 89, 011301 (2002)		separation		
PRL 89, 011302 (2002)	PRL 92, 181301 (2004)	•		
PRC 75, 045502 (2007)	PRC 72, 055502 (2005)	PRL 101, 111301 (2008)		
"leng" crebivel nenero with complete details				

"long" archival papers with complete details

PRC 81, 055504 (2010)

combined analysis with lower energy threshold ARXIV: 1109.0763 (2011) combined analysis of all three phases with pulse shape discrimination for ³He counters

Pulse Shape Discrimination

