Axions from the sky: perspectives on the detection of solar and other stellar axions

Maurizio Giannotti University of Zaragoza, CAPA

Neutrino Frontiers, Galileo Galilei Institute, 26 July 2024

Axions and ALPs

parameters ...

Axions and ALPs

Recent Reviews

- I. Irastorza, J. Redondo, New experimental approaches in the search for axion-like particles", <u>Prog.Part.Nucl.Phys. 102 (2018)</u>
- L. Di Luzio et al, The landscape of QCD axion models, <u>Phys.Rept. 870 (2020)</u>
- P. Sikivie, Invisible Axion Search Methods, <u>Rev.Mod.Phys. 93 (2021)</u>
- A. Caputo, G. Raffelt, Astrophysical Axion Bounds, <u>PoS COSMICWISPers</u> (2024)

Axions and ALP Interact with SM Fields

2 photon	proton	neutron	electron
$\frac{\alpha C_{a\gamma}}{2\pi} \frac{a}{f_a} \frac{F_{\mu\nu} \widetilde{F}^{\mu\nu}}{4} -$	$-C_{ap}m_prac{a}{f_a}[i\bar{p}\gamma_5 p]$ -	$-C_{an}m_nrac{a}{f_a}[i\bar{n}\gamma_5 n]$ -	$-C_{ae}m_erac{a}{f_a}[i\bar{e}\gamma_5 e]$ -
γ a		an	

 $g_{a\gamma} = \frac{C_{a\gamma}\alpha}{2\pi f_a} \qquad g_{ap} = C_{ap}\frac{m_p}{f_a} \qquad g_{ap} = C_{an}\frac{m_n}{f_a} \qquad g_{ap} = C_{ae}\frac{m_e}{f_a}$

Stars as FIPs Factories

Volume production. FIP FIPs can escape stars, once produced. SIP Large flux!

Stellar Axion Flux

 $g_{a\gamma} = 0.6 \times 10^{-10} \,\text{GeV}^{-1}, \, g_{ai} = 0, \, m_a = 0$

The Sun as Axion Factory

Coupling	Process	Energy
Ø	Primakoff (E) $\gamma \sim a$	$\sim (3-4) \mathrm{keV}$
8αγ	Primakoff (B) $\overset{\searrow}{E}_{E, B}$	~ $(10 - 200) \text{ eV} (\text{LP})$ \$\le\$ 1 keV (TP)
8 _{ae}	ABC $e.g., e+Ze \rightarrow Ze+e+a$	$\sim 1 \mathrm{keV}$
	nuclear reactions $p + d \rightarrow {}^{3}\text{He} + a$	5.5 MeV
8 _{aN}	Nuclear de-excitation ${}^{57}\text{Fe}^* \rightarrow {}^{57}\text{Fe} + a$ ${}^{7}\text{Li}^* \rightarrow {}^{7}\text{Li} + a$	14.4 keV 0.478 MeV
	$^{83}\text{Kr}^* \rightarrow {}^{83}\text{Kr} + a$	9.4 keV
	$10^{\circ} \text{Im}^* \rightarrow 10^{\circ} \text{Im} + a$	8.4 keV

Solar Axions: photon and electron coupling

$$\frac{dN_a}{dt} = 1.1 \times 10^{39} \left[\left(\frac{g_{a\gamma}}{10^{-10} \text{GeV}^{-1}} \right)^2 + 0.7 \left(\frac{g_{ae}}{10^{-12}} \right)^2 \right] \text{ s}^{-1}$$

J. Redondo, JCAP 1312 (2013)

up to ~ 10^{39} axions/s ($\Rightarrow 10^{11}$ cm⁻² s⁻¹ axions on Earth), peaked at ~ keV

We can observe this flux with the Next Gen. Axion Helioscopes

Plus, the additional axion flux from the other processes

Hunting Solar Axions: <u>Sikivie Helioscope</u>

P. Sikivie PRL 51:1415 (1983)

Rescalable: increasing collecting area, length, and B.

