Correlations and Semi-Universal Relations Connecting Nuclear Matter and Neutron Stars

J. M. Lattimer

Department of Physics & Astronomy

Office of Science

Neutrino Frontiers
Galileo Galilei Institute for Theoretical Physics

Arcetri, Florence, Italy 11 July, 2024

Acknowledgements

Funding Support:

DOE - Nuclear Physics

DOE - Toward Exascale Astrophysics of Mergers and Supernovae (TEAMS)

NASA - Neutron Star Interior Composition ExploreR (NICER)

NSF - Neutrinos, Nuclear Astrophysics and Symmetries (PFC - N3AS)

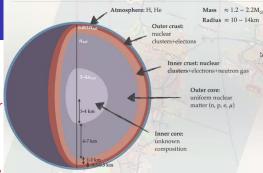
DOE - Nuclear Physics from Multi-Messenger Mergers (NP3M)

Recent Collaborators:

Boyang Sun (Stony Brook), Duncan Brown & Soumi De (Syracuse), Christian Drischler, Madappa Prakash & Tianqi Zhao (Ohio), Sophia Han (TDLI), Sanjay Reddy (INT), Achim Schwenk (Darmstadt), Andrew Steiner (Tennessee) & Ingo Tews (LANL)

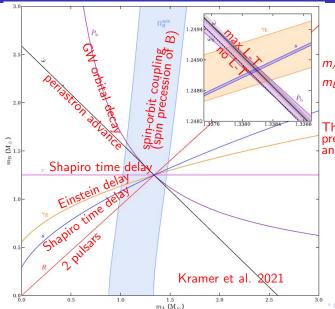
Neutron Stars: Basics

 Nearly all known NSs are pulsars (rapidly rotating and highly magnetized) that emit X-ray, optical or radio beams from their poles, like a lighthouse.



- The radii of most NSs are about 12 km.
 - Most, if not all, NSs are formed in the gravitational collapse of massive stars at the ends of their lives; some of those collapses produce black holes instead. Some massive NSs may be formed in the aftermath of a binary merger of two lower-massed neutron stars.
 - The minimum possible NS mass is $0.1M_{\odot}$, but none are observed to be less massive than $1M_{\odot}$.

Pulsar Timing for PSR J0737-3039

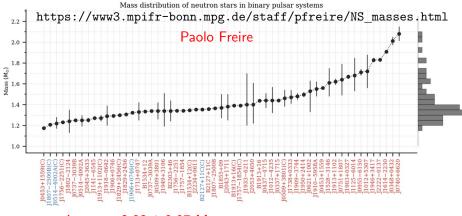


$$m_A = 1.338185^{+12}_{-14} \text{ M}_{\odot}$$

 $m_B = 1.248868^{+13}_{-11} \text{ M}_{\odot}$

These are the most precisely known masses of any astronomical objects.

Masses of Pulsars in Binaries from Pulsar Timing



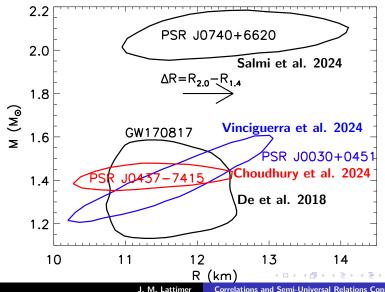
Largest: $2.08 \pm 0.07~M_{\odot}$ Smallest: $1.174 \pm 0.004~M_{\odot}$

Several other NS masses have been measured by other means, including some estimated to be more than $2M_{\odot}$ (e.g., black widow pulsars) and smaller than $1M_{\odot}$ (HESS J1731-347), but their mass uncertainties are generally large

How Can a Neutron Star's Radius Be Measured?

