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George Gamow and Mario Schoenberg (1940,

e The Possible Role of Neutrinos in Stellar
Evolution, Phys. Rev. 58 (1940) 1117
(1 column letter to the editor)

e Neutrino Theory of Stellar Collapse
Phys. Rev. 59 (1941) 539

As we suggested in a recent publication,® this
very fast removal of energy from the interior of
the star can be understood on the basis of the 7.
present ideas on the role of neutrinos in nuclear \
transformations involving emission or absorption \ \ :

W, \
of B-particles. In fact, when the temperature and |
density in the interior of a contracting star reach G.Gamow 1904-68 | M.Schenberg 1914-90

certain values depending on the kind of nuclei
involved, we should expect processes of the type

N4+ e—,_1N4+antineutrino

7_1N4—z N4+ e+ neutrino,

(3)
Introducing urca processes

M 3 4] 19 . . . .
which we shall call, for b.rewty, urca-processes. Named after a casino in Rio de Janeiro,
The neutrinos formed in the above processes® b lained in th
absorb a considerable part of the transformation ut not explained in the paper.

energy (about 2), and escape with practically no  (The bank always wins!)
difficulty through the body of the star. Sch(o)enberg was Brazilian from S&o Paolo
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https://journals.aps.org/pr/abstract/10.1103/PhysRev.58.1117
https://journals.aps.org/pr/abstract/10.1103/PhysRev.59.539

Grand Unified Neutrino Spectrum (GUNS) at Earth

Vitagliano, Tamborra & Raffelt, arXiv:1910.11878
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Neutrino Fog for WIMP Dark Matter Detection
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Ciaran O’Hare, arXiv:2109.03116
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https://arxiv.org/abs/2109.03116

Yesterday’s sensation
is today’s calibration —R.Feynman

... and tomorrow’s background —V.7elegdi
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https://arxiv.org/abs/2109.03116

XENON

First Measurement of Coherent Elastic Neutrino Nucleus
Scattering of Solar 8B Neutrinos in XENONNT

Fei Gao, Tsinghua University
on behalf of the XENON Collaboration

15th International Workshop on the Identification of Dark Matter
July 8-12, 2024, L’Aquila
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DETECTION OF THE FIRST NEUTRINO IN NAT[JRE
| ON

23R> FEBRUARY 1965
. IN
EAST RAND PROPRIETARY MINE

THIS DISCOVERY TOOK PLACE IN A LABORATORY SITUATED
TWO MILES BELOW THE SURFACE OF THE EARTH ON
76 LEVEL OF EAST RAND PROPRIETARY MINE, MANNED
BY A CROUP OF PHYSICISTS FROM THE CASE INSTITUTE OF TECHNOLOCY U.S :
AND THI: UNIVERSITY OF THE WITWATERSRAND JOHANNESBURC.

THE PROJECT WAS SPONSORED BY :~
UNITED STATES ATOMIC ENERCY COMMISSION
E.R.P.M. AND RAND MINES CROUP
€ASE INSITITUTE OF TECHNOLOCY
UNIVERSITY OF THE WITWATERSRAND
TVL. & O.F.S. CHAMBER OF MINES
AND CONVERTED FROM PROPOSAL TO REALITY
WITH THE HELP OF THE OFFICIAIS AND MEN
OF THE HERCULES SHAFI OF E.R.P.M.
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Chlorine Solar Neutrino Experiment (Homestake)

(1 FWHM Results)
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https://iopscience.iop.org/article/10.1086/305343/pdf

Mikheev-Smirnov-Wolfenstein (MSW) effect

Eigenvalues of Hamiltonian for
2-flavor oscillations

Antineutrinos A Neutrinos

U
1.

: Vy Propagation through
‘ density gradient: Ve
: adiabatic conversion
m32ENR S~
/\

m?/2E
/
>

“Negative density” Vacuum Density
for antineutrinos

G’ .g Raffelt, MPI ,sics, G 11 GGl, Florence, 19 July 2024



Solar Neutrino Spectroscopy with Borexino

Vacuum MSW .
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Energy-dependent flavor conversion probability confirms

neutrino refraction in matter!
M.Wurm, Solar Neutrino Spectroscopy, arXiv:1704.06331
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PHYSICAL REVIEW D VOLUME 9, NUMBER 5 1 MARCH 1974

Coherent effects of a weak neutral éurrent

Daniel Z. FreedmanT
National Accelevator Laboratory, Batavia, Illinois 60510

and Institute for Theovreticak Physics, State University of New York, Stony Brook, New York 11790
(Received 15 October 1973; revised manuscript received 19 November 1973)

If there is a weak neutral current, then the elastic scattering process v + A —v + A should
have a sharp coherent forward peak just as e + A —e¢ + A does. Experiments to observe this
peak can give important information on the isospin structure of the neutral current. The
experiments are very difficult, although the estimated cross sections (about 10738 ¢m? on
carbon) are favorable. The coherent cross sections (in contrast to incoherent) are almost
energy-independent. Therefore, energies as low as 100 MeV may be suitable. Quasi-
coherent nuclear excitation processes v + 4 —v + A* provide possible tests of the conservation of
the weak neutral current. Because of strong coherent effects at very low energies, the
nuclear elastic scattering process may be important in inhibiting cooling bv neutrino
emission in stellar collapse and neutron stars. Citations per year

