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Fermion Action
To discretize the Dirac action, Wilson replaced the derivative with the symmetrized difference and included
appropriate gauge links to maintain gauge invariance

ψ̄ /Dψ =
1

2a
ψ̄(x)

∑
µ

γµ[Uµ(x)ψ(x + µ̂) − U†
µ(x − µ̂) ψ(x − µ̂) .s

It is easy to see that one recovers the Dirac action in the limit a → 0 by Taylor expanding the Uµ and ψ(x + µ̂)
in powers of the lattice spacing a. Keeping only the leading term in a

1
2a
ψ̄(x)γµ[

(
1 + iagAµ(x + µ̂) + . . .

) (
ψ(x) + aψ′(x) + . . .

)
−(

1 − iagAµ(x − µ̂)) + . . .
) (
ψ(x) − aψ′(x) + . . .

)
]

= ψ̄(x)γµ(∂µ +
a2

6
∂

3
µ + . . .)ψ(x)

+igψ̄(x)γµ[Aµ +
a2

2

( 1
4
∂

2
µAµ + (∂µAµ)∂µ + Aµ∂

2
µ

)
+ . . .]ψ(x) ,

which, to O(a2), is the kinetic part of the standard continuum Dirac action in Euclidean space-time. Thus one
arrives at the simplest (called “naive”) lattice action for fermions

SN = mq
∑

x

ψ̄(x)ψ(x) +
1

2a

∑
x

ψ̄(x)γµ
[
Uµ(x)ψ(x + µ̂) − U†

µ(x − µ̂)ψ(x − µ̂)
]

≡
∑

x

ψ̄(x)MN
xy [U]ψ(y)

where the interaction matrix MN is

MN
i,j [U] = mqδij +

1
2a

∑
µ

[
γµUµ(i)δi,j−µ − γµU†

µ(i − µ), δi,j+µ
]
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The Euclidean γ matrices are hermitian, γµ = γ†
µ, and satisfy {γµ, γν} = 2δµν . Non-relativistic

representation

γ⃗ =

(
0 iσ⃗

−iσ⃗ 0

)
, γ4 =

(
I 0
0 −I

)
, γ5 =

(
0 I
I 0

)

which is related to Bjorken and Drell conventions as follows: γi = iγ i
BD , γ4 = γ0

BD , γ5 = γ5
BD . In this

representation γ1, γ3 are pure imaginary, while γ2, γ4, γ5 are real.
The Taylor expansion showed that the discretization errors start at O(a2). For another simple illustration
consider the inverse of the free-field propagator m + i/a

∑
µ γµsin(pµa). Set p⃗ = 0 and rotate to Minkowski

space (p4 → iE , i.e. sinp4a → isinhEa). Then, using the forward propagator (upper two components of γ4),
gives

mpole
q a = sinhEa

for the relation between the pole mass and the energy. This shows that, even in the free field case, the
continuum relation E (⃗p = 0) = m is violated by corrections that are O(a2).
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Symmetries of Fermion Action

The invariance group of the fermion action under rotations in space and time is the hypercubic group. Full
Euclidean invariance will be recovered only in the continuum limit. The action is invariant under translations by
a and under P , C, and T .
The naive action ψ̄x MN

xyψy has the following global symmetry:

ψ(x) → eiθ
ψ(x)

ψ̄(x) → ψ̄(x)e−iθ

where θ is a continuous parameter. This symmetry is related to baryon number conservation and leads to a
conserved vector current. For mq = 0 the action is also invariant under

ψ(x) → eiθγ5ψ(x)

ψ̄(x) → ψ̄(x)eiθγ5

It turns out that while the naive fermion action preserves chiral symmetry it also has the notorious fermion
doubling problem. The chiral charges of these extra fermions are such as to exactly cancel the anomaly. In fact
the analysis of SN lead to a no-go theorem by Nielsen-Ninomiya that states that it is not possible to define a
local, translationally invariant, hermitian lattice action that preserves chiral symmetry and does not have
doublers.
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Comments regarding fermion simulations

Generalization of stochastic evolution of path integrals for Bosons to Fermions involves significant new
problems.