$$P_{ay} = \left(\frac{g_{ay}BL}{2}\right)^{2} \frac{\sin^{2}(qL/2)}{(qL/2)^{2}}$$

$$B = \text{magnetic field}$$

$$L = \text{magnet length}$$

$$q = \text{momentum transfer}$$

$$q = \frac{m_{a}^{2} - m_{Y}^{2}}{2\omega}$$

$$q = \frac{m_{a}^{2} - m_{Y}^{2}}{2\omega}$$

$$Sensitivity$$

$$P_{ay} = \left(\frac{g_{ay}BL}{2}\right)^{2} \frac{\sin^{2}(qL/2)}{(qL/2)^{2}}$$

$$B = \text{magnetic field}$$

$$L = \text{magnet length}$$

$$q = \text{momentum transfer}$$

$$q \approx \frac{m_{a}^{2} - m_{\gamma}^{2}}{2\omega}$$

$$q \approx \frac{m_{a}^{2} - m_{\gamma}^{2}}{2\omega}$$

$$m_{th} \approx 10 \text{ meV } \omega_{teV}^{-1} L_{10}^{-1/2}$$

$$\Rightarrow \text{ Conversion probability}$$

$$coherence is lost$$

$$\Rightarrow P_{ay} \propto m_{a}^{-4}$$

$$Sensitivity$$

$$P_{a\gamma} = \left(\frac{g_{a\gamma}BL}{2}\right)^{2} \frac{\sin^{2}(qL/2)}{(qL/2)^{2}}$$

$$B = \text{magnetic field}$$

$$L = \text{magnet length}$$

$$q = \text{momentum transfer}$$

$$q \simeq \frac{m_{a}^{2} - m_{\gamma}^{2}}{2\omega}$$

$$qL \ll 1$$

$$(\text{coherence, } m_{a} \text{ drops})$$

$$\Rightarrow \text{Conversion probability}$$

$$xL^{2}$$

$$A \text{ buffer gas } (m_{\gamma} \simeq m_{a}) \text{ can}$$

$$restore \text{ coherence}$$

$$Van Bibber, Mcintyre, Raffelt, Phys. Rev. D 39:2089 (1989)$$

The CERN Axion Solar Telescope (CAST)

Reached the HB bound for the first time

K. Altenmuller, et al., <u>arXiv:2406.16840 (2024)</u>

Brand New !

Decommissioned LHC test magnet, B=9T, D=43 mm, L= 9.3 m

~2 h tracking/day

X-ray optics

Hunting Solar Axions: Sikivie Helioscope

P. Sikivie PRL 51:1415 (1983)

• J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u>

(With Jirı Stepan for solar magnetic field modeling)

J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u>

Axioelectric Helioscopes

Large underground DM detectors. Axioelectric = axion analog to the photoelectric effect

$$\sigma_{\rm ae} \propto \left(\frac{E_a}{m_e}\right)^2$$

Previous hint conclusively dismissed by the first science run of the XENONnT

 $g_{ae} \lesssim 2 \times 10^{-12}$

E. Aprile et al., Phys.Rev.Lett. 129 (2022)

Solar axions from Magnetic Field

Axions from photon conversion in the solar magnetic field

Issues:

- require low threshold.
 Detector technology exists but the optics may be challenging.
- Very difficult coherent conversions in B_{LAB} for mass above a few meV.
- Perhaps accessible with IAXO beyond baseline

 \rightarrow S. Hoof, J. Jaeckel, L. J. Thormaehlen, <u>JCAP 09 (2021) 006</u>

Di Luzio, MG, Nardi, Visinelli, Phys.Rept. 870 (2020)

The sun is quite an unremarkable star...

supergiants: T_c and ρ_c depend on mass and evolutionary stage

Brand new SG catalog, Sarah Healy et al., <u>Mon.Not.Roy.Astron.Soc.</u> 529 (2024)

