Prime Suspects

Quantum Tales in
Number Theory

Giuseppe Mussardo
SISSA-INFN

Trieste

> -

QO” R

NN

.»’b".a._x‘ (R
4 [ARCICCEE S S R R R R R

s
8






Magic of Q\g%y (Q..i@qf dpdl _‘Im;gi;n.hry). ‘.’.’atﬁs

»







Nuclear Physics B280 [FS 18] (1987) 445-465
North-Holland, Amsterdam

MODULAR INVARIANT PARTITION FUNCTIONS
IN TWO DIMENSIONS

A. CAPPELLI*, C. ITZYKSON and J.-B. ZUBER
Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France

Received 3 September 1986

We present a systematic study of modular invariance of partition functions, relevant both for
two-dimensional minimal conformal invariant theories and for string propagation on a SU(2)
group manifold. We conjecture that all solutions are labelled by simply laced Lie algebras.

1. Introduction

The minimal two-dimensional conformal invariant field theories [1] carry a set of
representations of two Virasoro algebras of common central charge

6(p—p')
=== (1.1)

c=1

with (p, p’) a pair of coprime positive integers. Belavin, Polyakov and Zamo-
lodchikov have shown that it is consistent to retain only a finite number of primary
fields ¢, 3, of conformal dimensions 4 and & chosen among the Kac values [2]
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(1.2a)

with
1<sr<p’—-1, 1<ss<p-1. (1.2b)
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There is an increasing interest for the profound and engaging
links recently discovered between Number Theory and Physics
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Natural questions

* Given an arithmetic sequence 1S, {, does exist a quantum
mechanics system which has this sequence as a spectrum?

* Is the Hamiltonian of such a system uniquer



Our attention is on one-dimensional and one-body
Hamiltonians of the form




Equivalently, on tridiagonal Hamiltonians of the form




Equivalently, on tridiagonal Hamiltonians of the form
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Why one-body Hamﬂtomans? 3

.}

 These Hamlltonlans possess dlscrete spectrum

o 20 «.;x-»sj\.p w‘ ,Jﬁ
« Many-body Hamlit@’nlans on fhe other hands have
dense spectrum




But, we can use nevertheless many-body Hamiltonians
to encode interesting number sequences!

* Instead of using energy levels, use wave functions!

N, = {Sn}
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In this Letter we set up a suggestive number theory interpretation of a quantum ladder system made of A/
coupled chains of spin 1/2. Using the hard-core boson representation and a leg-Hamiltonian made of a
magnetic field and a hopping term, we can associate to the spins o, the prime numbers p,, so that the chains
become quantum registers for square-free integers. The rung Hamiltonian involves permutation terms
between next-neighbor chains and a coprime repulsive interaction. The system has various phases; in
particular, there is one whose ground state is a coherent superposition of the first A" prime numbers. We
also discuss the realization of such a model in terms of an open quantum system with a dissipative Lindblad

dynamics.

DOI: 10.1103/PhysRevLett.125.240603

Introduction.—The aim of this Letter is to point out some
interesting connections between quantum many-body sys-
tems and number theory, in particular, prime numbers.
Prime numbers are the building blocks of arithmetics and,
arguably, one of the pillars of the entire mathematics [1,2].
Their nature has two fascinating but opposite features [3]: If
their appearance in the sequence of natural numbers is
rather unpredictable, their coarse-graining properties [e.g.,
their total number 7(x) less than x] can be captured instead
rather efficiently by simple statistical considerations [4-8].
In particular, the scaling of the kth prime is particularly
plain:

pr = klogk. (1)

Equally fascinating is the connection between prime
numbers and quantum mechanics: Prime numbers, for
instance, were the main concern of Shor’s algorithm,
one of the first quantum computing algorithms [9].
Moreover, the scaling behavior (1) permits one to show
the existence of a single-particle one-dimensional quantum
mechanical potential V(x) with eigenvalues given just by
the prime numbers and, therefore, permits one to address
the primality test of a natural number in terms of a quantum
scattering [10]. Such a potential V(x) can be determined
either semiclassically [10] or exactly, using in this case
methods of supersymmetric quantum mechanics [11,12]. In
experimental setups of cold atom systems, V(x) could be
realized using a holographic trap [13].

Turning now our attention to quantum many-body
systems, for the dense nature of their spectra it is obviously
impossible to have energy levels given by prime numbers,
but we can have instead many-body ground state wave

0031-9007/20/125(24)/240603(6) 240603-1

functions expressed in terms of prime numbers. This is
what we are going to present below, where we consider a
quantum ladder system with a suggestive number theoretic
interpretation. We will see that such a system has a rich
spectrum of ground states and, in particular, there is one
whose wave function is given in terms of a highly coherent
superposition of prime number occupations. To the best of
our knowledge, this is the first time where a ground state of
this type has been constructed.