The fundamental difference is the minus signs arising from the antisymmetry of fermions.

The evolution operator e−βH filters out the lowest state and therefore the symmetric state and not the
antisymmetric unless a projection to the antisymmetric space is made.

Exact projection is done by writing the path integral in terms of Grassmann variables and integrating out
the fermion fields resulting in the fermion determinant (see Lecture 1).

The price is a non-local action, which has complicated dynamical quark simulations for two decades.
=⇒ set DetM = 1, a simplification used in the past known as quenched approximation.

In addition relativistic fermions suffer from the so called fermion doubling problem

In non-relativistic systems with two-body potentials one makes use of the Hubbard-Stratonovich
transformation to integrate the quadratic potential terms.
The problem of the sign of the resulting fermion determinant still remains hindering simulation of many
fermion systems - the notorious fermion problem.
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Doubling of “naive” fermions

In addition to the fermion sign problem we also encounter the so called doubling of fermions.
Consider the simplest discretization of the Dirac equation

Snaive
F = a4

∑
n

[
mψ̄(n)ψ(n) +

1
2a

∑
µ

(
ψ̄(n)γµUµ(n)ψ(n + aµ) − ψ̄(n + aµ)γµU†

µ(n)ψ(n)
)]

→
∫

d4x
[

mψ̄(x)ψ(x) +
1

2a

∑
µ

(
ψ̄(x)γµ(1 + igaAµ)(1 + +a∂µ)ψ(x) − ψ̄(x)(1 + a∂µ)γµ(1 − igaAµ)ψ(x)

)]

→
∫

d4xψ̄(x)
[

m + γµ(∂µ + igAµ)
]
ψ(x).

To see the problem associated with Snaive
F we consider the associated Hamiltonian in one space-dimension for

the free massless theory i.e. Uµ = 1 and m = 0.

Hnaive = a
∑

n ψ̄γ1
ψ(n+1)−ψ(n−1)

2ai

Momentum space: ψ(n) = 1√
Na

∑π
a

k=−π
a
ψk eikna

→ Hnaive =
∑π

a
k=−π

a
ψ†

k γ0γ1
sin(ka)

a ψk

Ek = ±
sin(ka)

a
k→0→ ±k

(
1 −

(ka)2

2
+ · · ·

)
.

Although Ek has the correct dispersion relation for k → 0 it has an
extra node at the Brillouin zone → for every physical mode k there
is a degenerate unphysical mode π

a − k . In the partition function
these count equally and lead to a factor 0f 2 over-counting.
Furthermore since v =

dEk
dk the lattice mixes right and left moving

modes.

7 

continuum 

Extra node at the edge 
of the Brillouin zone 

1-dimension 
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Fermion doubling and chiral symmetry
The naive action:

Snaive
F = ψ̄Dψ =

∑
k

ψ̄k (mq + i
∑
µ

γµ
sin(kµa)

a
)ψµ

leads to the inverse of the free field propagator S−1(p) = mq + i
a
∑
µ γµ sin kµa .

It has 24 = 16 zeros within the Brillouin cell in the limit mq → 0.
The doubling problem is general and intimately related to simultaneously preserving chiral symmetry. The
inclusion of the gauge fields does not solve the doubling problem.
Defining the momentum range of the Brillouin cell to be (−π/a, π/a], the zeros lie at pµ = 0 and π/a.
This proliferation holds under very general conditions specified by the Nielsen-Ninomiya or no-go theorem.
Let us investigate the properties of these extra zero modes under chiral transformations:
Define a set of 16 4-vectors ΠA = {(0, 0, 0, 0), (π/a, 0, 0, 0), . . . , (π/a, π/a, π/a, π/a)} with
A = {1 . . . 16}, and consider the expansion of the massless propagator about these points. Then

S−1(p,m = 0) =
i
a

∑
µ

γµ sin pµa =
i
a

∑
µ

γµ sin(ΠA + k)µa =
i
a

∑
µ

γµ SA
µ sin kµa

≡
i
a

∑
µ

γ̃µ sin kµa ,

where SA
µ = {+1,−1} depending on whether the µ component of ΠA is {0, π/a} and γ̃µ = YAγµY†

A ,

YA =
∏
µ(γµγ5)

nA
µ and nA

µ are {0, 1} depending on whether the momentum expansion in the µ direction is
about 0 or π/a.
Now, γ̃5 = YAγ5Y†

A = SA
1 S

A
2 S

A
3 S

A
4 γ5 ≡ X Aγ5, with X A = ±.

