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Atmosphere: H, He Mass ~1.2-2.2M,
Radius ~ 10 — 14km

Neutron Stars: Basics

Outer crust:
nuclear
clusters+electons

e Nearly all known NSs are
pulsars (rapidly rotating
and highly magnetized)
that emit X-ray, optical or
radio beams from their
poles, like a lighthouse.

Inner crust: nuclear
clusters electrons+neutron gas

Outer core:
uniform nuclear
matter (o, p, €, 4)

Inner core:
unknown
composition

e The radii of most NSs are
about 12 km.

e Most, if not all, NSs are formed in the gravitational collapse
of massive stars at the ends of their lives; some of those
collapses produce black holes instead. Some massive NSs may
be formed in the aftermath of a binary merger of two
lower-massed neutron stars.

e The minimum possible NS mass is 0.1Mg), but none are
observed to be less massive than 1M,.
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Timing for PSR J0737-3039
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Masses of Pulsars in Binaries from Pulsar Timing

Mass (Mo)
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Mass distribution of neutron stars in binary pulsar systems

https://www3.mpifr-bonn.mpg.de/staff/pfreire/NS_masses.html

Paolo Freire Al
s
1 |

Largest: 2.08 £ 0.07 Mg
Smallest: 1.174 £+ 0.004 M,

Several other NS masses have been measured by other means,
including some estimated to be more than 2M, (e.g., black
widow pulsars) and smaller than 1M, (HESS J1731-347),

but their mass uncertainties are generally large.
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How Can a Neutron Star's Radius Be Measured?

Luminosity  47R?0pT2 R 2 4
4xD? T 4xDZ (D) o8 Ts
X-ray observations of quiescent neutron stars in low-mass X-ray

binaries measure the flux and surface temperature T,. Distance D
somewhat uncertain; GR effects introduce an M dependence.

e Fryy = gAD/IZC X-ray observations of bursting neutron stars in
accreting systems measure the Eddington flux Fgyy. & is the
poorly-known opacity; GR effects introduce an R dependence.

e X-ray phase-resolved spectroscopy of millisecond pulsars with
nonuniform surface emissions (hot spots). NICER: PSR
J0030+-0451, PSR J0437-4715 (closest and brightest millisecond
pulsar) and PSR J0740+6620 (most massive pulsar).

5\ 1/6 3/5

o Ry~ (11.510.3)%(8@\%) km, M = At o
GW observations of neutron star mergers measure the chirp mass
M and binary tidal deformability A (GW170817).

e Iy o< MaR% Radio observations of extremely relativistic binary
pulsars measure masses M, Mg and moment of inertia /4 from
spin-orbit coupling [PSR J0737-3039 (P, = 0.102d), PSR
J1757-1854 (0.164 d), PSR J1946+-2052 (0.078 d)].

e Flux =
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Summary of Astrophysical Observations
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Neutron Star Structure
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The Radius — Pressure Correlation
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The |-Love Relation
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F-Mode Properties - Moment of Inertia
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Neutron Skin Thickness - L
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Maximum Mass As a Unique Scaling Point
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Varying the EOS
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Mlll&X? RID&X? gmax: Pmax Correlatlons

e Ofengeim(2020) fitted Emax and Ppax with the functions

se.p
& P ~ 3,P
e T max Rmax Ccos QZ)E,P + (GMmax/Cz) sin ¢E,P + dS,P

with accuracies of about 3% and 8%, respectively.

e Cai, Li and Zhang (2023) found a perturbative solution of
the TOV equations in the parameter x = P./&:

R

12

3¢? X 1/2
2nGE, {1+4x+3x2] ’

Yo 54,6 X 3/2.
mG3E. |1+ 4x + 3x2

At Mp,ax, accuracies are 7% and 8%; at 1.4M, they are 2%
and 6%.
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e Ofengeim et al. (2023) suggested fits for M,,ax, Rmax:
al\/lgm;>{2x3/2 aRgmal>{2X1/2

Mmax — max
bl\/l + CI\/IX'DMEmaX

bR + CRXpRgmax
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Mllla)ﬂ RII]’(LX) gllla)ﬂ Pmax Correlatlon

Ofengeim

gc.max

'Dc.max

et al’s finding suggest the power-law correlations

Rmax —1.98 Mmax —0.171
= (1.80910.36)( ) ( ) GeV fm ™3,

— (1185+6.2) (

1 Okm M ®

R ~5.24 Moy 2.73 | L
1 Okm> ( Mo > MeV fm™ 7,

which are accurate to about 5% in fitting ¢ max and Pc max-

Points along M — R

curves, at M = M.,

have similarly accurate __ ‘[

correlations:

(poc

bp ¢ cp.f
Pc,f = apf fM'maXMmax

J. M. Lattimer

6

3

="
be f cer [
5c,f - a&fRfM'mameax 2

T

T T T T 3.0 T T T T

M max ; Rlnax \

i

i

!
!
H

Correlations and Semi-Universal Relations Connecting Nuclear



(M, R) Is Not Equivalent To (&, P.)

