

Core-Collapse Supernovae detection with Gravitational Waves and Neutrinos

GIULIA PAGLIAROLI INFN-LNGS, ITALY giulia.pagliaroli@lngs.infn.it

Outline

Quantify the CCSNe detection efficiency of a global network of Neutrinos and GW detectors

- Neutrinos and gravitational waves (GW)
 Emission models and analysis methods
- Data analysis improvement in Neutrino sector
 Results for LEN detectors
- Multi-messengers analysis
 - Results for a global-network of GW+LEN detectors

Multimessenger analysis with GW-LEN

O. Halim et al. JCAP 11 (2021) 021

Joint GW-v Search

Leonor et al., Class. Quantum Grav. 27 (2010) 084019

FAR=1/1000 years and at least 2 neutrinos in coincidence with a gravitational wave trigger.

w=10 sec to accomodate most emission models

 $R_v = 1/100$ years as in SNEWS

Neutrino signals

NUMERICAL SIMULATIONS

L. Hudepohl, Ph.D. thesis, Technische Universitat Munchen (2014).

PHENOMENOLOGY+ DATA

SN1987A model OH, PhD thesis, Gran Sasso Science Institute (2020)

$$F(t) = (1 - e^{-t/\tau_1})e^{-t/\tau_2}$$

GP et al. Astropart. Phys. 31 (2009) 163-176

SN1987A

 $\langle E_{\nu_e} \rangle = 9MeV$

 $\langle E_{\bar{\nu_e}} \rangle = 12 MeV$

 $\langle E_{\nu_x} \rangle = 16 MeV$

 $\tau_2 = 1 \, s$

 $\tau_1 = 0.1 \, s$

 $E_b = 3 * 10^{53} erg$

LEN analysis efficiency

		-		
Model	Progenitor	Super-K	LVD	KamLAND
(identifier)	Mass	$(E_{ m thr}=6.5{ m MeV})$	$(E_{ m thr}=7{ m MeV})$	$(E_{\rm thr} = 1 { m MeV})$
Pagliaroli [41]	$25M_{\odot}$	4120	224	255
(SN1987A)				
Hüdepohl [40]	$11.2M_{\odot}$	2620	142	154
(Hud)				

Detector	Background
LVD	0.028 Hz
KAM	0.015 Hz
SK	0.012 Hz

Table 2. Number of IBD events expected for a CCSN exploding at 10 kpc from us for the different neutrino models adopted and the considered detectors (Super-K [6], LVD [7], and KamLAND [8]). In parenthesis we report the assumed energy threshold (E_{thr}) .

Analysis Efficiency = N_recovered/N_injected

Not requirements on Statistical significance

LEN analysis efficiency

Model	Progenitor	5
(identifier)	Mass	$(E_{\rm thr})$
Pagliaroli [41]	$25M_{\odot}$	
(SN1987A)		
Hüdepohl [40]	$11.2M_{\odot}$	
(Hud)		

Table 2. Number of IBD events expectedneutrino models adopted and the consideredparenthesis we report the assumed energy

Efficiency = N_recovered/N_injected

LEN analysis efficiency

MILKY WAY ~100% efficiency

Large Magellanic Cloud SK ~100% efficiency LVD & KAM (98%-20%)

Andromeda SK ~0-1% efficiency LVD & KAM 0%

GW signals

Table 1: Waveforms from CCSN simulations used in this work. We report in the columns: emission type and reference, waveform identifier, waveform abbreviation in this manuscript, progenitor mass, angle-averaged root-sum-squared strain $h_{\rm rss}$, frequency at which the GW energy spectrum peaks, and emitted GW energy.

Waveform	Waveform	Abbr.	Mass	$h_{ m rss}$ @10 kpc	f_{peak}	$E_{\rm GW}$
Family	Identifier		M_{\odot}	$(10^{-22} 1/\sqrt{\text{Hz}})$	[Hz]	$[10^{-9} M_{\odot}c^2]$
Radice [36]	s25	Rad25	25	0.141	1132	28
3D simulation;	s13	Rad13	13	0.061	1364	5.9
h_+ and h_{\times} ; (Rad)	s9	Rad9	9	0.031	460	0.16
Dimmelmeier [37]	dim1-s15A2O05ls	Dim1	15	1.052	770	7.685
2D simulation;	dim2-s15A2O09ls	Dim2	15	1.803	754	27.880
h_+ only; (Dim)	$\dim 3-s15A3O15ls$	Dim3	15	2.690	237	1.380
Scheidegger [38]	sch1-R1E1CA _L	Sch1	15	0.129	1155	0.104
3D simulation;	sch2-R3E1AC _L	Sch2	15	5.144	466	214
h_+ and h_{\times} ; (Sch)	sch3-R4E1FC _L	Sch3	15	5.796	698	342