=⇒ the sixteen species break up into two sets of 8 with chiral charge ±1, and render the theory anomaly-free.
Consequently, this “naive” discretization is phenomenologically not acceptable.
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Wilson Fermions

One way out of the no-go theorem is to give up chiral symmetry and add a second derivative [Wilson 1974]
In one-dimension the Wilson Hamiltonian is given

HW = a
∑

n

ψ̄

[
γ1
ψ(n + 1) − ψ(n − 1)

2ia
−

ra
2i
γ1γ0

ψ(n + 1) − 2ψ(n) + ψ(n + 1)
a2

]

=
∑

k

ψ̄
†
k

[
γ1

sin(ka)
a

− rγ1γ0
cos(ka) − 1

ia

]
ψk

with the energy spectrum

E2
K =

(
sin(ka)

a

)2

+

(
r
a
(cos(ka) − 1)

)2

k→0−→ ±k

(
1 −

k2a2

6
+ · · ·

)
k→π

a−→ ±
2r
a

=⇒ the mode for k → π
a becomes infinitely massive and decouples for a → a.
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Wilson action

The Wilson action in 4-dimensions is

SW = a4
∑

n

1
2a

∑
µ

[
ψ̄(n)(r−γµ)Uµ(n)ψ(n+µ)+ψ̄(n+µ)(r+γµ)U†

µ(n)ψ(n)
]
+a4

∑
n

ψ̄(n)
(

m +
4r
a

)
ψ(n)

and has only one fermion in the continuum limit.
The Wilson action breaks chiral symmetry through the r -term which acts as a mass term together with the
non-zero value of m. Since this mass is not protected from renormalization we need to “fine tuned” to attain the
mass we are interested in. Wilson’s fix for doublers comes with a high price tag – a hard breaking of chiral
symmetry at O(a).
=⇒ for given g and r we determine the input quark mass so that so that mπ = 0 or mπ = 140 MeV.
Define the hopping parameter κ as:

κ =
1

2ma + 8r

and rescale the fermion fields ψ → (2κa3)1/2ψ

SW =
∑

n

[
ψ̄(n)ψ(n) − κ

∑
µ

(
ψ̄(n)(1 − γµ)Uµ(n)ψ(n + µ) + ψ̄(n + µ)(1 + γµ)U

†
µψ(n)

)]

where we have set r = 1.

mq =
1

2a

(
1
κ

−
1
κcr

)
where κcr is the value of κ for which mπ = 0.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 10 / 23



Wilson propagator

The free propagator in momentum space for Wilson fermions is

SF (p) = M−1
W (p) =

a
1 − 2κ

∑
µ

(
r cos pµa − iγµ sin pµa

) .
Due to the dimension 5 operator (terms proportional to r ) the 15 extra states at pµa = π get masses of order
2r/a.
The operator M satisfies the following relations:

γ5M†
Wγ5 = MW ,

γ5S†
F (x, y)γ5 = SF (y, x) ,

M†
W (κ, r) = MW (−κ,−r) .

The first two state that the “hermiticity” property of MN is preserved. The second equation relates a quark
propagator from x → y to the antiquark propagator from y → x . This important identity, called hermiticity or γ5

invariance, leads to a significant simplification in numerical calculations. The adjoint in S†
F is with respect to the

spin and color indices at each site. The last relation shows that MW is not anti-hermitian due to the Wilson r
term.
The pole mass derived from the propagator is different from the bare mass and given by

mpole
q a = r(cosh Ea − 1) + sinh Ea .

