Theory of fast neutrino flavor evolution

Niels Bohr Institute, Copenhagen

Based on works with G. Raffelt, G. Sigl

GGI Neutrino Frontiers

Damiano F. G. Fiorillo

VILLUM FUNDEN

Collective flavor conversions

Does not require other neutrinos

Damiano Fiorillo

Refractive flavor exchange among different energies and directions

Non linear!

Damiano Fiorillo

Collective flavor conversions

Quantum superposition neutrinos infect other neutrinos!

Does it matter?

High densities in supernovae (SNe) and neutron star mergers (NSMs)

Damiano Fiorillo

Does it happen? Most likely yes!

Abbar et al., 1812.06883; Li et al., 2103.02616; Abbar et al., 1911.01983; Nagakura et al., 1910.04288; Abbar et al., 2012.06594; Nagakura et al., 2108.07281; Wu et al., 1701.06580; ...

Does it matter?

High densities in supernovae (SNe) and neutron star mergers (NSMs)

Damiano Fiorillo

Does it happen? Most likely yes!

Abbar et al., 1812.06883; Li et al., 2103.02616; Abbar et al., 1911.01983; Nagakura et al., 1910.04288; Abbar et al., 2012.06594; Nagakura et al., 2108.07281; Wu et al., 1701.06580; ...

Does it affect neutrino observations? Most likely yes!

Does it matter?

High densities in supernovae (SNe) and neutron star mergers (NSMs)

Damiano Fiorillo

Does it happen? Most likely yes!

Abbar et al., 1812.06883; Li et al., 2103.02616; Abbar et al., 1911.01983; Nagakura et al., 1910.04288; Abbar et al., 2012.06594; Nagakura et al., 2108.07281; Wu et al., 1701.06580; ...

Does it affect neutrino observations? Most likely yes! **Does it affect SN evolution?**

Likely yes!

Ehring et al., 2301.11938, 2305.11207

Theoretical interest

(One of the) most exotic manybody systems (driven by **weak interactions!**)

Intrinsically **multi-scale** problem (challenging!)

Theoretical interest

(One of the) most exotic manybody systems (driven by **weak interactions!**)

Intrinsically **multi-scale** problem (challenging!)

Damiano Fiorillo

Turbulence

Convection

MHD turbulence

Fast flavor conversions

Theoretical interest

(One of the) most exotic manybody systems (driven by weak interactions!)

Intrinsically multi-scale problem (challenging!)

Damiano Fiorillo

Turbulence

Kolmogorov-Obukhov

Convection

Mixing length

MHD turbulence Kraichnan, Goldreich-Sridhar, ...

Fast flavor conversions

◆ Stable systems: the meaning of ELN crossings

Flavor waves

✦ Landau damping — the plasma analogy

Unstable systems

Growth of flavor waves

Quasi-linear saturation of instability

Damiano Fiorillo

Outline

Quantum kinetic equations $\alpha_e | \nu_e > + \alpha_\mu | \nu_\mu >$

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

 $\partial_t \rho$

Damiano Fiorillo

Dolgov, Sov. J. Nucl. Phys., 1981

Rudzsky, Astrophys. Space Sci., 1990,

Sigl, Raffelt, Nucl. Phys. B, 1993

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

 $\partial_t \rho$

 $+v\partial_r\rho$ Advection

Damiano Fiorillo

Dolgov, Sov. J. Nucl. Phys., 1981

Rudzsky, Astrophys. Space Sci., 1990,

Sigl, Raffelt, Nucl. Phys. B, 1993

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

 $\partial_t \rho$

Advection

Damiano Fiorillo

Dolgov, Sov. J. Nucl. Phys., 1981

Rudzsky, Astrophys. Space Sci., 1990,

Sigl, Raffelt, Nucl. Phys. B, 1993

 $= -i[\mathcal{H}, \rho]$

Interaction

 $\mathcal{H} \propto \sqrt{2G_F} \int \rho'$

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

 $\partial_t \rho$

Advection

Damiano Fiorillo

Instability driven by advection and interaction (similar to plasma waves)

 $= -i[\mathcal{H}, \rho]$

Interaction

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

 $\partial_t \rho$

Advection

Damiano Fiorillo

Instability driven by advection and interaction (similar to plasma waves)

 $= -i[\mathcal{H}, \rho]$ Interaction $\sim 1 \text{ ns}$ $\mathcal{H} \propto \sqrt{2G_F} \sum \rho'$

Damiano Fiorillo

Spontaneous breaking of homogeneity!