Scheidgger et al., Astron. Astrophys., 514:A51, 2010

Radice et al., Astrophys. J. Lett., 876(1):L9, 2019

Dimmelmeier et al., Phys. Rev. D, 78:064056, Sep 2008

GW analysis efficiency

Table 1: Waveforms from CCSN simulations used in this work. We 1 emission type and reference, waveform identifier, waveform abbreviation progenitor mass, angle-averaged root-sum-squared strain $h_{\rm rss}$, frequene energy spectrum peaks, and emitted GW energy.

	Waveform	Waveform	Abbr.	Mass	$h_{ m rss}$ @10 k
U	Family	Identifier		M_{\odot}	$(10^{-22} 1/$
	Radice [36]	s25	Rad25	25	0.141
	3D simulation;	s13	Rad13	13	0.061
	h_+ and h_{\times} ; (Rad)	s9	Rad9	9	0.031
	Dimmelmeier [37]	$\dim 1-s15A2O05ls$	Dim1	15	1.052
	2D simulation;	dim2-s15A2O09ls	Dim2	15	1.803
	h_+ only; (Dim)	dim $3-s15A3O15ls$	Dim3	15	2.690
	Scheidegger [38]	sch1-R1E1CA _L	Sch1	15	0.129
	3D simulation;	sch2-R3E1AC _L	Sch2	15	5.144
	h_+ and h_{\times} ; (Sch)	sch3-R4E1FC _L	Sch3	15	5.796

GW analysis efficiency

Data analysis improvement in LEN sector

The statistical significance of a LEN events burst: Standard procedure

The statistical significance of a LEN events burst: New procedure

SN1987A-model @60kpc injections, KamLAND detector, 1/100yr FAR threshold

Noise	Noise	$\eta_{1\mathrm{param}}$	$\eta_{2\mathrm{param}}$
	$[< 1/100 {\rm yr}]$	$[<1/100{\rm yr}]$	$[<1/100{\rm yr}]$
75198	0/75198	2665/3654 = 72.9%	3026/3654= 82.8%

Take Home Message #1

The use of the new parameter for LEN burst search increases the detection efficiency of 10% @ horizon

Gain for SNEWS alerts for the e.m. community!

Data analysis for combining GW-LEN

Data analysis procedure

Results for global-network of LEN-GW

SN1987A-LEN signal model @60kpc injections, KamLAND detector, 5 sigma-FAP threshold Dimmelmeier2-GW model @60kpc injections, LIGO-H, LIGO-L, Virgo detectors

Network & Type	Recovered	$\eta_{1\mathrm{param}}$	$\eta_{2\mathrm{param}}$		
of Injections	${\rm FAR}_{\rm GW} < 864/d$	$[>5\sigma]$	$[>5\sigma]$		
HLV-KAM	784/2346 =	554/784 =	650/784 =		
(Dim2-SN1987A)	33.4%	70.7%	82.9%		
The ~33% GW-signals recovered are far to be					
The ~33% GW-	signals recove	ered are	far to be		
The ~33% GW- stat	signals recove	ered are icant:	far to be		
The ~33% GW- stat the 5 <i>σ</i> de	signals recove tistically signif etection efficie	ered are icant: ency is C	far to be %.		

Take home message #2

By adding the KAM det. the 5σ detection efficiency becomes:

33.4%*82.9% = 27.7%

Results for global-network of LEN-GW

SN1987A-LEN signal model @60kpc injections, KamLAND and LVD detectors, 5 sigma-FAP threshold Dimmelmeier2-GW model @60kpc injections, LIGO-H, LIGO-L, Virgo detectors

Network & Typ	e Recovered	$\eta_{1 \mathrm{param}}$	$\eta_{2\mathrm{param}}$
of Injections	$FAR_{GW} < 864/d$	$[>5\sigma]$	$[>5\sigma]$
HLV-KAM	784/2346 =	554/784 =	650/784 =
(Dim2-SN1987A	33.4%	70.7%	82.9%
HLV-KAM-LVI	0 784/2346 =	776/784 =	784/784 =
(Dim2-SN1987A	a) 33.4%	99.0%	100%

GW-LEN Det. efficiency with 2-param method:

33.4%*100% = 33.4%

Take home message #3

Combining the LEN 2-param search method with the GW one the detection efficiency grows from 0% to ~33%

Summary

♦ We quantify the CCSNe analysis efficiency of a global network of LEN and GW detectors.