Quantum ladder systems, made of coupled one-
dimensional chains, have attracted considerable interest
in recent years as truly interpolating between one- and two-
dimensional systems [14-20]. In our case, we have N
coupled half-infinite chains of spins 1/2 subjected to a
magnetic field and a hopping term. As discussed below,
properly tuning these two interactions, we can put in
correspondence the spins with the prime numbers and
reformulate the spin-spin rung interaction in terms of
coprimality conditions (two integers are coprime if they
do not share common factors other than 1).

Degrees of freedom.—As it is well known, spin 1/2 can
be described by hard-core bosons: The mapping between
the Pauli matrices o, and the hard-core annihilation and
creation operators f and fT [f? = (f7)? = 0] is provided
byo,=ff-1/2;6, = ff; 6_ = f [21]. Hence, instead
of the spins, we can equivalently take as degrees of freedom
the hard-core boson operators f;(a) and f](a), where
the index i refers to the ith chain (i = 1,2, ..., ), while
a=1,2,... to the vertical position along the half-infinite
chain (see Fig. 1). Since [f;(a)]? = [f](a)* =0, the
occupation number of each vertical site in the ladder can
take only values {0, 1}. Let |[vac) be the vacuum state, i.e.,

© 2020 American Physical Society

2

a+l



Natural questions

* Given an arithmetic sequence 1S, {, does exist a quantum
mechanics system which has this sequence as a spectrum?

* Is the Hamiltonian of such a system uniquer



Fibonacci numberts

JORY =1, 1.2,3,5,8,13,21,34,55,..




Fibonacci numberts

JORY-1.1.23538 13,21, 34, 55,...

r, F—l _}7112 =(_1)”

n+l= n



Fibonacci numberts

JORY-1.1.23538 13,21, 34, 55,...




* Unfortunately, it does not exist a quantum system
which has the Fibonacci numbers as spectrum. ..

* The reason 1s that their sequence grows too fast

* Similarly, it does not exist a quantum Schroedinger
Hamiltonian with a spectrum given, for instance, by
the Mersenne numbers or the perfect numbers




Bound on the growth of eigenvalues

e For a one-dimensional Hamiltonian of the form







Eratosthenes steve




It does not exist a close formula for the n-th prime number

However their scaling law is captured by this simple formula

Dy, = T1OZ

Hence, there must exist a quantum Hamiltonian that has
the primes as eigenvalues!



Counting the Primes

T (QZ‘) : oives the number of primes less or equal to x




Counting the Primes

T (QZ‘) : oives the number of primes less or equal to x




Counting the Primes

T (QZ‘) : oives the number of primes less or equal to x
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Prime Number Theorem: Riemann
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Prime Number Theorem: Riemann

(R x)

i :unn 1/n)
(1

—1 if nissquarefeee with an odd number of prime factors
0 if nhasasquared prime factor

{ 1 if nissquarefree with an even number of prime factors
p(n) =
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“The music of the primes”
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Prime Number Theorem: Riemann
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o: non-trivial zeros of the {(z) Riemann function in the critical strip



Climbing the staircase
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e On a large scale, primes have extremely smooth distribution

MR (Do <~2n,
Pe+1 < 2pg



e On a small scale, however, primes have highly unpredictable
and irregular behavior

Example: Gap between the primes

1. Many (infinite?) twins of primes
(11,13) (17,19) (41,43)  (347,349) ...

2. Arbitrarily large interval without a single prime!!

(107 il "RENN, — 2.3, . .\\10"< =}



Inverse problems

Given an admissible sequence of numbers ,

how to find the potential V(x) ?

e Semi-classical method

* Dressing method (solitonic equations)



Quantum experiment






Primality test
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Semi-classical potential

;[p(x)dx - 7{\/E—V(x)da: o

This formula can be inverted, i.e.once the energy levels E,
are assigned, we can find the potential V(x) !



Semi-classical potential
GM, (1995)

e BdE




Semi-classical potential
GM, (1995)
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Holographic realization of the prime number quantum
potential

Donatella Cassettari (®/2*, Giuseppe Mussardo® and Andrea TrombettoniP<







SUSY Quantum Mechanics

Vi(z) —» Vo(x) — Vi(z) — - - -
b= {E17E27E37' i 7En}



Quantum potential relative to the first 45 primes




Quantum potential relative to the first 150 primes
approximated by the first 35 Chebychev polys
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Parametric resonance

H — H + W(x)coswt
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Parametric resonance




New perspectives on a series of problems...

