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Introduction: Non-Abelian Liouville Equation
For Nf flavours NfxNf density matrices are defined as (Wigner distributions) 

 

and analogously for anti-neutrinos, with  annihilator of neutrino with flavour  
and momentum . Apart from the sources the equations of motion are Liouville 
equations with vacuum terms and refractive terms from a background medium and 
from self-interactions, 

 

where Ωp0 is the vacuum term, Ωm is the matter term, and ΩS the self-interaction, 

 

where in general GS=diag(1,…,1) for active neutrinos. For anti-neutrinos only the sign 
of Ωp0 changes in the commutator in Eq.(1).

ϱij(r, p) ≡ ∫ d3r′￼e−ip⋅r′￼⟨a†
j (r − r′￼/2)ai(r + r′￼/2)⟩ = ∫

d3Δ
(2π)3

eiΔ⋅r ⟨a†
j (p − Δ/2)ai(p + Δ/2)⟩ ,

ai(p) i
p

∂tϱ(r, p) + v(r, p) ⋅ ∇rϱ(r, p) = − i [Ω0
p + Ωm(r) + ΩS(r, p), ϱ(r, p)] ,

ΩS(r, p) = μ(r)∑
q≠p

(1 − vp ⋅ vq){GS[ρ(r, q) − ρ̄(r, q)]GS + GSTr [(ρ(r, q) − ρ̄(r, q))GS]} ,
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Generalisation to Non-Abelian Boltzmann Equation
For a Hamiltonian represented by the c-number flavour matrix  the 
non-Abelian Boltzmann equation for the space-time and momentum dependent c-
number flavour density matrix  is generally written in the form 

 

where the left hand side is known as Liouville term and the right hand side consists 
of a commutator describing oscillations and the collision term  describes 
absorption, emission and scattering between different momentum modes. 

If only the kinetic part in  depends on momentum then  is a matrix of 
velocities with eigenvalues in the neutrino mass basis given by  
and  becomes a matrix of neutrino fluxes. Note that they contain group 
velocities, whereas the oscillation term contains phase velocities. The last term in 
the Liouville term is a force term which is usually neglected. In absence of mixing, 
forces and collisions the Liouville equation thus just expresses flux conservation. 
Note that in a stationary situation the flux is conserved, not the neutrino number.

𝖧(t, r, p)

ϱ(t, r, p)

∂tϱ+ 1
2 {∂rϱ, ∂p𝖧} − 1

2 {∂pϱ, ∂r𝖧} = − i [𝖧, ϱ] + 𝒞 [ϱ] ,

𝒞[ϱ]

𝖧 Vp ≡ ∂p𝖧
vi = p/(p2 + m2

i )1/2

1
2 {ϱ, V}
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We want to derive the non-Abelian Boltzmann equation from the Heisenberg equation 
 for operators  and Hamilton operator . To this end we introduce the 

annihilation and creation operators of a neutrino or antineutrino of momentum p and 
flavour i,  which correspond to the spatial operators 

 

and satisfy the anti-commutation relations 

 

and analogously for anti-neutrinos.

i∂t
̂A = [ ̂A, Ĥ] ̂A Ĥ

̂ai(p, t), b̂i(p, t), ̂a†
i (p, t), b̂†

i (p, t)

ψ̂i(r) = ∫
d3p

(2πℏ)3/2
e−ip⋅r/ℏ ̂a(p) ,

{ ̂ai(p, t), ̂a†
j (p′￼, t)} = (2π)3δ3(p − p′￼)δij ,

The following is based on G. Sigl and G. Raffelt, Nucl.Phys.B 406 (1993) 423 
and Stirner, Sigl and Raffelt, JCAP 05 (2018) 016
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Derivation through Wigner and Moyal Distributions

We define the operators 

 

and relate them to a space- and momentum dependent density operator through a 
Wigner transformation, 

 

For the Hamilton operator we make the mean-field ansatz 

 

where  is a c-number matrix.

𝖣̂ij(p, p′￼, t) ≡ ̂a†
j (p′￼, t) ̂ai(p, t) ,

̂ϱij(t, r, p) = ∫
d3Δ
(2π)3

eiΔ⋅r D̂ij (p +
Δ
2

, p −
Δ
2

, t) .

Ĥ = ∫
d3p

(2π)3

d3p′￼

(2π)3
̂a†
i (p) 𝖧ij(p, p′￼) ̂aj(p′￼) ,

𝖧ij
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Using Heisenberg’s equation and after a few manipulations one arrives at 

 

where the matrix  is related to the matrix  through the same kind of 
Wigner transformation relating  to . 

A similar equation for first quantised scalars was first derived by Moyal. This is 
an operator equation with so far no approximations. 

