EMERGENT FERMIONS IN HYDRODYNAMICS

P. Wiegmann

University of Chicago

Celebration of The Works of Andrea Cappelli

February 2, 2024

EMERGENT FERMIONS: ONSAGER I

Numerous examples in 1+1 dimensions, starting from kink-type configurations in spin chains (Lieb, Schultz, Mattis 1964)

FERMIONS IN A SEMICLASSICAL FLUID

Fermions under certain physical conditions form fluids:

electrons in superconductors cooper, He³, organic conductors, quark-gluon plasma, etc.

Can an individual fermion emerge from as a special low energy 'flow' without destroying a fluid?

Not always, but some time, yes it can.

What hydrodynamic equations describe such situation?

The subject arisen from discussions with Andrea and Sasha Abanov.

SEMICLASSICAL FLUID

Euler equation:
$$n(\partial_t + \mathbf{v} \cdot \nabla)\mathbf{p} + \nabla P = 0$$
,
 $\mathbf{p} = m\mathbf{v}$.

Circulation:
$$\oint p_{\mu}dx^{\mu} = \oint p = 2\pi\hbar \times \text{integer}$$
, (Onsager 1949)
Helicity: $\int e^{\mu\nu\lambda\sigma}p_{\nu}\partial_{\lambda}p_{\sigma}d^{3}x = \int p\wedge dp = (2\pi\hbar)^{2} \times \text{number of twists (torsion of the vortex filament)}$

EULER EQUATIONS

Canonical formulation of fluid dynamics does not require a metric! (Andre Lichnerowitcz, 1941)

Euler+continuity :
$$\begin{cases} n^{\mu}\partial_{\mu}p_{\nu} + \partial_{\nu}P = 0, \\ \\ \partial_{\mu}n^{\mu} = 0. \end{cases}$$

Equations are written in terms of $\left\{ \begin{array}{l} n^{\mu} - {\rm vector \ field \ (mass \ current) \,,} \\ p_{\mu} - {\rm momentum \ (a \ contravariant \ vector), \ or \ 1-form \ p_{\mu} dx^{\mu} \,,} \\ n^{\mu} = \partial P / \partial p_{\mu} - {\rm pressure \,.} \end{array} \right.$

Deformed continuity: $\partial_{\mu}(n^{\mu} + \frac{k}{2}\hbar\epsilon^{\mu\nu\lambda\sigma}p_{\nu}\partial_{\lambda}p_{\sigma}) = 0, \quad k \in \mathbb{Z},$

In terms of diff. forms: $d(n + k\hbar p \wedge dp) = 0$.

COHOMOLOGY AND FERMIONS

Fermion are spatially localized (particle-like) field configuration whose adiabatic process changes the action as

Fermions spin
$$k/2$$
:

$$\begin{cases}
\text{spatial rotation:} & S \to S + \pi i k \hbar, \\
\text{exchange of positions of 2 particles:} & S \to S + 2\pi i k \hbar \\
\Psi \sim e^{\frac{i}{\hbar}S} \to (-1)^k \Psi
\end{cases}$$

Fermions is a semiclassical phenomenon: $S = S_0 + k\hbar\Gamma$, $\Gamma \rightarrow \Gamma + \pi$

Adiabatic phase is metric independent (a topological phase), hence is expressed in terms of differential 1-forms, which requires a homological condition

 $H_{d+1}(\mathcal{M}) \neq 0$, d = spacetime dimension, even

 $H(\mathcal{M}) = \mathbb{Z}$ (Polyakov, P. W. 1983, Witten 1983, Polyakov 1989); $H(\mathcal{M}) = \mathbb{Z}_2$ (Dzyaloshinskii, Polyakov, P. W. 1988).

MULTIVALUED ACTION

Field theory on Lie group manifold deformed by a multivalued Novikov's, functional:

$$S = \frac{1}{2\lambda} \int_{S^D} \operatorname{tr} (g^{-1} dg)^2 + k\hbar\Gamma,$$

$$\Gamma = \frac{1}{d+1} \int_{D^{d+1}} \operatorname{tr} (g^{-1} dg)^{d+1},$$

$$\partial D^{d+1} = S^d \text{ (spacetime)} \quad g \in G, \quad H_{d+1}(G) = \mathbb{Z}.$$

d = 2: Witten 1983, Polyakov & P. W. 1983; *d* = 4:Witten 1983, *G* = *SU*(*N*).

MULTIVALUED FUNCTIONALS S. NOVIKOV, 1980

$$\frac{1}{6} \int_{D^3} \text{tr}(g^{-1}dg)^3, \quad g \in SU(2), \quad \partial D^3 = S^2$$

The integrand is a closed form; in terms of Euler angles it is

$$\frac{1}{6}\operatorname{tr}(g^{-1}dg)^3 = d\psi \wedge d\cos\theta \wedge d\varphi = d\operatorname{vol}(S^3)$$

the value of the integral depends on boundary values of the angle ψ

$$\psi \, d\cos\theta \wedge d\varphi = \psi \, d \operatorname{vol}(S^2)$$

The action changes under rotation $\psi \rightarrow \psi + 2\pi$

$$S \rightarrow S + \pi k\hbar$$

At the same time EOM depend on $d\psi$

POLYAKOV 1989

$$S = \int_{S^2 \times \mathbb{R}^1} A \, \dot{x} + k \hbar \Gamma, \quad \Gamma = \int_{S^2 \times \mathbb{R}^1} A \wedge dA \, .$$

The added term provides a 'geometric' interaction by identifying the particle word trajectory with a magnetic flux

$$\dot{x} = k dA$$

The added term is not gauge invariant $A_0 \rightarrow A_0 + \dot{\psi}$ on a punctured manifold (particles)

$$\int_{S^2 \times \mathbb{R}^1} A \wedge dA \to \int_{D^3} A \wedge dA + \oint_{S^2} \psi \dot{x}.$$

Polyakov argued that trajectory of a particle becomes a framed curve, a ribbon, and that ψ is a physical degree of freedom identified with a frame angle. Under 2π -twist of the ribbon the the action changes by

$$S \rightarrow S + \pi k\hbar$$

FLUID DYNAMICS

According to Vladimir Arnold (1966), fluid dynamics could be viewed as Hamiltonian mechanics operating on a group manifold of diffeomorphisms of spacetime $Diff(\mathcal{M}^4)$. Can we construct a topological (metric independent) functional on this manifold?

A natural guess is Novikov's [Wess, Zumino, Witten] multivalued functional on this group manifold is

$$S = S_0 + \Gamma$$
, $\Gamma = \frac{1}{3} \int_{D^5} p \wedge dp \wedge dp$, $\partial D^5 = S^4$.

Under a gauge transformation $p \to p + d\psi$ the action changes as $S \to S + \frac{k}{2} \int_{S^4} \psi dp \wedge dp$.

FERMIONS IN HYDRODYNAMICS

$$\begin{split} n^{\mu}\partial_{\mu}p_{\nu} + \partial_{\nu}P &= 0, \\ d(n + \frac{k}{2}p \wedge dp) &= 0, \\ S &= S_0 + \frac{k}{3}\hbar \int_{D^5} p \wedge dp \wedge dp \end{split}$$

CELEBRATING LIFE WITH ANDREA

12/12