* Lucky numbers
* Goldbach conjecture

e Hactorization



Integer Factorization

(GM, Trombettoni)



Integer Factorization by Quantum Measurements
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Quantum algorithms are at the heart of the ongoing efforts to use quantum mechanics to solve
computational problems unsolvable on ordinary classical computers' 3. Their common feature is the
use of genuine quantum properties such as entanglement and superposition of states?. Among the
known quantum algorithms, a special role is played by the Shor algorithm®®, i.e. a polynomial-time
quantum algorithm for integer factorization, with far reaching potential applications in several fields,
such as cryptography”. For an integer N of the order of 27, i.e. with n digits, the Shor algorithm permits
its factorization in (order of) n steps. This results in an exponential gain in computational efficiency
with respect to the best known classical algorithms. Here we present a different algorithm for integer
factorization based on another genuine quantum property: quantum measurement®1°. In this new
scheme, the factorization of the integer N is achieved in a number of steps equal to the number of its
prime factors, referred to as k— e.g., if N is the product of two primes, two quantum measurements are
enough, regardless of the number of digits n of the number N. Since k is the lower bound to the number
of operations one can do to factorize a general integer, then one sees that a quantum mechanical setup
can saturate such a bound. Once established this, we discuss how the algorithm can physically be
ran. We argue that one needs a single-purpose device where quantum measurements of an observable
with assigned spectrum can be performed. The preparation from scratch of this device requires the
solution, once for all and not for each factorization operation, of ~ 2" differential equations, a task
that with a quantum computer can be accomplished in n steps.

Introduction. Recent progress in the implementation of quantum devices has led to the experimental demonstration
of some instances of quantum advantage. This happens when a specific computational problem may be solved faster
and more efficiently on quantum processors rather than a classical computer'®. To achieve this goal the quantum
processor must have an architecture made at least of several tens of qubits and long enough decoherence times.

A notable example, from a historical and conceptual point of view, of a clear quantum advantage is provided by
the Shor algorithm®®. This algorithm indicates how to solve efficiently on a quantum computer the long-standing
problem of finding the prime factors of an integer number N. Assuming that such a number N is of order 2", the
Shor algorithm exploits in an ingenious way the implementation of the discrete Fourier transform on n qubits. To
date, its validity has been shown with the factorization of a small numbers (the present computational bottleneck
being the quantum modular exponentiation). The factorization of the number, 15 = 3 x 5, was done using 7 qubits
with an NMR implementation of a quantum computer!'*. Similar demonstrations were performed using photonic!®6
and solid-state qubits'”, while in 2012, with the n qubits control register replaced by a single qubit recycled n times,
it was achieved the factorization of the integer 21 = 3 x 7'%. Despite their simplicity, these examples nevertheless
provide a proof of principle realization of the algorithm.

In this paper we present a different route for integer factorization, based on an algorithm which exploits another
genuine quantum property: projective quantum measurement® %, As it is well known from quantum mechanics axioms,
if a physical system is in a normalised state |1 ), a measurement of an observable O will yield one eigenvalue « of its
spectrum with probability | (1 | a) |?, where |a) is the normalised eigenfunction corresponding to the eigenvalue o

Ola) = ala). (1)

As a result of the measurement, the system state will change from [¢)) to |a). For problems related to number
theory, interesting spectra to consider are: (a) the natural numbers, corresponding to the Hamiltonian of an harmonic
oscillator®1%; (b) the primes!''?; and (c) the logarithm of the primes***°. Employing such spectra, one may translate
number theory problems in quantum physical settings. As an example of this general philosophy, in this paper we
show that with a suitable choice of the operator O is possible to determine the prime factors of an integer number N
by making a finite set of quantum measurements.



Integer Factorization

(GM, Trombettoni)

Given an integer N, find its unique prime factorization



Integer Fact
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(Quantum) Degeneracy

log N = log p; + log Ny

= log ps + log N K

times

= log py, + log Ny,

Otj—l

logNj:k)g (p?l...pj pgk)



Quantum Hamiltonians

Hi== THaa o
i |
H = -pa + V(@) EY = {logp}
1
H 5]?3 + W (x) E? = {log N}




Quantum Hamiltonians
Hi== THaa o
E, = FE& Fp(2)

i

d(n) = # of distinct prime factors
of the integer number n




Initial state

k
U) = |logMN).= Y enllogpn)|log Ny)

=1

where the coefficients may also be regarded as random

It 1s however crucial that all of them are different from 0



Branching tree paths




Branching tree paths




Branching tree paths




Conclusions

Interesting interplays between Number Theory & Physics

Proof of principle: it 1s possible to realize in lab quantum mechanics
potentials which encode interesting arithmetic sequences

These realizations transform genuine mathematical questions
1nto quantum experiments

These quantum abacuses provide an alternative way to
implement quantum algorithms