- Flux = $\frac{\text{Luminosity}}{4\pi D^2} = \frac{4\pi R^2 \sigma_B T_s^4}{4\pi D^2} = \left(\frac{R}{D}\right)^2 \sigma_B T_s^4$ X-ray observations of quiescent neutron stars in low-mass X-ray binaries measure the flux and surface temperature T_s . Distance D somewhat uncertain; GR effects introduce an M dependence.
- $F_{Edd} = \frac{GMc}{cD^2}$ X-ray observations of bursting neutron stars in accreting systems measure the Eddington flux F_{Edd} . κ is the poorly-known opacity; GR effects introduce an R dependence.
- X-ray phase-resolved spectroscopy of millisecond pulsars with nonuniform surface emissions (hot spots). NICER: PSR J0030+0451, PSR J0437-4715 (closest and brightest millisecond pulsar) and PSR J0740+6620 (most massive pulsar).
- $R_{1.4} \simeq (11.5 \pm 0.3) \frac{\mathcal{M}}{M_{\odot}} \left(\frac{\tilde{\Lambda}}{800}\right)^{1/6} \text{km}, \quad \mathcal{M} = \frac{(M_A M_B)^{3/5}}{(M_A + M_B)^{1/5}}$ GW observations of neutron star mergers measure the chirp mass \mathcal{M} and binary tidal deformability $\tilde{\Lambda}$ (GW170817).
- $I_A \propto M_A R_A^2$ Radio observations of extremely relativistic binary pulsars measure masses M_A , M_B and moment of inertia I_A from spin-orbit coupling [PSR J0737-3039 ($P_b = 0.102d$), PSR J1757-1854 (0.164 d), PSR J1946+2052 (0.078 d)

Summary of Astrophysical Observations

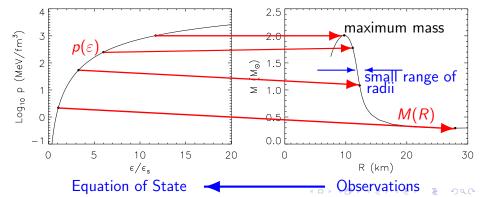


Neutron Star Structure

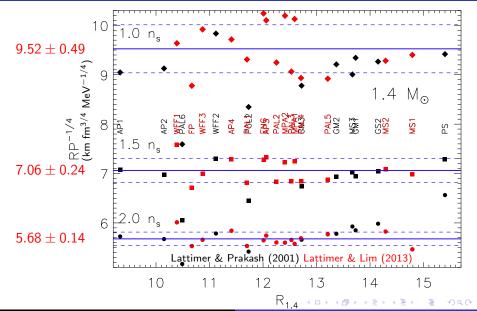
Tolman-Oppenheimer-Volkov equations

$$\frac{dp}{dr} = -\frac{G}{c^4} \frac{(mc^2 + 4\pi pr^3)(\varepsilon + p)}{r(r - 2Gm/c^2)}$$

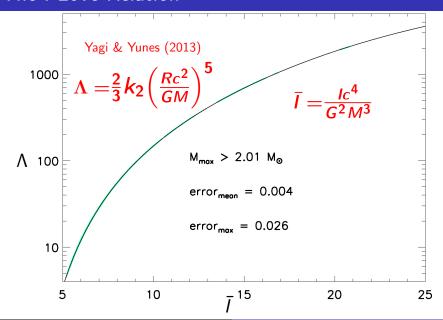
$$\frac{dm}{dr} = 4\pi \frac{\varepsilon}{c^2} r^2$$