Madal	Phase	t [rm] log L _{eff}		1_{eff}	Primakoff		Bremsstrahlung			Compton			
model		$\iota_{\rm cc}$ [yr]	$\log_{10} \overline{L_{\odot}}$	$\log_{10} \frac{-\epsilon_{11}}{K}$	C^P	E_0^P [keV]	β^P	C^B	E_0^B [keV]	β^B	C^C	E_0^C [keV]	β^C
0	He burning	155000	4.90	3.572	1.36	50	1.95	1.3E-3	35.26	1.16	1.39	77.86	3.15
1	before C burning	23000	5.06	3.552	4.0	80	2.0	2.3E-2	56.57	1.16	8.55	125.8	3.12
2	before C burning	13000	5.06	3.552	5.2	99	2.0	6.4E-2	70.77	1.09	17.39	156.9	3.09
3	before C burning	10000	5.09	3.549	5.7	110	2.0	8.9E-2	76.65	1.08	22.49	169.2	3.09
4	before C burning	6900	5.12	3.546	6.5	120	2.0	0.136	85.15	1.06	31.81	186.4	3.09
5	in C burning	3700	5.14	3.544	7.9	130	2.0	0.249	97.44	1.04	50.62	210.4	3.11
6	in C burning	730	5.16	3.542	12	170	2.0	0.827	129.17	1.02	138.6	269.1	3.17
7	in C burning	480	5.16	3.542	13	180	2.0	0.789	134.54	1.02	153.2	279.9	3.15
8	in C burning	110	5.16	3.542	16	210	2.0	1.79	151.46	1.02	252.7	316.8	3.17
9	in C burning	34	5.16	3.542	21	240	2.0	2.82	181.74	1.00	447.5	363.3	3.22
10	between C/Ne burning	7.2	5.16	3.542	28	280	2.0	3.77	207.84	0.99	729.2	415.7	3.23
11	in Ne burning	3.6	5.16	3.542	26	320	1.8	3.86	224.45	0.98	856.4	481.2	3.11

$$\frac{d\dot{N}_a}{dE} = \frac{10^{42}}{\text{keVs}} \left[C^P g_{11}^2 \left(\frac{E}{E_0^P} \right)^{\beta^P} e^{-(\beta^P + 1)E/E_0^P} + (P \to B, C; g_{11} \to g_{13}) \right]$$

Flux increases adding g_{ae} coupling

M. Xiao, MG, et al., Phys. Rev. D 106 (2022)

... however, in the case of Betelgeuse (~200 pc from us) $\Rightarrow 0(10^3)$ axions cm⁻² s⁻¹.

Too little for current experiments!

Axions can convert into photons in the magnetic field between us and the star

$$P_{a\gamma} = 8.7 \times 10^{-6} g_{11}^2 \left(\frac{B_{\rm T}}{1 \ \mu \rm G}\right)^2 \left(\frac{d}{197 \, \rm pc}\right)^2 \frac{\sin^2(qd)}{(qd)^2} \qquad \text{(Assuming B uniform)}$$

$$g_{11} \le 6.5 \text{ from}$$
helioscope (CAST)
bound
$$a_{\rm max} = \frac{\gamma}{B_{\rm ext}}$$

Xiao et al. <u>Phys.Rev.Lett. 126 (2021)</u>

SN may produce up to $\sim 10^{56}$ axions/s.

About $\sim 10^{13} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$ axions on Earth from Betelgeuse

Huge flux... but short!

