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CCSNe in 1D: why are they wrong?

• No convection, no SASI, no multi-dimensional effects (both in the hydrodynamics and neutrino transport).
As a result: no explosions!
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CCSNe in 1D: why are they wrong?
Why are they useful?

• No convection, no SASI, no multi-dimensional effects (both in the hydrodynamics and neutrino transport).
As a result: no explosions!

• Lower CPU cost than 3D (factor of 106)
• Large parametric studies: explodability, nucleosynthesis, light curves, neutrino signal, CNO, BSM physics, etc…

• Goal: cheap simulations with reliable physics

• Commonly adopted approaches add extra energy into the simulation, using phenomenological or semi-
analytical models : Pejcha (2012,2015), Perego (2015), Ertl (2016), Muller (2016)

• Recent studies have taken a slightly different approach: Reynolds decomposition to model extra energy 
due to ν-driven convection (i.e. MLT): Murphy (2013), Couch (2020), Boccioli (2021), Sasaki (2023)
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A compromise between 1D and 3D: 1D+ simulations

• Reynolds decomposition is exact, the approximation enters in closing the equations. The simplest 
closure is provided by Mixing Length Theory

• Boussinesq approximation of low Mach numbers (not necessarily true near explosion)

• Turbulent eddies follow Kolmogorov spectrum

• Turbulence is driven by buoyancy and vertical shear. No horizontal shear, no negative turbulent flux 
(i.e. downward transport of energy)

• The form of the equations does not conserve energy (Muller 2019) (caveat, the energy is 
accounted for by the change in in free energy). No 1D model strictly speaking conserves energy!

An (incomplete) summary of the characteristics of  1D+ models

7 of 22



A compromise between 1D and 3D: 1D+ simulations

I will be using a version of STIR (Couch 2020) that was implemented (Boccioli 2021) in GR1D (*). 

STIR evolves an additional quantity: the turbulent energy ρ𝑣turb
2

(*) https://github.com/evanoconnor/GR1D (O’Connor 2010, 2015)

Shear
Buoyancy

Dissipation

Calibration
to 3D simulations
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1D vs. 1D+ vs. Multi-D

Wang et al. (2022)

Boccioli et al. (2023)

Sukhbold et al. (2016)
Ertl et al. (2016)

Ghosh et al. (2022)

=  ξ2.0 ≥ 0.5
KEPLER progenitors

STIR does not follow Ertl explosion criterion
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If δρSi/O
2  / ρSi/O

2  > 0.078 explosion

Wang et al. (2022)

KEPLER progenitors

A New Physically-Motivated Explosion Criterion

Boccioli et al. (2024)

(*) = One must also add the condition 
𝜉2.0 > 0.5 at low metallicities/high compactnesses

(*)

Boccioli et al. (2023)

If δρSi/O
2  / ρSi/O

2  > 0.08  explosion
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Warning: Uncertainties in Stellar Evolution Propagate!

Different reaction rates for C12+C12:
- CF88
- THM18

Boccioli et al. (2023)

If δρSi/O
2  / ρSi/O

2  > 0.08  explosion
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Remnant Masses: STIR (1D+) vs PUSH (1D) vs S16 (1D)

Neutron Star Birth Mass Distribution Chandrasekhar Mass Distribution
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Neutrino heating in 1D and 1D+

1D fast decrease
1D+ slow decrease

Janka (2012)
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Dominates in 1D+

Dominates in 1D

Neutrino heating in 1D and 1D+
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Dominates in 1D+

Dominates in 1D

Neutrino heating in 1D and 1D+
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Neutrino heating in 1D, 1D+, 2D, and 3D

• Progenitors with larger compactness 
develop a much larger neutrino heating

• 2D Fornax simulations have larger ሶ𝑄ν
max 

compared to 3D Fornax and 2D FLASH 
simulations.  
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Neutrino heating in 1D, 1D+, 2D, and 3D

• Progenitors with larger compactness 
develop a much larger neutrino heating

• 2D Fornax simulations have larger ሶ𝑄ν
max 

compared to 3D Fornax and 2D FLASH 
simulations.  