This shows, as expected, that the discretization corrections in spectral quantities occur at O(a).
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Properties of Wilson fermions

The doublers are given a heavy mass, 2r/a, and decouple in the continuum limit.

Chiral symmetry is broken explicitly. The derivation of axial Ward identities, using the invariance under
the transformation ψ(x) → eiθγ5ψ(x), ψ̄(x) = ψ̄(x)e−iθγ5 have the generic form

〈∂δS
∂θ

O
〉
=
〈∂δO
∂θ

〉
.

For WF, the variation of the action under an axial transformation is

∂δS
∂θ

= ∂µAµ − 2mP + raX ,

where X is an additional term coming from the variation of the Wilson r term.
=⇒ in general, all relations based on axial WI will have corrections at order ra and involve mixing with
operators that would normally be absent due to the chiral symmetry.

The quark mass gets both additive and multiplicative renormalization.

The zero of the quark mass is set by κcr . There are two ways to calculate κcr at any given a.
(i) Assume the chiral relation M2

π ∝ mq , calculate the pion mass as a function of 1/2κ, and extrapolate it
to zero. The value of κ at which the pion becomes massless is, by definition, κcr .
(ii) Calculate the quark mass through the ratio

〈
∂µAµ(x)P(0)

〉
/
〈
P(x)P(0)

〉
(based on the axial Ward

identity) as a function of 1/2κ and extrapolate to zero.
The two estimates can differ by corrections of O(a).
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〈
P(x)P(0)
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(based on the axial Ward

identity) as a function of 1/2κ and extrapolate to zero.
The two estimates can differ by corrections of O(a).

Calculation of the matrix element
〈
0
∣∣T [AµVνVρ]

∣∣0〉 shows that the Adler-Bell-Jackiw (ABJ) anomaly of
the singlet axial current is correctly reproduced in the continuum limit. An explicit 1-loop calculation
shows that while each of the extra 15 states contribute terms proportional to r , the total contribution from
all sixteen states is independent of r and equals the ABJ anomaly.
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Properties of Wilson fermions

The spin and flavor degrees of freedom are in one-to-one correspondence with continuum Dirac
fermions.
=⇒ the construction of interpolating field operators is straightforward, e.g. ψ̄γ5ψ and ψ̄γiψ are
interpolating operators for pseudoscalar and vector mesons just as in the continuum.

The Wilson term changes the discretization errors to O(a).

Conserved Vector Current: The Wilson action is invariant under the global U(1) transformation
ψ(x) → eiθψ(x), ψ̄(x) → ψ̄(x)e−iθ → conserved Noether current:

∆µVµ(n) = Vµ(n) − V (n − µ) = 0

Vµ(n) = −
1
2
ψ̄(n)(1 − γµ)U)µ(n)ψ(n + µ) +

1
2
ψ̄(n + µ)(1 + γµ)U

†
µ(n)ψ(n)

In many applications like decay constants one uses the local (flavor) currents defined by

Vµ(x) = ψ̄(x)γµψ(x)

Aµ(x) = ψ̄(x)γ5γµψ(x) ,

which are not conserved, and consequently have associated non-trivial renormalization factors ZV and
ZA which have to included when calculating matrix elements.
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Staggered fermions (SF) in a nutshell

The 16-fold doubling problem of the naive fermion action can be reduced to 4 by distributing the spin
components to the corners of the hypercube. The basic idea is to transform the fermion fields into a new
representation for which the naive fermion action is diagonal in the Dirac indices i.e. produce ND copies and
then keep one of these copies so that the degeneracy is reduced to 16/ND .

Distribution of 2d degrees of freedom on d-dimensional
lattice (d = 2)

Transformation: ψ̄(n) = γ
n1
1 γ

n2
2 γ

n3
3 γ

n4
4 χ(n).