Theory of fast neutrino flavor evolution Based on **DF**, Raffelt, 2406.06708

E-XLN conservation

$d(E - XLN)/d\cos\theta$

Nothing can move (no instability!)

Damiano Fiorillo

Johns, 2402.08896

DF, Raffelt, 2406.06708

Things can move

Instability? Only if no more conservation laws!

Simple counterexample: homogeneous system (infinite conservation laws) **DF**, Raffelt, PRD 107 4, 043024; PRD 107 12, 123024 Damiano Fiorillo

DF, Raffelt, 2406.06708

 $\rho_{e\mu}$ **Flavor waves**

H $c\cos\theta$ \mathcal{V}_{ρ}

Stable systems <u>u</u>

Flavor waves can only be damped — Landau damping!

Resonant neutrinos move in phase with the wave

Flavor waves can only be damped — Landau damping!

Resonant neutrinos move in phase with the wave

Cherenkov absorption causes damping

Stable systems

Flavor waves can only be damped —

Resonant neutrinos move in phase with the wave **On-diagonal energy Kinetic energy**

(Weak interaction energy for flavor-diagonal neutrinos)

Damiano Fiorillo

Landau damping!

Off-diagonal energy

(Weak interaction energy for superposition neutrinos)

DF, Raffelt, Sigl, PRL 133 2, 021002

Stable systems

Flavor waves can only be damped —

Resonant neutrinos move in phase with the wave **On-diagonal energy Kinetic energy**

(Weak interaction energy for flavor-diagonal neutrinos)

Damiano Fiorillo

Landau damping!

Off-diagonal energy

(Weak interaction energy for superposition neutrinos)

DF, Raffelt, Sigl, PRL 133 2, 021002

$d(E - XLN)/d\cos\theta$

Flavor waves amplified

Relaxation of instability

As simple as possible, but no simpler!

Asymmetric

DF, Raffelt, 2403.12189

Relaxation of instability

Space-time fluctuating, but average leads to removal of angular crossing

Asymmetric

DF, Raffelt, 2403.12189

Relaxation of instability

amplifies

Space-time fluctuating, but average leads to removal of angular crossing

Small-scale fluctuations are linear

Quasi-linear saturation

(Vedenov et al., Drummond et al., 1962)

Background solution changes slowly

feedback

On

Asymmetric

DF, Raffelt, 2403.12189

Relaxation of instability

amplifies

System sticks to the closest stable state (which may depend on history!)

Small-scale fluctuations are linear

Quasi-linear saturation

(Vedenov et al., Drummond et al., 1962)

Background solution changes slowly

feedback

On

Conclusions

Framework to intuitively understand flavor instabilities

- Conservation laws can protect from instability
- Instability = resonant emission of flavor waves from flipped neutrinos
- Saturation of instability tends to the closest stable configuration (predicted) by **quasi-linear** framework)

Thank you!

Collective flavor conversions

Refractive flavor exchange among different energies and directions

Non linear!

 $\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

 $P^{z} = \rho_{ee} - \rho_{\mu\mu}$ $P^{x} = \operatorname{Re}(\rho_{e\mu})$ $P^{y} = -\operatorname{Im}(\rho_{e\mu})$

Damiano Fiorillo

Density matrix

A concrete example

Can conversions happen without flavor?

Damiano Fiorillo

Neutrino-antineutrino collective oscillations? Proposed in Sawyer, PRD 2023

A concrete example

Can conversions happen without flavor?

Helicity violation!

 $\overline{\nu}\nu$ conversions can be neglected, but only by previously unnoticed argument!

Damiano Fiorillo

Neutrino-antineutrino collective oscillations? Proposed in Sawyer, PRD 2023

DF, Raffelt, Sigl, 2401.02478

$\rho = \begin{pmatrix} \rho_{ee} & \rho_{e\mu} \\ \rho_{\mu e} & \rho_{\mu\mu} \end{pmatrix}$

A concrete example Exponential growth of off-diagonal components

Damiano Fiorillo

Can we predict the final state of the system?