Taking the expectation value  (mean field theory) and expanding 
the exponential up to first order then immediately gives the Liouville equation with 
flavour mixing, 

 

Higher orders would yield the collision terms and other quantum corrections. 
Planck’s constant (here set to unity) appears both on the left hand side and in the 
exponent of the Moyal equation and thus cancels to lowest order, corresponding to 
the classicality of Liouville’s equation.

iℏ∂t ̂ϱ(r, p) = 𝖧(r, p) e
i
2 ℏ( ∂ r⋅ ∂ p− ∂ p⋅ ∂ r) ̂ϱ(r, p) − ̂ϱ(r, p) e

i
2 ℏ( ∂ r⋅ ∂ p− ∂ p⋅ ∂ r) 𝖧(r, p) .

𝖧(r, p) 𝖧ij(p, p′￼)
̂ϱ(r, p) D̂ij(p, p′￼)

ϱ(r, p) ≡ ⟨ ̂ϱ(r, p)⟩

∂tϱ+ 1
2 {∂rϱ, ∂p𝖧} − 1

2 {∂pϱ, ∂r𝖧} = − i [𝖧, ϱ] . (3)
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Derivation through Husimi Distributions

We here simplify to one flavour . Smearing a Wigner distribution  with 
Gaussians of width  in position and width  in momentum space gives 

 

Choosing  the operator version can be put into the form 

 

For the time evolution of the quantum field  we make the ansatz 

 

which for  gives the relativistic dispersion relation .

Nf = 1 f(r, p)
η σ

F(r, p) ≡
1

(2πησ)3 ∫ d3r′￼d3p′￼f(r′￼, p′￼)exp [−
(r − r′￼)2

2η2
−

(p − p′￼)2

2σ2 ] .

σ = ℏ/(2η)

̂F(r, p) =
1

(2πη2)3/2 ∫
d3r1d3r2

(2πℏ)3
ψ̂†(r1)ψ̂(r2)exp [−

(r − r1)2 + (r − r2)2

4η2
+

ip ⋅ (r1 − r2)
ℏ ] .

ψ̂

iℏ∂tψ̂ = v ⋅ p̂ ψ̂ + V(r)ψ̂ , or ∂tψ̂ = − v ⋅ ∂rψ̂ − iV(r)ψ̂ /ℏ

V(r) = 0 ℏω = v ⋅ p
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A straightforward calculation and taking expectation values gives back the Liouville 
equation, 

 

to this order independent of  ! The higher order terms give rise to quantum 
corrections which become in particular relevant on scales comparable to the de 
Broglie scale . 

Solutions of such Liouville/Vlasov equations crucially depend on boundary and initial 
conditions.

∂tF(r, p) = − v ⋅ ∂vF + ∂rV ⋅ ∂pF + 𝒪(ℏ) ,

η

ℏ/p
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Collision Terms and Dynamical Decoherence
Assuming molecular chaos for neutral current interactions the collision (Boltzmann) 
term at a given location  has the form 

 

where  is the (scalar) scattering rate from state of four-momentum  
to a state of four-momentum , with  the energy corresponding to three-
momentum , and  a dimensionless flavour matrix characterising the coupling 
strengths of the different neutrino flavours. The c-number flavour densities  

and  refer to neutrinos and anti-neutrinos, respectively. The first two terms 
describe scattering and the last two describe pair creation and annihilation. They 
are related by crossing particles and substituting , which 

also gives a similar equation for .

r

∂tρp
coll,NC

=
1
2 ∫

d3q
(2π)3 [W(q, p)(1 − ρp)GρqG − W(p, q)ρpG(1 − ρq)G

+W(−q, p)(1 − ρp)G(1 − ρq)G − W(p, − q)ρpGρqG + h . c.] ,

W(q, p) (Eq, q)
(Ep, p) Ep

p G
ρp

ρp

p → − p ρp → 1 − ρp

∂tρp
coll,NC
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Charged current source terms at a given location  have the form 

 

with  and  flavour-diagonal  matrices with production and 

absorption rates of neutrinos of given flavour and four-momentum  on the 
diagonal. Assuming detailed balance for the background plasma this becomes 

 

with  the equilibrium occupation numbers, 

 

r

∂tρp
coll,CC

= {𝒫(p), (1 − ρp)} − {𝒜(p), ρp} ,

𝒫(p) 𝒜(p) Nf × Nf

p

∂tρp
coll,CC

= {𝒫(p), (1 −
ρp

f0p )} ,

f0p

f0p ≡ feq(Ep) =
1

e(Ep−μ)/T + 1
.
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If the neutrinos are coupled to a medium in thermal equilibrium characterized by a 
temperature  and a chemical potential  for the lepton number, then one can show 
that the neutrino grand canonical potential 