Then e.g. the term ψ̄(n)γ2ψ(n + µ2) becomes

χ̄(n)γn4
4 γ

n3
3 γ

n2
2 γ

n1
1 γ2γ

n1
1 γ

n2+1
2 γ

n3
3 γ

n4
4 χ(n + µ2)

= (−1)n0+n1 χ̄(n)χ(n + µ2)

=⇒ in general
ψ̄(n)γµψ(n + µ) = ηµ(n)χ̄(n)χ(n + µ) with

ηµ(n) ≡ (−1)
∑µ−1
ν=1 nµ

Only partial lifting of the degeneracy: 16 → 4
leaving 4 “tastes” per physical flavor

Flavor symmetry is broken → mixing of tastes
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Staggered fermions

The action for staggered fermions:

SSF = mq
∑

n

χ̄(n)χ(n) +
1
2

∑
n,µ

χ̄(n)ηµ(n)
(
Uµ(n)χ(n + µ̂) − U†

µ(x − µ̂)χ(n − µ̂)
)
≡
∑
n,m

χ̄(n)MS
nmχ(m)

with the matrix MS given by

MS [U]x,y = mqδxy +
1
2

∑
µ

ηx,µ
[
Ux,µδx,y−µ − U†

x−µ,µδx,y+µ
]
.

The γ matrices are replaced by the phases ηx,µ.
The different spin components of χ are decoupled as the phase factor ηµ(n) depends only on the site index
and direction and do not have a spinor index.
=⇒ drop the spin index on χ leaving only color degrees of freedom at each site.
This reduces the original 2d -fold degeneracy of naive fermions by a factor of four.

The mass term in MS [U]n,m is hermitian, while the /D term is anti-hermitian, required to realize chiral
symmetry.

The SF action has translation invariance under shifts by 2a due to the phase factors ηµ(n). =⇒ in the
continuum limit, the 16 degrees of freedom reduce to 4 copies of Dirac fermions.

At finite a the gauge interactions break this flavor symmetry and the 16 degrees of freedom in the
hypercube are a mixture of spin and flavor. This is one of the major drawbacks of staggered fermions.
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Symanzik’s improvement program
A simple example: Consider the symmetric discretization of the derivative of f ′(x)

f (x + a) − f (x − a)
2a

= f ′(x) + a3C(3)(x) + a5C(5)(x) + O(a7)

where due to the symmetrized discretization only odd powers of a appear.
Since f (x ± a) = f (x) ± f ′(x) + a2

2 f
′′
(x) ± a3

3! f
′′′

(x) + O(a4), we obtain C(3) = 1
2 f

′′′
(x).

For improvement of O(a3) we use

f (x + a) − f (x − a)
2a

+ ca3D(3)[f ](x) = f ′(x) + O(a4)

where D(3)[f ] is a discretize expression of f
′′′

. Taking:

D(3)[f ](x) =
f (x + 2a) − 2f (x + a) + 2f (x − a) − f (x − 2a)

2a3

and c = − 1
6 the (a3)-term is eliminated.

Improvement for QCD is done in an analogous way except than the determination of the coefficients is more
involved. Like in the simple example we start by identifying a continuum expression for the correction terms
ordering them according to their dimension. We write the associated effective action as

Seff =

∫
d4x
{
L0(x) + aL1(x) + a2L2(x) + . . .

}
,

where L0 denotes the continuum QCD Lagrangian and the Lk ’s, k ≥ 1, are linear combinations of local
operators of dimension 4 + k .
There are three independent dimension-5 operators that have the symmetries of the lattice action. Two of these
can be absorbed in the original action resulting in a redefinition of the bare parameters.
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Symanzik’s improvement program
A simple example: Consider the symmetric discretization of the derivative of f ′(x)

f (x + a) − f (x − a)
2a

= f ′(x) + a3C(3)(x) + a5C(5)(x) + O(a7)

where due to the symmetrized discretization only odd powers of a appear.
Since f (x ± a) = f (x) ± f ′(x) + a2

2 f
′′
(x) ± a3

3! f
′′′

(x) + O(a4), we obtain C(3) = 1
2 f

′′′
(x).