Vv Enhancement by 80
/ N% +7Z%(1 —4sin®0y) «
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Coherent Elastic Neutrino Nucleus Scattering (CENNS=CEVNs, “seventh”)
now a major industry with reactor v, (eg arXiv:2203.07361)
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https://arxiv.org/abs/2203.07361

Delayed (Neutrino-Driven) Explosion
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Wilson, Proc. Univ. lllinois Meeting on Num. Astrophys. (1982)
Bethe & Wilson, ApJ 295 (1985) 14
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Livermore Fluxes and Spectra

Livermore numerical model, ApJ 496 (1998) 216
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e Schematic numerics to couple
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Three Phases of Neutrino Emission

Luminosity [10%" erg/s]

Average Energy [MeV]

Spherically symmetric Garching model (25 M) with Boltzmann neutrino transport

Georg Raffelt, MPI Physics, Garching
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Time [ms]
e Shock breakout

e De-leptonization of
outer core layers

0.2 04 0.6

Time [s]

e Shock stalls ~ 150 km
e Neutrinos powered by
infalling matter

16

Cooling on neutrino
diffusion time scale
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Opportunities with the Next Galactic Supernova

Phase Physics Opportunities
Pre-SN early warning, progenitor physics
Neutronization|| flavor mixing, SN distance, new physics
Accretion flavor mixing, SN direction, multi-D effects

Early cooling

equation of state, energy loss rates,
PNS radius, diffusion time, new physics

Late cooling

NS vs. BH formation, transparency time,
integrated losses, new physics

Pre-SN Main Signal Late Time
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TABLE I. Key physics opportunities from detecting super-
nova neutrinos in different phases.

Li, Roberts & Beacom [arXiv:2008.04340]

Georg Raffelt, MPI Physics, Garching
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https://arxiv.org/abs/2008.04340
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Neutrinos in the Precision Era

| NUFIT 5.3 (2024)
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Mass scale constrained from cosmology
Soon to be measured?

DESI, arXiv:2404.03002
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Mass ordering, CP-violation from
upcoming oscillation experiments
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https://arxiv.org/abs/2404.03002

SASI Detection Perspectives
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Neutrino signal variations
from hydro instabilities
detectable for sub-eV neutrino masses

E.g. Lund+ arXiv:1006.1889
Tamborra+ arXiv:1307.7936
Walk+ arXiv:1807.02366
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Do Neutrinos Gravitate?

Early light curve of SN 1987A
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e Neutrinos arrived several hours
before photons as expected

e Transit time for v and y same
(160.000 yr) within a few hours

Shapiro time delay for particles
moving in a gravitational potential

At = =2 [, dt [r(t)]

For trip from LMC to us, depending
on galactic model,

At =~ 1-5 months

Neutrinos and photons respond to
gravity the same to within

1-4 x 1073

Longo, PRL 60:173, 1988
Krauss & Tremaine, PRL 60:176, 1988

Georg Raffelt, MPI Physics, Garching
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GW vs Gamma-Ray Shapiro Time Delay

ApJ Lett. 848 (2017) L12
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NS-NS Merger
e GW170817
e GRB 170817A

GWs & y arrive within 2 s
Equal Shapiro time delay
within ~ 1077
(Shoemaker & Murase
arXiv:1710.06427)
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https://arxiv.org/abs/1710.06427
https://doi.org/10.3847/2041-8213/aa91c9

Continuing Interest in SN 1987A Neutrinos

e Hirata et al (Kamiokande-Il), PRL 58 (1987) 1490
Observation of a neutrino burst from the supernova SN1987A

e Bionta et al (IMB), PRL 58 (1987) 1494, Observation of a Neutrino Burst
in Coincidence with Supernova 1987A in the Large Magellanic Cloud
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Second & Third Particle Generations in SN Physics

mass = =2.2 MeV/c? =1.28 GeV/c? =173.1 GeV/c? 0 =125.09 GeV/c?
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O O @| @ @
up top gluon higgs
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x - Y ) 0
@@ @ |f
<L
- down bottom
o
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. -1 -1 0 Z
Early universe, Y ‘ ? ‘ ) o)
stellar collapse & l electron | tau Z boson 8 9
NS mergers naturally ) m 3
involve a" f|aV0r % (<)2.2 eV/c? (<)1.7 MeV/c? :15.5 MeV/c2 +=180.39 GeV/c? (LIDJ 8
. i 14
neutinos  —> = | U9 |1 W |1 @ |1 @ |3z
LL electron muon tau <L O
- neutrino neutrino neutrino W boson U=

Everyday physics and astrophysics Ve =V, V,Vy, Vg
only first family of fermions in old SN simulations
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Second & Third Particle Generations in SN Physics
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Everyday physics and astrophysics Vy =V, wVr
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Second & Third Particle Generations in SN Physics

Early universe,
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Second & Third Particle Generations in SN Physics

Early universe,
stellar collapse &
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neutrinos e
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Impact of New Particles

Progenitor Star

Energy and lepton transport
within PNS

Energy transport beyond neutrino sphere
(directly or decay products)

e Explosion

e Nucleosynthesis

Detection (direct or decay products)
e SN 1987A, next nearby SN
e Diffuse background from all past SNe

Georg Raffelt, MPI Physics, Garching GGl, Florence, 19 July 2024
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sphere

Volume emission
of new particles
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Emission of very weakly interacting
particles would “steal” energy from the
neutrino burst and shorten it.