 

can never increase, i.e. . Here, the internal energy of the neutrino ensemble 
, its total lepton number , and its entropy  are given by 

 

T μ

Ων ≡ Uν − TSν − μLν ,

·Ων ≤ 0
Uν Lν Sν

Uν = ∫
d3p

(2π)3
|p |Tr(ρp + ρp) ,

Lν = ∫
d3p

(2π)3
Tr(ρp − ρp) ,

Sν = − ∫
d3p

(2π)3
Tr[ρp ln(ρp) + (1 − ρp)ln(1 − ρp) + ρp ln(ρp) + (1 − ρp)ln(1 − ρp)] .

Some Thermodynamical Aspects
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Analogous expressions for bosons are obtained by substituting , thus 
Pauli blocking turns into stimulated emission. 

If there are only neutral current interactions, lepton number  will be conserved 
and  implies that the neutrino free energy  can never 
increase, . If neutrinos interact only among themselves, the neutrino 
energy  will be conserved in addition, and the neutrino entropy  can 
never decrease, . Derivation is similar to Boltzmann’s H-theorem, but now with 
flavour matrices. 

Real dynamical decoherence is tied to an increase of entropy, or a decrease of the 
grand  canonical potential or the free energy and thus can only be caused by 
collision terms. 

The entropy does not increase only if the occupation number matrices already 
equal their equilibrium values, .

1 − ρp → 1 + ρp

Lν·Ων ≤ 0 Fν ≡ Uν − TSν·Fν ≤ 0
Uν Sν·Sν ≥ 0

∂tρp = 0 , ρp = f0p
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Missing Energy in inhomogeneous kinetic equation

The oscillating interaction energy 

  

should be conserved, but in a setting with inhomogeneities in the z-direction 
one finds 

 

with 

Uosc =
2GF

4 ∫ d3r∑
p,p′￼

(1 − cos θp,p′￼) Pp ⋅ Pp′￼,

dUosc

dt
= −

2GF

2 ∫ d3r (P0 ⋅ ∂zP1 − P1 ⋅ ∂zP2),

Pk ≡ ∑
p

vk
z Pp .

The following is based on D.F.G. Fiorillo G. Raffelt and G. Sigl, 
Phys.Rev.Lett. 133 (2024) 2, 021002
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 In the massless limit this can be cured with a force term in the Liouville equation 
( ): 

 

of the form 

 

This pertains to an exchange of neutrino-neutrino refractive energy with 
the much larger reservoir of neutrino kinetic energy 

 .

vp ≡ p/ |p |

∂tρp,r + vp ⋅ ∇r ρp,r = i[ρp,r, Ωp,r] + ∇r ⋅ Φp,r − ∇p ⋅ Fp,r ,

Fp,r =
2GF

2 ∑
p′￼

(1 − cos θp,p′￼)[{ρp′￼,r, ∇r ρp,r} + 2 Tr(ρp′￼,r)∇r ρp,r] .

K = ⟨ℋ0⟩ = ∫ d3r∑
p

ϵpTr(ρp)
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The role of matter refraction in toy models

The following is based on G. Sigl, Phys.Rev.D 105 (2022) 4, 043005

Notes: 
all time- and length-scales are resolved 
hierarchy of rates mimics hierarchy in real supernova: 

λ(x) ≳ μ(x) ≫ fs(x) ≃ fNC(x)
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Numerical Setup of 1D Toy Model
Typically we use Nf =2 flavours, momentum  modes with equal energy and 
one spatial dimension x with a one-dimensional array of Np momentum 
modes whose velocity projections onto the x (radial) direction are 
isotropically distributed between -1 and +1, 

The source term then is 

and analogously for anti-neutrinos. The vacuum term is  

where Δm2 >0, cos 2ϴ0 >0 corresponds to the inverted hierarchy.  
The matter term is

vx(ip) = − 1 +
1
Np

+
ip − 1
Np − 1 (2 −

2
Np ) , ip = 1,⋯, Np, with Np even .

∂tρ(x, ip)coll,CC = fs(x)f(x, ip) (1 0
0 0), (1 −

ρ(x, ip)
f0(x, ip) ) ,

Ω0
vx

=
Δm2

4 ( cos 2θ0 −sin 2θ0

−sin 2θ0 −cos 2θ0) ,

Ωm(x) = λ(x)(1 0
0 0) .
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where in general GS=diag(1,…,1) for active neutrinos. The self-interaction 
coefficients are normalised as 

which assures that the average coupling of one momentum mode summed over all 
other modes is unity and thus does not depend on Np, before being multiplied with 
the characteristic self-coupling µ(x). 