The Radius – Pressure Correlation

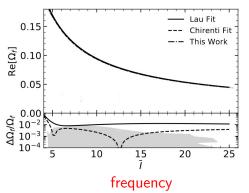


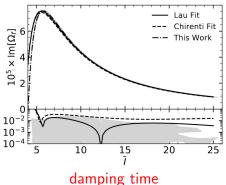
The I-Love Relation



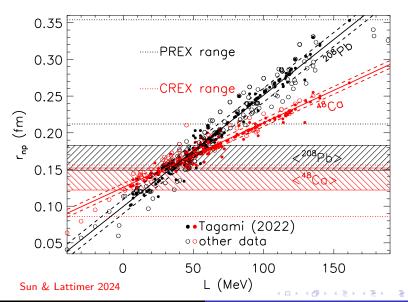
F-Mode Properties - Moment of Inertia

$$\Omega_f = \frac{GM\omega_f}{c^3}$$

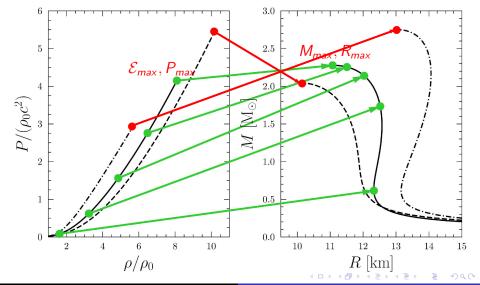




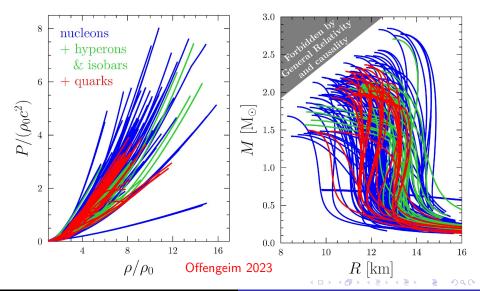
Neutron Skin Thickness - L



Maximum Mass As a Unique Scaling Point



Varying the EOS



$M_{\max}, R_{\max}, \mathcal{E}_{\max}, P_{\max}$ Correlations

• Ofengeim(2020) fitted \mathcal{E}_{max} and P_{max} with the functions

$$\mathcal{E}_{max}, P_{max} \simeq \left[rac{a_{\mathcal{E},P}}{R_{max}\cos\phi_{\mathcal{E},P} + \left(GM_{max}/c^2
ight)\sin\phi_{\mathcal{E},P} + d_{\mathcal{E},P}}
ight]^{s_{\mathcal{E},P}}$$

with accuracies of about 3% and 8%, respectively.

• Cai, Li and Zhang (2023) found a perturbative solution of the TOV equations in the parameter $x = P_c/\mathcal{E}_c$:

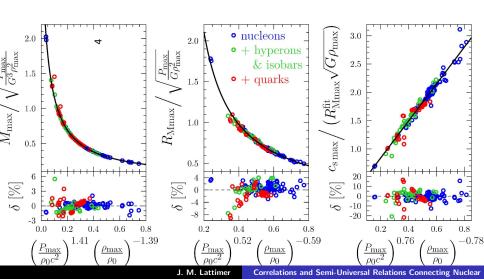
$$R \simeq \sqrt{\frac{3c^2}{2\pi G \mathcal{E}_c}} \left[\frac{x}{1 + 4x + 3x^2} \right]^{1/2},$$

 $M \simeq \sqrt{\frac{54c^6}{\pi G^3 \mathcal{E}_c}} \left[\frac{x}{1 + 4x + 3x^2} \right]^{3/2}.$

At M_{max} , accuracies are 7% and 8%; at 1.4 M_{\odot} , they are 2% and 6%.

• Ofengeim et al. (2023) suggested fits for M_{max} , R_{max} :

$$M_{ extit{max}} \simeq rac{a_M \mathcal{E}_{ extit{max}}^{-1/2} x^{3/2}}{b_M + c_M x^{p_M} \mathcal{E}_{ extit{max}}^{q_M}}, \quad R_{ extit{max}} \simeq rac{a_R \mathcal{E}_{ extit{max}}^{-1/2} x^{1/2}}{b_R + c_R x^{p_R} \mathcal{E}_{ extit{max}}^{q_R}}$$



$M_{\rm max}, R_{\rm max}, \mathcal{E}_{\rm max}, P_{\rm max}$ Correlation

Ofengeim et al's finding suggest the power-law correlations

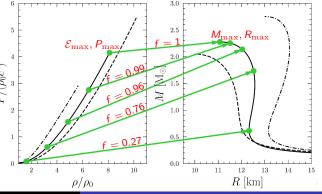
$$\begin{split} \mathcal{E}_{\rm c,max} &= (1.809 \pm 0.36) \left(\frac{R_{\rm max}}{10 {\rm km}}\right)^{-1.98} \left(\frac{M_{\rm max}}{M_{\odot}}\right)^{-0.171} {\rm GeV~fm^{-3}}, \\ P_{\rm c,max} &= (118.5 \pm 6.2) \left(\frac{R_{\rm max}}{10 {\rm km}}\right)^{-5.24} \left(\frac{M_{\rm max}}{M_{\odot}}\right)^{2.73} {\rm MeV~fm^{-3}}, \end{split}$$

which are accurate to about 5% in fitting $\mathcal{E}_{c,max}$ and $P_{c,max}$.