For improvement of O(a3) we use

f (x + a) − f (x − a)
2a

+ ca3D(3)[f ](x) = f ′(x) + O(a4)

where D(3)[f ] is a discretize expression of f
′′′

. Taking:

D(3)[f ](x) =
f (x + 2a) − 2f (x + a) + 2f (x − a) − f (x − 2a)

2a3

and c = − 1
6 the (a3)-term is eliminated.
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{
L0(x) + aL1(x) + a2L2(x) + . . .

}
,

where L0 denotes the continuum QCD Lagrangian and the Lk ’s, k ≥ 1, are linear combinations of local
operators of dimension 4 + k .
There are three independent dimension-5 operators that have the symmetries of the lattice action. Two of these
can be absorbed in the original action resulting in a redefinition of the bare parameters.
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The Sheikholeslami-Wohlert (clover) Action
For the improved action we thus obtain

S = SWilson + a5
∑

x

csw ψ̄(x)
i
4
σµν F̂µν(x)ψ(x),

where F̂µν is a lattice representation of the gluon field tensor. The product of the gauge field variables around a
plaquette in the (µ, ν)–plane is equal to 1 + a2Fµν + . . . in the classical continuum limit.

A symmetric definition of the lattice field tensor is hence given by

F̂µν(x) =
−1
8a2

{Qµν(x) − Qνµ(x)}

with Qµν(x) being the sum of the plaquette loops:
Qµν(n) = Pµ,ν(n) + Pν,−µ(n) + P−µ,−ν(n) + P−ν,µ(n)

ν 

µ

n 

To achieve the desired improvement, the coefficient csw multiplying the O(a) counterterm in the improved action
should be chosen appropriately. The one-loop formula is

csw = 1 + 0.2659g2 + O(g4).

One also has techniques to compute csw non-perturbatively using numerical simulations.
The advantages of the clover action is that it is local and leaves perturbation theory tractable. Adding the clover
term is only a ∼ 15% overhead on Wilson fermion simulations.
However we need to also improve the operators.

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 17 / 23



Twisted mass fermions
Consider the continuum action for two-degenerate flavors:

S =

∫
d4xχ̄(x) (γµDµ[U] + m0 + iµγ5τ3)χ(x)

The mass term can be written as m0 + iµγ5τ3 = M eiαγ5τ3 with α = tan−1
(
µ

m0

)
and M2 = m2

0 + µ2.
Perform axial transformation to the physical basis:

ψ(x) = eiωγ5
τ3
2 χ(x) , ψ̄(x) = χ̄(x) eiωγ5

τ3
2

The mass term transforms as Mei(α−ω)γ5τ3 and if α = ω we recover the Dirac action

S =

∫
d4x ψ̄(x) (γµDµ[U] + M)ψ(x)

=⇒ In the continuum the twisted mass action is equivalent to QCD but at finite a it provides an alternative
discrete formulation.
Advantages:

Automatic O(a) improvement at maximal twist
Only one parameter to tune like with Wilson fermions, namely we tune the PCAC mass at smallest µ
value to zero
No additional operator improvement

Disadvantages:
Explicit chiral symmetry breaking like for all Wilson-type actions

Explicit breaking of isospin symmetry to O(a2). In practise only π0 receives large O(a2) corrections
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Chiral actions
Chiral symmetry at non-zero lattice spacing is realized if the Ginsparg-Wilson relation is satisfied

Dγ5 + γ5D = aDγ5D.

This amounts to adding a contact term that vanishes in the continuum limit.
Using D we can define a chiral rotation which reduces to the continuum one as a → 0

ψ
′ = eiθγ5

(
1− a

2 D
)
ψ, ψ̄

′ = ψ̄
′eiθ

(
1− a

2 Dγ5
)

leaving L(ψ̄, ψ) = ψ̄Dψ invariant.
Explicit construction of D is provided by:

Overlap operator:

Dov =
1
a

[
1 −

A
√

A†A

]
, A = 1 − aDW

where DW is the massless Wilson-Dirac operator.
The main drawback is that its expensive.