• Progenitor with high compactness lead to 
successful explosions because they generate 
very large neutrino heating.
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2D (and 3D) simulations have smaller neutrino energies 
due to PNS convection (see also Nagakura (2020))

Neutrino heating in 1D, 1D+, 2D, and 3D

19 of 22



Comparison of simulations in 1D, 1D+, 2D, and 3D

• This progenitor has a moderately large 
compactness ξ2.0

• ሶ𝑄 in 2D is very noisy. In 3D it is better behaved 
and tends to be smaller than in 2D at t > 0.2 s

• Fornax has large ሶ𝑄 at late times
(accretion and/or definition of the gain region)

• GR1D+ matches 2D simulations, especially 
FLASH since they have the same ν-transport.
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(*) = Note that the 3D simulation is for a different progenitor!

• This progenitor has a low 
compactness ξ2.0

• ሶ𝑄 in 3D Fornax(*) data is smaller than 2D, but 
compatible with 2D FLASH data!

• Fornax has large ሶ𝑄 at late times
(accretion and/or definition of the gain region)

• GR1D+ underestimates ሶ𝑄 at very early times for 
low-compactness progenitors (prompt convection?)

Comparison of simulations in 1D, 1D+, 2D, and 3D
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Conclusions

• High-compactness progenitors explode because develop a much larger neutrino heating able to 
overcome the ram pressure of the infalling material

• Low-compactness progenitors explode when a sharp Si/O interface is accreted

• 1D+ simulations develop similar neutrino heating (and qualitative explosion dynamics) to multi-D, 
with discrepancies at low compactness. 

• 1D+ simulations struggle to produce reliable PNS convection

• More comparisons in 2D and 3D are necessary, especially regarding neutrino heating, since it plays 
a crucial role, particularly in leading to explosions of high-compactness progenitors 

• 1D+ simulations are a powerful tool that can be used to perform large parameter and sensitivity 
studies, potentially to guide more accurate (and extremely more expensive) 3D simulations
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Neutrino-Driven Convection

Snapshot at 200 ms post bounce

ν

PNS

shock

Radice et al. (2018)
O’Connor & Couch (2018)
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Neutrino-Driven Convection

Snapshot at 200 ms post bounce

shock

PNS

ν

Radice et al. (2018)
O’Connor & Couch (2018)
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Neutrino-Driven Convection

• 3D simulations:
↑  They simulate convection self-consistently
↓  They are computationally very expensive

• Spherically symmetric simulations (1D):
↓  They cannot simulate convection
↑  They are computationally very cheap

• We can find a compromise:
→  Parametric model for convection -> 1D+

Snapshot at 200 ms post bounce

Couch et al (2020)
Boccioli et al (2021)

STIR

shock

PNS

But also: Murphy et al. (2013), Mabanta & Murphy (2018), etc...

ν

Radice et al. (2018)
O’Connor & Couch (2018)
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3) Details of the EOS used

Skyrme-type: compressible liquid-drop model 
 - LS220
 - APR
 - KDE0v1
 - SLy4

RMF-type: relativistic mean field model
 - SFHo
 - DD2
 - HShen
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3) Details of the EOS used
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Compactness and explodability
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Calibration to 3D Newtonian simulations: FLASH
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Calibration to 3D Newtonian simulations: FLASH
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Calibration to 3D Newtonian simulations: FLASH
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Calibration to 3D simulations: Zelmani
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Calibration to 3D simulations: Zelmani LS220
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Calibration to 3D simulations: Zelmani LS220
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Calibration to 3D simulations: Zelmani SLy4

36 of 22



Calibration to 3D simulations: Zelmani LS220
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Calibration to 3D simulations: Zelmani LS220
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Remnant Mass distributions: 1D+ compared to predictions

Neutron Star Birth Mass Distribution Black Hole Mass Distribution

Combined Metallicities where IMF ∝ 𝑀−2.35

𝑀𝐵𝐻 = 𝑀𝑓𝑖𝑛𝑎𝑙 − 𝑓𝑒𝑗𝑀𝐻
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Fits for the Neutron Star Mass

ξ-fit MSi/O-fit MCh-fit
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