While the maximum mass point (Mpmax, Rmax) predicts (Ec max; Pe,max) to
about 5%, and similarly for a given fractional maximum mass fM,,.., the
inversion is not unique. Two different equations of state predicting the
same (M, R) (numbers in figure) arrive at those values from integration
via different paths in (&, P) space. Similarly, two equations of state with
identical values of (&, P.) (letters) do not have the same (M, R) values.
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Correlations at M = fM,.«

Thus, more information than (M7 R) needed. We find precision is
greatly improved using a 2nd radius from a grid of fractional M,
points, e.g., f € [1,0.95,0.9,0.85,4/5,3/4,2/3,0.6,0.5,0.4,1/3].

o Rfl be Rf2 ce 5 M ax de r
f &F \ 10km 10km M ’

b Rﬂ bp f Rf2 P 5 M, ax dp,r
f P\ 10km 10km M ’

f=M/Muax | £ f, A(né&) | A £,  A(InPy)

1 005 09 000469 | 1  3/5 00123
0.95 095 4/5 000275 | 095 3/5 000722 P
0.90 095 2/3 000227 | 095 04 000517 Q @
0.85 0.95 1/2 000237 | 0.9 04 000401 25
4/5 0.9 1/2 000230 | 0.85 0.4 000463 @ &
3/4 0.85 1/2 000239 | 08 04 000539 *>'@
2/3 3/4 1/2 000277 | 2/3 04 000513 %
3/5 3/4 04 000339 | 2/3 1/3 00172 H Y
1/2 2/3 1/3 000477 | 1/2 04 00099% @ £
2/5 1/2 1/3 000706 | 1/2 1/3 0.0187 oo =
1/3 1/2 1/3 00122 | 2/5 1/3 0.0259
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Testing th

e Inversion
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Testing the Inversion for c? —
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Inversion of M — R Data

Instead of inverting an M — R curve one may wish to infer the EOS from
M — R data. M,,.x and Rp,.x are not precisely known. One can form
analytical correlations between (M, R) and (., P.), but these have only
moderate accuracy since this inversion is not unique. More information
than the M — R point itself is necessary to improve the inversion.

One possibility is the inverse slope dR/dM at the (M, R) point.
Generally, one can express a correlation between a quantity
G =€ [&, Pc,ete.] and (M, R, dR/dM) in the form

InG = |naG+bG|nM+CG|nR+dc.;(dR/dM).

Including dR/dM information improves correlations by factors of about 2.
It is also found that inferred values of £. and P, are highly correlated;
fits to P./E. have much smaller uncertainty than fits to & or P..

One has a few M — R uncertainty regions from observations of different
objects. Consider two regions with different average values of M. Select
random pairs of points from each region; using the above correlation
formula, then infer two £ — P, uncertainty regions (after rejecting pairs
that violate the conditions 0 < dP./d€. <1 and dP./dM > 0).
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Comparison to Traditional Bayesian Inference

Traditional Bayesian inversions begin with an M — R prior generated by
sampling millions of trials using a specific EOS parameterization with
uniform distributions of parameters within selected ranges.
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Importance of AR = Ry — Ry4

313 Skyrme + RMF forces with My, > 2.0Mg
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Applications

e Analytic inversion of TOV equations with arbitrarily
high accuracies (depends on number of R values).
e Existing techniques

use parameterized 2.0 [T
EOS models in

PSR J0740+6620
probabilistic

(Bayesian) . AR=R2.0_5R1.4

approaches having 5 |
unquantified ‘z’ 1.6}
systematic
uncertainties 141

stemming from the
model and parameter 2|
choices (prior
distributions).
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e Since M and R can’t uniquely determine &, and P., we
use the value of (dR/dM) to improve accuracies.

e Correlations of ¢; with M, R and dR/dM can be used
to further improve the fidelity of inversions and also for
interpolating within the & — P¢ grid. They could also
allow probing the composition of the neutron star interior
(phase transitions, etc.).

e Correlations of A, I and BE/M with M and R also exist
and aren't sensitive to dR/dM.
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