Points along M-R curves, at $M=fM_{\rm max}$, have similarly accurate correlations:

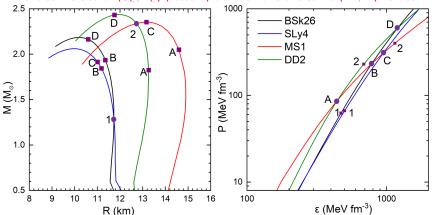
$$\mathcal{E}_{c,f} = a_{\mathcal{E},f} R_{fM_{max}}^{b_{\mathcal{E},f}} M_{max}^{c_{\mathcal{E},f}} \frac{1}{2}$$

$$P_{c,f} = a_{P,f} R_{fM_{max}}^{b_{P,f}} M_{max}^{c_{P,f}}$$



(M,R) Is Not Equivalent To (\mathcal{E}_c,P_c)

While the maximum mass point (M_{max}, R_{max}) predicts $(\mathcal{E}_{c,max}, P_{c,max})$ to about 5%, and similarly for a given fractional maximum mass fM_{max} , the inversion is not unique. Two different equations of state predicting the same (M,R) (numbers in figure) arrive at those values from integration via different paths in (\mathcal{E},P) space. Similarly, two equations of state with identical values of (\mathcal{E}_c,P_c) (letters) do not have the same (M,R) values.



Correlations at $M = fM_{\text{max}}$

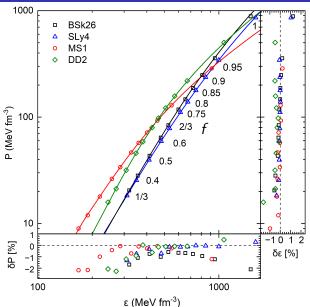
Thus, more information than (M, R) needed. We find precision is greatly improved using a 2nd radius from a grid of fractional M_{max} points, e.g., $f \in [1, 0.95, 0.9, 0.85, 4/5, 3/4, 2/3, 0.6, 0.5, 0.4, 1/3]$.

$$\begin{array}{lcl} \mathcal{E}_{f} & = & a_{\mathcal{E},f} \left(\frac{R_{f_{1}}}{10 \mathrm{km}} \right)^{b_{\mathcal{E},f_{1}}} \left(\frac{R_{f_{2}}}{10 \mathrm{km}} \right)^{c_{\mathcal{E},f_{2}}} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{\mathcal{E},f}}, \\ P_{f} & = & a_{P,f} \left(\frac{R_{f_{1}}}{10 \mathrm{km}} \right)^{b_{P,f_{1}}} \left(\frac{R_{f_{2}}}{10 \mathrm{km}} \right)^{c_{P,f_{2}}} \left(\frac{M_{max}}{M_{\odot}} \right)^{d_{P,f}}, \end{array}$$

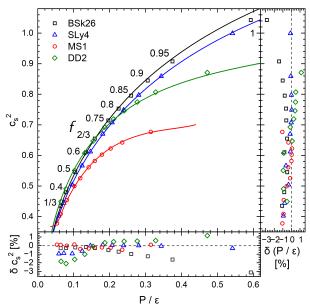
$f = M/M_{\rm max}$	f_1	f_2	$\Delta(\ln \mathcal{E}_f)$	f_1	f_2	$\Delta(\ln P_f)$
1	0.95	0.9	0.00469	1	3/5	0.0123
0.95	0.95	4/5	0.00275	0.95	3/5	0.00722
0.90	0.95	2/3	0.00227	0.95	0.4	0.00517
0.85	0.95	1/2	0.00237	0.9	0.4	0.00491
4/5	0.9	1/2	0.00230	0.85	0.4	0.00463
3/4	0.85	1/2	0.00239	0.8	0.4	0.00539
2/3	3/4	1/2	0.00277	2/3	0.4	0.00513
3/5	3/4	0.4	0.00339	2/3	1/3	0.0172
1/2	2/3	1/3	0.00477	1/2	0.4	0.00996
2 / 5	1/2	1/3	0.00706	1/2	1/3	0.0187
1/3	1/2	1/3	0.0122	2/5	1/3	0.0259

greatly reduced uncertaintites!