Primakoff

Bremsstrahlung

Pion processes may dominate

 $\pi^- + N \to N + a$

Harder Spectrum

- P. Carenza et al., JCAP 10 (2019) 10, 016
- B. Fore and S. Reddy, <u>Phys.Rev.C 101 (2020);</u>
- A. Lella et al, Phys.Rev.D 107 (2023) 10
- K. Choi et al., JHEP 02 (2022) 143

- P. Carenza et al., Phys.Rev.Lett. 126 (2021);
- Fischer et al. <u>Phys.Rev.D 104 (2021)</u>
- Ho, Kim, Ko, Park, Phys.Rev.D 107 (2023) 7

Supernova axions

Harder spectrum from pion processes

Large uncertainties:

- T, ρ profiles
- Pion properties in medium
- Pion condensation
- -40-30 T[MeV]-20400 d^3N_a $\overline{dE_a \, dV \, dt}$ 300 E_a [MeV] 0.8 0.6 200 0.4 0.2 1000. 0.9 0.6 0.3 -0.9 $\frac{d^2 N_a}{dE_a \, dt}$ $0.6 d^2 N_a$ dV dt0.3 6 8 10 12 14 *R* [Km]

Alessandro Lella et al., <u>arXiv:2405.02395</u>

Detecting SN axions

Direct Detection

\rightarrow Cherenkov

- A. Lella et al., <u>arXiv:2306.01048;</u>
- Vonk, Guo, Meißner, <u>Phys.Rev.D</u> <u>105 (2022)</u>
- Li, Hu, Guo, Meißner, <u>2312.02564</u>
- P. Carenza et al., <u>arXiv:2306.17055</u>

 \rightarrow Colliders

- S. Asai, Y. Kanazawa, T. Moroi, T.
 Sichanugrist <u>Phys.Lett.B 829 (2022)</u>
- \rightarrow Heliscopes
- Ge, Hamaguchi, Ichimura, Ishidoshiro, Kanazawa, <u>JCAP 11 (2020)</u>;

new proposal (UNIZAR/CAPA)

Indirect detection

Through photon oscillations in B_{ext}

- F. Calore et al. e-Print: <u>Phys.Rev.D 109 (2024)</u>
- A. Lella et al., <u>arXiv:2405.02395</u>
- Meyer et al. <u>Phys.Rev.Lett. 118 (2017)</u>

Detecting SN axions

Direct Detection:

Fermi LAT as Axion SN-Scope

Pure photon coupling

M. Meyer , M. G., A. Mirizzi, J. Conrad, M.A. Sánchez-Conde, Phys.Rev.Lett. 118 (2017)

New analysis

 \rightarrow slightly reduced sensitivity. But...

29

Fermi LAT as Axion SN-Scope

Accounting for possible progenitor magnetic field

Manzari, Park, Safdi, Savoray arXiv: 2405.19393

Detecting SN axions

GALactic AXion Instrument for Supernova (GALAXIS)

 4π coverage of the gamma-ray sky between ~100 MeV and ~1 GeV

Manzari, Park, Safdi, Savoray arXiv: 2405.19393

Extra-Galactic Axions?

O. Ning, B. R. Safdi <u>arXiv: 2404.14476</u>

Extra-Galactic Axions?

O. Ning, B. R. Safdi <u>arXiv: 2404.14476</u>

Axions as Astro Messengers

Detecting stellar axions would allow to understand a lot about stars.

Solar magnetic field
C. A. J. O'Hare, A. Caputo, A. J. Millar, E. Vitagliano <u>Phys.Rev.D 102 (2020) 4</u>

Solar temperature profile
S. Hoof, J. Jaeckel, L. J. Thormaehlen, <u>arXiv:2306.00077</u>

Solar chemical composition
 J. Jaeckel, L. J. Thormaehlen, <u>Phys.Rev.D 100 (2019) 12</u>

Supergiant evolution
M. Xiao, et al., <u>Phys. Rev. D 106 (2022)</u>

Will we detect Stellar Axions with Next Gen. Experiments?