Are there conserved quantities?

 $\sum \rho = \begin{pmatrix} \rho_{ee} + \overline{\rho}_{\mu\mu} & \rho_{e\mu} + \overline{\rho}_{\mue} \\ \rho_{\mu e} + \overline{\rho}_{e\mu} & \rho_{\mu\mu} + \overline{\rho}_{ee} \end{pmatrix}$ Total lepton number

 $\sum \rho = \begin{pmatrix} \rho_{ee} + \overline{\rho}_{\mu\mu} & \rho_{e\mu} + \overline{\rho}_{\mue} \\ \rho_{\mu e} + \overline{\rho}_{e\mu} & \rho_{\mu\mu} + \overline{\rho}_{ee} \end{pmatrix}$ Total lepton number

Homogeneous systems

Infinite conservation laws (Gaudin invariants) DF, Raffelt, 2301.09650

Broken for inhomogeneous, except special solutions (flavor solitons) DF, Raffelt, 2303.12143

 $\sum \rho = \begin{pmatrix} \rho_{ee} + \overline{\rho}_{\mu\mu} & \rho_{e\mu} + \overline{\rho}_{\mue} \\ \rho_{\mu e} + \overline{\rho}_{e\mu} & \rho_{\mu\mu} + \overline{\rho}_{ee} \end{pmatrix}$ Total lepton number

Homogeneous systems

Infinite conservation laws (Gaudin invariants) DF, Raffelt, 2301.09650

Broken for inhomogeneous, except special solutions (flavor solitons) DF, Raffelt, 2303.12143

Damiano Fiorillo

Inhomogeneities grow!

 $\sum \rho = \begin{pmatrix} \rho_{ee} + \overline{\rho}_{\mu\mu} & \rho_{e\mu} + \overline{\rho}_{\mu e} \\ \rho_{\mu e} + \overline{\rho}_{e\mu} & \rho_{\mu\mu} + \overline{\rho}_{ee} \end{pmatrix}$

Homogeneous systems

Infinite conservation laws (Gaudin invariants) DF, Raffelt, 2301.09650

Broken for inhomogeneous, except special solutions (flavor solitons) DF, Raffelt, 2303.12143

Damiano Fiorillo

Total lepton number

Inhomogeneities grow!

Energy must be conserved (right?)

Energy in collective oscillations Κ E =+ $\sim cm^{-1} \sim 10^{-1} meV$

 $\sim 10 \text{ MeV}$

Energy in collective oscillations E =Κ $\sim cm^{-1} \sim 10^{-1} meV$ $\sim 10 \text{ MeV}$

Standard quantum kinetic equations

♦ Neutrino motion decoupled from collective conversions ($\frac{dK}{dt} = 0$)

Energy in collective oscillations E =Κ $\sim cm^{-1} \sim 10^{-1} meV$ $\sim 10 \text{ MeV}$

Standard quantum kinetic equations

 \checkmark Neutrino motion decoupled from collective conversions (dK/dt = 0)

$$\frac{J}{-\neq 0!}$$

Energy in collective oscillations Number of ν_x in + beam, $n_{x,+} = (1 - 2P_+^z)/4$ 0.20.50.00.10.30.440 20 Initially

Damiano Fiorillo

Time

Average U was initially -1, finally oscillates around 0

 $n_{\overline{\nu}}$

Maximal energy violation! **DF**, Raffelt, Sigl, 2401.05278

Energy in collective oscillations E =Κ $\sim cm^{-1} \sim 10^{-1} meV$ $\sim 10 \text{ MeV}$

Standard quantum kinetic equations

Damiano Fiorillo

 $\neq 0$:

Energy in collective oscillations

Force

Gradients in flavor composition

Damiano Fiorillo

Neutrinos accelerated (or slowed) by inhomogeneous flavor conversions!

Energy in collective oscillations E =Κ $\sim cm^{-1} \sim 10^{-1} meV$ $\sim 10 \text{ MeV}$

Interaction energy is not conserved!

Quasi-linear relaxation

Rapidly-varying

Fluctuations are treated **linearly**

Fluctuations **non-linearly** feedback and lead to background relaxation