We improve the LEN data-analysis increasing the detection efficiency of LEN detectors of 10% @ horizon.

The new method is sensitive to low statistics signals (far/weak), is fast and adaptive.

◆Useful to expand the detection horizon of future detector (Hyper-K) to reach Andromeda.

3.3. Hyper-K single-detector analysis

TABLE 7.5: One-module Hyper-K with 700-kpc injections.

Total	Background	1-parameter	2-parameter (this work)
Background	$[< 1/100 \mathrm{years}]$	[< 1/100 years]	[< 1/100 years]
49203	0% = 0/49203	70.4% = 2575/3655	85.4% = 3120/3655

Summary

♦ We quantify the CCSNe analysis efficiency of a global network of LEN and GW detectors.

We improve the LEN data-analysis increasing the detection efficiency of LEN detectors of 10% @ horizon.

The new method is sensitive to low statistics signals (far/weak), is fast and adaptive.

◆Useful to expand the detection horizon of future detector (Hyper-K) to reach Andromeda.

We show that the GW CCSNe detection efficiency greatly increases when GWs and LEN data are combined.

An infrastructure with several detectors sensitive to SN neutrinos: an interesting network of different detectors located in the same place. Combined Horizon: LMC. Very high duty cycle and fast coincidences in time (ms).

The Agreement with the Experiments is ongoing.

Failed Supernovae @ LNGS

The neutrino and GW emissior end abruptly at the time of the Black Hole formation.

The EM counterpart of this event is easily missing.

Let's see the capability of the LNGS infrastructure to identify the time of the BH formation

 $T_{BH}^{GW} = T_{BH}^{\nu} \pm t_{fly}$ $\boldsymbol{\delta} T_{BH}^{GW} = \boldsymbol{\delta} T_{BH}^{\nu} + \boldsymbol{\delta} t_{fly}$

The Time of BH formation @ LNGS

Results for D=10 kpc

Future Exp. Legend-1000 = 980 ton Darwin = 1240 ton

	Detector	$N_{ m IDB}$	$t^1 \pm \delta t^1$ [s]	$t^{ m last}{\pm}\delta t^{ m last}~[{ m s}]$	$1/\xi~[m s]$
	LVD	293 (520)	$0.017 \pm 0.008 \ (0.017 \pm 0.009)$	$0.567 {\pm} 0.001 \; (2.109 {\pm} 0.004)$	$0.002 \ (0.004)$
	COSINUS-veto	64 (114)	$0.03{\pm}0.02~(0.04{\pm}0.02)$	$0.561{\pm}0.007~(2.09{\pm}0.02)$	0.008 (0.018)
	Legend200-veto	140 (249)	$0.021{\pm}0.008~(0.03{\pm}0.01)$	$0.565{\pm}0.003~(2.107{\pm}0.006)$	$0.004 \ (0.008)$
•	XENONnT-veto	167 (297)	$0.023 {\pm} 0.009 \; (0.02 {\pm} 0.01)$	$0.565 {\pm} 0.003 \; (2.107 {\pm} 0.006)$	$0.003 \ (0.007)$
	Legend1000-veto	234 (415)	$0.021 \pm 0.009 \ (0.02 \pm 0.01)$	$0.566 \pm 0.002 \ (2.108 \pm 0.004)$	$0.002 \ (0.005)$
	DARWIN-veto	511 (907)	$0.014 \pm 0.006 \ (0.014 \pm 0.007)$	$0.5672 \pm 0.0009 \ (2.111 \pm 0.002)$	$0.001 \ (0.002)$

$$\xi = N_{\text{IBD}}/(t^{\text{last}} - t^1)$$
,
 $T^{
u}_{\text{BH}} = \text{Max}[T^{\text{last}}_i] + 1/\xi_{\text{Max}}$

$$\delta T^{\nu}_{\rm BH} = \sqrt{1/\sum_i \left(\xi_i^2\right)}$$

In agreement with Sarfati et al.Phys.Rev.D 105 (2022) 2, 023011 Brdar et al. JCAP04(2018)025

The Time of BH formation @ GW det

GP and Ternes, *JCAP* 06 (2024) 022

Thank You

G. PAGLIAROLI "NEUTRINO FRONTIERS PROGRAM" 2024

Results for global-network of LEN-GW

Hüdepohl-LEN signal model @60kpc injections, KamLAND and LVD detectors, 5 sigma-FAP threshold Dimmelmeier2-GW model @60kpc injections, LIGO-H, LIGO-L, Virgo detectors

TABLE VI: Efficiency (η) comparison of 1-parameter and our 2-parameter method for Figure 9. The columns are analogous to Table V.