(Early neutrino burst powered by accretion,
not sensitive to volume energy loss.)

Late-time signhal most sensitive observable
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Axion Emission from a Nuclear Medium

. . . Cn = c
Axion-nucleon interaction: Line =~ Wyy,¥sPyota = #];2165
a

2fa
“““ a
N " (\D " N + Axial-vector interaction implies
. . N dominance of spin-dependent process

Nucleon-Nucleon
Bremsstrahlung

e Interaction potential (one-pion exchange OPE often used, but too simplistic)

e In-medium coupling constants
* In-medium effective nucleon properties
e Correlation effects (static and dynamical spin-spin correlations)

— For latest discussion see Carenza et al. arXiv:1906.11844

Thermal m~ contribute significant (dominant?)

. o
. .
. .
. .
. .
. .
. .
. o
b3 P

— For latest discussion see Carenza et al. arXiv:2010.02943

GGl, Florence, 19 July 2024
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Astrophysical Axion Bounds

e 2024 Edition, Caputo & Raffelt, arXiv:2401.13728, 24 Jan 2024
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I G117-B15A Signature (Electrons)

Caputo & Raffelt (2024)

e Many improvements over the years, but overall picture the same
e Specific QCD axion signatures hard to expect from cooling effects
e Best stellar detection opportunity probably (Baby)IAXO



Where is the Neutron Star of SN 1987A?

No pulsar or neutron star has been seen until now (35 years later)
e Infra-red excess observed by ALMA: In “the blob” strong indication for NS
Expected position, remnant hidden by dust [Cigan+ arXiv:1910.02960]
e Most plausible model: Thermally cooling non-pulsar NS [Page+ arXiv:2004.06078]

https://www.bbc.com/news/science-
environment-50473482

Atacama Large Millimeter/Submillimeter

Array (ALMA) at ESO in Chile

Location of the
Neutron Star

o 1.5x10%2 km)|
. 024 i
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https://www.bbc.com/news/science-environment-50473482
https://www.bbc.com/news/science-environment-50473482

SN 1987A Signal Duration Too Long?

Fiorillo+ arXiv:2308.01403
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FIG. 17. Differential event distribution (signal and background) at each experiment, compared with the observations. Results

are shown for model 1.44-SFHo without flavor swap; the offset time for each experiment is chosen as the best-fit value reported
in Table VII.

e In a suite of Garching models (no axions), expected signal always too short
(PNS convection!)
® Deserves dedicated study

Georg Raffelt, MPI Physics, Garching GGl, Florence, 19 July 2024


https://arxiv.org/abs/2308.01403

Flavor Conversion in Core-Collapse Supernovae

e Adiabatic flavg
conversion

propagation eigenstates,

e Slow self-induced
flavor conversion?
(Spectral splits ...)

=

e Fast self-induced
flavor conversion?
(Flavor equilibration?)

Georg Raffelt, MPI Physics, Garching GGl, Florence, 19 July 2024



Short History of Collective Neutrino Oscillations

1992-1993 Off-diagonal refraction (Pantaleone 1992),
QKEs (Dolgov 1981, Rudzsky 1990, Sigl & Raffelt 1993)

1993-2005 Self-induced coherence, early universe (Samuel 1993)
Homogeneous systems evolving in time
But spontaneous breaking of homogeneity

2005-2015 Supernova neutrinos, bulb model: static solutions evolving in space
(Duan, Fuller, Qian 2005, Duan, Fuller, Carlson, Qian 2006)
Looking for signatures (spectral splits, ...)
But many symmetries ... get spontaneousy broken

2015-today Full space-time problem (everything done before is wrong?)
Time-dependent solutions (Abbar, Duan 2015, Dasgupta, Mirizzi 2015)
Fast flavor conversion (Sawyer 2015)
Dispersion relation in linear regime (lzaguirre, Raffelt, Tamborra 2017)
Similar to plasma physics (Capozzi, Dasgupta, Lisi, Marrone, Mirizzi 2017)

FFC local effect? Connection to slow oscillations?
Leads to equilibrium, even thermalization?
Effective implementation in SN codes?

Georg Raffelt, MPI Physics, Garching GGl, Florence, 19 July 2024



A problem worthy of attack
proves its worth by fighting back

Old Adage
(Paul Erdos?, Piet Hein?)



Many Open Questions ... It’s Only the Beginning

I ir's what I think it is, we "ve gol some work ahead of us.

Georg Raffelt, MPI Physics, Garching GGl, Florence, 19 July 2024



Need more GGI workshops on Neutrinos ©
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