Brick Wall Quantum Circuits with Global Fermionic Symmetry

Forty Years of CFT & Cappelli Fest - GGI- 2 Feb 2024

Kareljan Schoutens Institute for Theoretical Physics QuSoft

with

Pietro Richelli Alberto Zorzato

Year 3 - 1986

Johns Hopkins Workshop in Bonn, with Jean-Bernard explaining the CIZ Classification of Modular Invariant Partition Functions

Year 18 - 2001

Amsterdam Summer Workshop on Flux, Charge, Topology and Statistics, 2001

Year 25 - 2008

Conference on Low-dimensional Quantum Field Theories and Applications, GGI 2008 (??)

with P. Richelli, A. Zorzato

Study of class of **Brick Wall quantum circuits** that are integrable, `free fermionic' and possess a global fermionic symmetry and that derive from factorizable particle scattering in perturbed superconformal field theory

Context: quantum dynamics on a quantum computer

Context: quantum dynamics

Time evolution implemented using a **brick wall** type quantum circuit:

Context: quantum dynamics

FIG. 1. Domain wall relaxation in the Heisenberg XXZ spin chain. (A) Schematic of the unitary gate sequence used in this work, where fSim gates are applied in a Floquet scheme on a 1D chain of $N_Q = 46$ qubits. (B) Relaxation dynamics as a function of site and cycle number for $\mu = \infty$, 0.9, and 0.3 for initially prepared domain-wall states with $2\langle S^z \rangle = \pm \tanh \mu$. (C) Histogram showing the probability distribution of transferred magnetization after t = 1, 5 and 20 cycles (arrows in B) for $\mu = \infty$.

Google Quantum AI and collaborators, arXiv:2306.09333

Integrable quantum circuits

If the 2-qubit `brick' satisfies a Yang-Baxter Equation (YBE) the Floquet dynamics given by the quantum circuit is integrable

Gritsev, Polkolnikov, 2017 Vanicat, Zadnik, Prosen, 2018 Miao, Gritsev, Kurlov, 2022 Maruyoshi et al, 2022

...

Integrable quantum circuits – fundamental symmetries

Reading qubit states as

 $|0
angle
ightarrow |\uparrow
angle, |1
angle
ightarrow |\downarrow
angle$

natural symmetry is SU(2), as in the XXX chain

or U(1) as in an XXZ chain

Reading qubit states as

|0
angle
ightarrow |b
angle, |1
angle
ightarrow |f
angle

natural symmetry is fermionic

• do we have a solution of YBE with fermionic symmetry?

S-matrices in integrable 1+1D qft

Early 1990's: study of factorizable *S*-matrices in integrable massive 1+1D qft arising from a relevant perturbation of a CFT.

Example: E_8 structured scattering theory for Ising CFT with magnetic perturbation [Zamolodchikov, 1989]

Clue: for integrable perturbation, 2-body S-matrices satisfy a YBE \rightarrow provide `integrable' 2-qubit gate

S-matrices in integrable 1+1D qft

Factorizable S-matrices with fermionic symmetry arise for perturbations of Superconformal Field Theories that preserve integrability and supersymmetry

Volume 185, number 1,2

PHYSICS LETTERS B

12 February 1987

MODULAR INVARIANT PARTITION FUNCTIONS OF SUPERCONFORMAL THEORIES

A. CAPPELLI¹

Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France

Received 29 October 1986

The modular invariant partition functions of two-dimensional minimal superconformal theories are obtained by extending a systematic method developed for conformal theories. They are classified in three infinite series and a few exceptional cases and labelled by simply laced Lie algebras.

SUPERSYMMETRY AND FACTORIZABLE SCATTERING

Kareljan SCHOUTENS*

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, NY 11794-3840, USA

Received 20 February 1990

We analyze supersymmetric particle theories in 1 + 1 dimensions that exhibit factorizable scattering. We propose the general form $\hat{S} = \hat{S}_{BF}\hat{S}_{B}$ for the S-matrix, where \hat{S}_{B} is a purely bosonic S-matrix and \hat{S}_{BF} describes the mixing of bosonic and fermionic particles. We derive a general expression for \hat{S}_{BF} .

Susy in integrable 1+1D qft

Found in my 1990 paper:

 $\mathbf{\check{S}}(\alpha,\gamma,\theta)$

• most general supersymmetric 2-body S-matrices satisfying (graded) YBE, with

$$\alpha$$
 – coupling strength

- γ log of particle mass ratio
- $\boldsymbol{\theta}$ difference of particle rapidities

Susy in 1+1D integrable qft

• $\check{\mathbf{S}}(\alpha, \gamma, \theta)$ matched with specific perturbed SCFT, later confirmed by TBA analysis

M. Moriconi, KjS - 1995

• $\check{\mathbf{S}}(\alpha, \gamma, \theta)$ satisfies `free fermion' (or `matchgate') property, as a consequence we can write

$$\mathbf{\check{S}}_{i,i+1}(lpha,\gamma, heta) = \exp[i\mathbf{E}_{i,i+1}].$$

Brick Wall quantum circuit

- period *n*=2
- masses $m_1, m_2, ...$
- rapidities $\theta/2$, - $\theta/2$, ...
- PBC

Note that gate connecting sites *1*, *L* has string of *Z*-operators to enforce graded tensor product Essler, Korepin, 1992

Brick Wall quantum circuits

 $\mathbf{U}_{\mathbf{F}}(\theta) = \exp[i\mathbf{E}(\theta)] \stackrel{\theta \to 0}{=} \mathbf{U}_{\mathbf{F}}(0) + i\mathbf{U}_{\mathbf{F}}(0)\mathbf{H}_{\gamma}(\theta) + o(\theta^2),$

Both $\mathbf{E}(\boldsymbol{\theta})$ and $\mathbf{H}_{\gamma}(\boldsymbol{\theta})$ have free fermionic form, we obtained closed-form (but involved) expressions for their spectral structure

Spectral structure of H_{\gamma}

- For $\gamma = 0$ (equal masses) \mathbf{H}_{γ} takes the form of a Kitaev chain Hamiltonian at criticality
- 1-particle dispersion relations for general α , γ

Figure 2: Dispersions for \mathbf{H}_{γ} . From the left: $\alpha = 0.1, 1, 10$

Spectral structure of H_{\gamma}

- \mathbf{H}_{γ} found to be critical for all α , γ ; criticality protected by global fermionic symmetry
- Breaking the fermionic symmetry opens a gap a leads to topological phases (class BDI), similar to those in the Kitaev and SSH models

Brick wall circuits - OBC

 Open BC require boundary terms that respect the fermionic symmetry M. Moriconi, KjS - 1996

- For unequal masses, OBC circuit needs *2L* layers
- OBC avoids need for global parity operators

Quantum (quench) dynamics

- Highly structured circuits

 offer large degree of analy tical control to study quench
 dynamics, build-up of

 Entanglement Entropy, etc
- Straightforward to implement on quantum hardware

Build-up of Rényi Entropy (RE) for L=4 OBC circuit on $|0000\rangle$, $\alpha = 1.2$, $\gamma = 20$

Congratulations!