Network & Type	$\frac{\rm Recovered}{\rm FAR_{GW}} < 864/\rm d$	$\eta_{1 \mathrm{param}}$	$\eta_{2 ext{param}}$
of Injections		[> 5 σ]	[> 5 σ]
HLV-KAM-LVD	784/2346 =	710/784=	764/784=
(Dim2-Hud)	33.4%	90.6%	97.5%

GW Detection efficiency without LEN network:	O%
GW-LEN Det. efficiency with 1-param method:	33.4%*90.6% = 30.3%
GW-LEN Det. efficiency with 2-param method:	33.4%*97.5% = 32.6%

Combined analysis LEN+GW

D=60 kpc

• Super-K single-detector analysis. $m = 8 \Rightarrow D = 260 \text{ kpc}$

TABLE 7.3: Single detector SuperK analysis with 250-kpc injections. The data set is 10-year long. See text for the explanation.

Total	Background	1-parameter	2-parameter (this work)
Background	$[< 1/100 \mathrm{years}]$	[< 1/100 years]	$[< 1/100 {\rm years}]$
49200	0% = 0/49200	70.6% = 2575/3645	85.5% = 3117/3645

G. PAGLIAROLI "NEUTRINO FRONTIERS PROGRAM" 2024

44

Super-K single-detector analysis. $m = 8 \Rightarrow D = 260 \text{ kpc}$

TABLE 7.3: Single detector Super-K analysis with 250-kpc injections. The data set is 10-year long. See text for the explanation.

Total	Background	1-parameter	2-parameter (this work)
Background	$[< 1/100 \mathrm{years}]$	$[< 1/100 \mathrm{years}]$	[< 1/100 years]
49200	0% = 0/49200	70.6 % = 2575/3645	85.5 % = 3117/3645

LVD-KamLAND joint-detector analysis.

TABLE 7.4: Efficiency η and misidentification probability ζ for KamLAND-LVD 10 year - 65 kpc.

2-detector:	10 year - 65 kpc		
LVD - KamLAND	Old Method	New Method	
Raw η	93.7% = 3425/3654		
Raw ζ	11.5% = 447/3872		
$5\sigma\eta$	62.9% = 2298/3654	80.8% = 2951/3654	
$5\sigma\zeta$	0% = 0/3872	0% = 0/3872	

GW signal

Magnetorotational Hydrodynamics,

Source: Strong centrifugal deformation of inner core (~ oblateness), due to rapidly rotating precollapse core.

•
$$p_{\text{prog}} \sim 1 \text{ s}; \quad p_{\text{remnant}} \sim 1 \text{ ms}$$

- * $E_{\rm rot} \sim 10^{52} \, {\rm erg.}$
- * $h \sim 10^{-21} 10^{-20}$; for $D \sim 10 \,\text{kpc}$

*
$$E_{\rm GW} \sim 10^{-10} - 10^{-8} M_{\odot} c^2$$

♦ Narrowband frequency: 500-800Hz

3.3. Perspectives

- 1.Sensitive to low-statistical signals (far/weak),
- 2.Fast ==> needed for online search with low latency,
- 3.Adaptive ==> background can be estimated from the real data,
- 4.Pretty model-independent, the double exponential model for the neutrino from CCSNe is very basic but **enough** for low-statistic signals,
- 5.Only needs minimal information; no need for a complete data sharing

- This method can disentangle signals vs BG for the single-detector analysis with higher statistical significance for signals. It is a one-step improvement from our previous ξ -cut
 - A. The efficiency of the 65-kpc simulated KamLAND increases from 59.0% to 70.6% without adding a noise.
 - B. There is also improvement of 5sigma efficiency for 2-detector analysis up to SMC for current detectors, where the efficiency increases from 62.9% to 80.8%.
- JUNO-Super-K network may work like LVD-KamLAND.
- This method could be also useful to enhance the future detectors (Hyper-K) *to expand* the CCSN searc horizon in order to reach M31/Andromeda.
- Two-module Hyper-K can work as a network to reach ~1 Mpc.
- Failed-SN search by Super-K till L/SMC together with GWs. The duration maybe smaller (0.5s vs 20s)