As initial conditions we typically put slightly unsure flavour eigenstates, 

where 

ΩS(x, ip) = μ(x)∑
iq

gip,iq {GS[ρ(x, iq) − ρ̄(x, iq)]GS + GSTr [(ρ(x, iq) − ρ̄(x, iq))GS]} ,

M(x) =
1
2 ( 1 + cos θ(x) exp[iϕ(x)]sin θ(x)

exp[−iϕ(x)]sin θ(x) 1 − cos θ(x) ) .

gi, j =
(1 − δij)(1 − vivj)

∑kl (1 − δkl)(1 − vkvl)/Np
,

ρ(t = 0,x, ip) = fi(x)f(x, ip)M(x) , ρ̄(t = 0,x, ip) = fi(x)f̄(x, ip)M(x) ,
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 can contain a modulation in ip and an asymmetry between neutrinos 
and anti-neutrinos, e.g. a crossing: 

 

with 

 

where  vanishes at the boundaries.

f(x, ip) and f̄(x, ip)

f(x, ip) =
1
2

[1 − ah(x, ip)][1 − bh(x, ip)] , f̄(x, ip) =
1
2

[1 − ah(x, ip)][1 + bh(x, ip)] ,

h(x, ip) = (2
ip − 1
Np − 1

− 1) g(x) ,

g(x)
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At x=Lx the boundary condition for the incoming modes, vx<0, is given in terms of the 
initial condition (to make them consistent), 

and analogously for anti-neutrinos. Idea is to make them close to zero (no neutrinos 
coming from outside). 
At x=0 the boundary conditions for the incoming modes, vx<0, are given in terms of a 
reflective boundary, 

Anti-neutrino initial and equilibrium densities and production rates are typically 
assumed to be equal to the ones of neutrinos. Flavor perturbations are initially  
driven by the vacuum frequency. 

Partial differential equations are integrated within 0<x<Lx and 0<t<tmax.  

Mathematica 11.1 was used with the NDSolve routine.

ρ(t, x = Lx, vx < 0) = ρ(t = 0,x = Lx, vx < 0) = fi(Lx)f(Lx, ip)M(x) ,

ρ(t, x = 0,vx) = ρ(t, x = 0, − vx) , ρ̄(t, x = 0,vx) = ρ̄(t, x = 0, − vx) .
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We show the following quantities: Total number of neutrinos 
 

off diagonal terms 

 

total flavour asymmetry of outgoing neutrinos 

 

and the relative flavour-lepton number asymmetry 

N(t, x) ≡ ∑
vx

Tr [ρ(x, vx) + ρ̄(x, vx)] ,

Foff(t, x) ≡
∑vx

ρ12(x, vx) + ρ̄12(x, vx)

N(t, x)
,

Fasym(t, x) ≡
∑vx

> 0 [ρ11(x, vx) − ρ22(x, vx) + ρ̄11(x, vx) − ρ̄22(x, vx)]
∑vx>0 Tr [ρ(x, vx) + ρ̄(x, vx)]

,

G(t, x, vx) ≡
ρ11(x, vx) − ρ22(x, vx) − ρ̄11(x, vx) + ρ̄22(x, vx)

N(t, x)
.

Results
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Conclusions
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1.) There is a deep connection between Schrödinger-like equations for the wave 
operators and the classical Liouville equation and its generalisation to collisional 
Vlasov/Boltzmann equations

3.) Higher order terms would describe correlations between momentum modes and 
collision terms which can also lead to dynamic decoherence

2.) Classical behaviour emerges on length scales large compared to the de Broglie 
wavelength  to lowest order in an expansion in . To this order one has 
collisionless particle transport and kinematic decoherence

ℏ/p ℏ

4.) The forward scattering term then is the foundation for all the collective 
effects

5.) The self-induced exponential growth of small inhomogeneities violates 
conservation of neutrino-neutrino refractive energy. This is cured by a force 
term that leads to energy exchange with the large reservoir of neutrino kinetic 
energy



Conclusions on Matter 
Refraction in Toy Models

28

1.) Toy models can be used to understand the interplay between self-interaction, 
matter, vacuum, source terms and boundary conditions, although in general they 
are prohibitive for realistic conditions

3.) Matter terms may not be trivially “rotated away” for profiles with significant 
slopes; probably depends on relation between profile scale height and oscillation 
lengths

4.) Fast flavor conversions tend to be suppressed or delayed in presence of 
inhomogeneous matter terms and neutral current non-forward scattering

2.) Consistent initial and boundary conditions are important and sometimes not 
completely straightforward