Testing the Inversion



Testing the Inversion for $c_s^2 - P/\mathcal{E}$



Inversion of M-R Data

Instead of inverting an M-R curve one may wish to infer the EOS from M-R data. M_{max} and R_{max} are not precisely known. One can form analytical correlations between (M, R) and (\mathcal{E}_c, P_c) , but these have only moderate accuracy since this inversion is not unique. More information than the M-R point itself is necessary to improve the inversion.

One possibility is the inverse slope dR/dM at the (M,R) point. Generally, one can express a correlation between a quantity $G = \in [\mathcal{E}_C, P_C, \text{etc.}]$ and (M, R, dR/dM) in the form

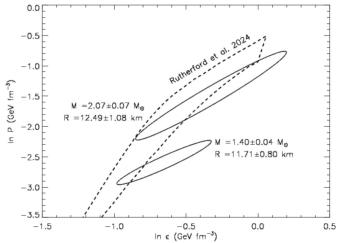
$$\ln G = \ln a_G + b_G \ln M + c_G \ln R + d_G (dR/dM).$$

Including dR/dM information improves correlations by factors of about 2. It is also found that inferred values of \mathcal{E}_c and P_c are highly correlated; fits to P_c/\mathcal{E}_c have much smaller uncertainty than fits to \mathcal{E}_c or P_c .

One has a few M-R uncertainty regions from observations of different objects. Consider two regions with different average values of M. Select random pairs of points from each region; using the above correlation formula, then infer two $\mathcal{E}_c - P_c$ uncertainty regions (after rejecting pairs that violate the conditions $0 \le dP_c/d\mathcal{E}_c \le 1$ and $dP_c/dM > 0$).

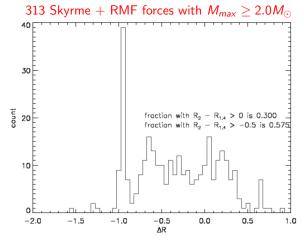
Comparison to Traditional Bayesian Inference

Traditional Bayesian inversions begin with an M-R prior generated by sampling millions of trials using a specific EOS parameterization with uniform distributions of parameters within selected ranges.



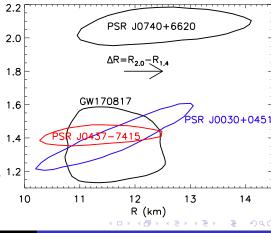
Importance of $\Delta R = R_{2.0} - R_{1.4}$

 \bullet J0437-4715: $R=11.36^{+0.95}_{-0.63}$ kn \bullet J0740+6620: $R=12.49^{+1.28}_{-0.88}$ kn $\Delta R=+1.13^{+1.59}_{-1.08}$ km



Applications

- Analytic inversion of TOV equations with arbitrarily high accuracies (depends on number of R_f values).
- Existing techniques use parameterized EOS models in probabilistic (Bayesian) (Bayesian)
 approaches having approaches having approaches systematic uncertainties stemming from the model and parameter choices (prior distributions).



- Since M and R can't uniquely determine \mathcal{E}_c and P_c , we use the value of (dR/dM) to improve accuracies.
- Correlations of c_s with M,R and dR/dM can be used to further improve the fidelity of inversions and also for interpolating within the $\mathcal{E}_f P_f$ grid. They could also allow probing the composition of the neutron star interior (phase transitions, etc.).
- Correlations of $\tilde{\Lambda}$, \bar{I} and BE/M with M and R also exist and aren't sensitive to dR/dM.