Sun	 High potential to detect ALPs (including QCD axions) if m_a ≤ 100 meV and g_{aγ} ~ stellar bounds Possibility to explore solar magnetic field through g_{aγ} but likely not in next generation experiments Unlikely axions discover through g_{ae} in the near future Several channels through g_{aN}. Some tension with SN1987A
Super- Giants	 Production can be much larger than in the Sun Require magnetic fields to compensate for large distance ⇒ Explore mostly very low mass region but sensitive to very small couplings
SN	 Huge production but for short time. Several nearby candidates Direct detection may be possible but difficult At very low mass, strong potential for detection with γ-ray observatories (e.g., Fermi LAT) At high mass, possible detection of decay products (e.g., Fermi LAT)

Cosmic WISPERs

COSMIC WISPers in the Dark Universe:Theory, astrophysics and experiments

... exhaustive study of WISPs from their theoretical underpinning, to astrophysics, to their searches.

Backup Slides

Solar ALPs coupled to Nucleons

 $p + d \rightarrow {}^{3}\text{He} + a(5.5 \,\text{MeV})$

Search using previous SNO data \rightarrow Phys.Rev.Lett. 126 (2021)

$$\frac{g_{ap} - g_{an}}{2} < 2 \times 10^{-5} \quad (95\% \text{ C.L.})$$

Also

- CAST JCAP 03 (2010)
- Borexino *Phys.Rev.D* 85 (2012)
- JUNO sensitivity G. Lucente et al., <u>Phys.Rev.D 106 (2022) 12</u>

Solar ALPs coupled to Nucleons

Solar ALPs coupled to Nucleons

Nuclear de-excitations. Axion production in M1 transitions

$$X^* \to X + a,$$
 $a + X \to X^* \to X + \gamma$

57 Fe* \rightarrow 57 Fe + a (14.4 keV)	$g_{aN}^{\text{eff}} = 0.16g_{ap} + 1.16g_{an}$			
	New dedicated project under commissioning → ISAI (Investigating Solar Axion by Iron-57),			
83 Kr + <i>a</i> (9.4 keV)	$g_{aN}^{\text{eff}} \simeq g_{an}$	→ <u>Gavrilyuk et al. (2015)</u> and <u>Akhmatov et al. (2018)</u> .		
$^{169}\text{Tm} + a(8.4 \text{keV})$	$g_{aN}^{\text{eff}} \simeq g_{ap}$	→ <u>Derbin et al. (2023)</u>		

Pre-SN signal

Major difficulty: angular resolution. Improves with use of Liquid Scintillator (LS) detector with a Lithium compound dissolved (LS-Li)

Tanaka & Watanabe (2014)

В	etelgeuse				LS		LS-Li	
r	Fime to CC	$N_{ m Total}$	$N_{ m Signal}$	$N_{ m Bkg}$	68% C.L.	90% C.L.	68% C.L.	90% C.L.
	4.0 hr	93	78	15	78.43°	116.17°	23.24°	33.98°
	1.0 hr	193	170	23	63.92°	98.42°	15.47°	22.26°
	$2 \min$	314	289	25	52.72°	81.79°	11.63°	16.67°

Adapted from: M. Mukhopadhyay, C. Lunardini, F.X. Timmes, K. Zuber, Astrophys.J. 899 (2020)

* Betelgeuse is 11.6° from S Monoceros A, B (~280 pc)

• J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u> (With Jiri Stepan for solar magnetic field modeling)

• J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u> (With Jiri Stepan for solar magnetic field modeling)

• J. Ruz, E. Todarello et al. <u>arXiv:2407.03828</u> (With Jiri Stepan for solar magnetic field modeling)

Solar axions from Nuclear Reactions

Axions from Li-7

⁷Be +
$$e \rightarrow {}^{7}\text{Li}^{*} + v_{e}$$

 \downarrow
 ${}^{7}\text{Li}^{*} \rightarrow {}^{7}\text{Li} + a(477.6 \text{ keV})$

Pure proton coupling $g_{aN}^{\text{eff}} = g_{ap}$

- \rightarrow Krcmar et al (2001)
- \rightarrow <u>CAST (2009)</u>

Most restrictive limit (2011): $m_a < 8.6 \text{keV}$ (assuming QCD axion with $C_p = 0.4$) \rightarrow searches using LiF Crystals (@ Gran Sasso National Laboratories)

No recent analysis (to the best of my knowledge)

Brand new catalog of Red SG, Sarah Healy et al., <u>Mon.Not.Roy.Astron.Soc. 529 (2024)</u>

Many candidates at a few kpc from the Sun.

See also → <u>M. Mukhopadhyay et al.</u>, <u>Astrophys.J. 899 (2020)</u>

Supergiants

Brand new catalog of Red SG, Sarah Healy et al., <u>arXiv:2307.08785</u>

Common Name	Distance (pc)
${\rm Spica} \ / \ \alpha \ {\rm Virginis}$	77(4)
ζ Ophiuchi	112(2)
lpha Lupi	143(3)
${\rm Antares} \ / \ \alpha \ {\rm Scorpii}$	169(30)
${\rm Enif} \; / \; \epsilon \; {\rm Pegasi}$	211(6)
Betelgeuse / α Orionis	${\bf 222}^{+48}_{-34}$
ζ Cephei	256(6)
${\rm Rigel} \ / \ \beta \ {\rm Orionis}$	264(24)
${ m S}$ Monocetotis ${ m A}({ m B})$	282(40)
CE Tauri / 119 Tauri	326(70)

Data for table from \rightarrow <u>M. Mukhopadhyay</u> <u>et al., Astrophys.J. 899 (2020)</u>

Supernova axions

$$\mathcal{L}_{int} = g_a \frac{\partial_{\mu} a}{2m_N} \left[C_{ap} \bar{p} \gamma^{\mu} \gamma_5 p + C_{an} \bar{n} \gamma^{\mu} \gamma_5 n + \frac{C_{a\pi N}}{f_{\pi}} (i\pi^+ \bar{p} \gamma^{\mu} n - i\pi^- \bar{n} \gamma^{\mu} p) + L_{an} \left(\bar{p} \Delta_{\mu}^+ + \overline{\Delta_{\mu}^+} p + \bar{n} \Delta_{\mu}^0 + \overline{\Delta_{\mu}^0} n \right) \right]$$

$$A. Lella et al., Phys.Rev.D 107 (2023)$$

Leads to a variety of processes, studied very recently

The Very Last Stages of a Monster Star

$t_{ m collpase} - t \left[{ m s} ight]$	C	$E_0 [{ m MeV}]$	β
0	1.68×10^3	2.54	2.50
10^{2}	1.19×10^3	2.08	2.49
10^{3}	9.33×10^2	1.77	2.50
10^{4}	5.98×10^2	1.57	2.47
10^{5}	1.63×10^2	1.13	2.10
10^{6}	2.15×10^2	0.85	2.39
107	7.31×10^1	0.61	2.10

Flux grows substantially in last seconds

$$\frac{d^2 n_{\gamma}}{dt dE} = \frac{10^{47} C g_{10}^2 P_{a\gamma}}{4\pi d^2} \left(\frac{E}{E_0}\right)^{\beta} e^{-(\beta+1)\frac{E}{E_0}} \text{ cm}^{-2} \text{ s}^{-1} \text{MeV}^{-1}$$

Mori, Takiwaki and Kotake, Phys.Rev.D 105 (2022)

The Very Last Stages of a Monster Star

Mori, Takiwaki and Kotake, Phys.Rev.D 105 (2022)

Other γ ray telescopes such as INTEGRAL are not performing surveys.

The High Energy X-ray Probe (HEX-P)

Instrument and Mission Profile paper last week (on Dec 7)

Same target energy as NuSTAR.

3 co-aligned X-ray telescopes designed to cover the 0.2 – 80 keV bandpass