Domain wall operator is defined on a 5-D lattice:

DDW (n1, s1; n2, s2) = δs1,s2 DW (n1; n2)+δn1,n2 DDW5(s1; s2)

where s1, s2 denote the fifth direction. DW is the 4-D Wilson
Dirac operator.
The link variables are define in 4-D as before and the
operator DDW5 act in the 5th direction.
Left and right handed fermions live on the opposite
boundaries of the fifth dimension

Left-handed 
fermion right-handed fermion 

L5 
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Computational costs

1000 independent configurations for NF=2 twisted mass fermions 
L=2.1 fm, a=0.087 fm 

2001 
2008 

(mv/mPS)6 
(mv/mPS)4 

•  Mass preconditioner (Hasenbusch) 
•  Multiple time scales in the molecular 
dynamics updates 

Algorithmic improvements 

Lattice size: 243x40 lattice  number of d.o.f ~ 5x107, 
                                                    dimension of fermion (sparse) matrix D ~ 107 
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Improved gauge actions:Lüscher-Weisz action

The leading order term in the expansion of all Wilson loops is O(4) =
∑
µν FµνFµν and corrections begin at

O(a2) =⇒ any lattice action written as a linear combination of Wilson loops will have the correct continuum limit
with corrections at O(a2).
There are three dimension 6 operators which in contin-
uous notation are:

O(6)
1 =

∑
µ,ν

Tr
(

DµFµνDµFµν
)
,

O(6)
2 =

∑
µ,ν,ρ

Tr
(

DµFνρDµFνρ
)
,

O(6)
3 =

∑
µ,ν,ρ

Tr
(

DµFµρDνFνρ
)
.

Also there are only 3 six-link loops that one can
draw on the lattice: Planar L(6)

1 , twisted L(6)
2 and

the L shaped L(6)
3 .

(6)
L

(6)
L

(6)
L1 2 3

Thus, classical improvement of the lattice action, i.e. re-
moving the O(a2) term, can be achieved by taking a lin-
ear combination of the plaquette and these three six-link
loops that have the expansion

L = r (4) O(4) + r (6)1 O(6)
1 + r (6)2 O(6)

2 + r (6)3 O(6)
3 + . . . ,

and Lüscher and Weisz have shown an elegant way of
calculating the expansion coefficients r (d)α Their results
are summarized in the Table.

Loop r (4) r (6)1 r (6)2 r (6)3
L(4) − 1

4
1

24 0 0
L(6)

1 −2 5
6 0 0

L(6)
2 −2 − 1

6
1
6

1
6

L(6)
3 −4 1

6 0 1
2
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The Lüscher-Weisz action
The lattice gauge action can be written as

Sg =
6
g2

{
c(4)(g2) L(4) +

∑
i=1,3

c(6)
i (g2) L(6)

i

}

in terms of the plaquette and the three 6-link loops with the renormalization condition:
c(4)(g2) + 8c(6)

1 (g2) + 8c(6)
2 (g2) + 16c(6)

3 (g2) = 1 so that in the continuum limit the action reduces to
FµνFµν/4. Tree level improvement can be obtained by the choice

c(4) + 20c(6)
1 = 0; c(6)

2 = 0; c(6)
3 = 0 .

Choosing c(6)
3 = 0 one finds

c(6)
1 − c(6)

2 = −
1

12
.

Quantum effects are included at one-loop needed to kill O(a2) at all length scales. Lüscher and Weisz derived
the 1-loop improved action which has leading correction at O(g4a4) and fixes

c(4)
0 (g2) =

5
3
+ 0.2370g2

, c(6)
1 (g2) = −

1
12

− 0.02521g2

c(6)
2 (g2) = −0.00441g2

, c(6)
3 (g2) = 0 .

for which the ci normalization condition is satisfied.
The bottom line on the Lüscher-Weisz action is that since the coefficient c(6)

2 is small, the action, to a very good

approximation, can be improved by keeping just L(4) and L(6)
1 as in the classical case. This 1-loop result can be

mean-field improved without much effort.
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Exercise: Conserved current for Wilson fermions

To derive the associated conserved current (for degenerate masses) we use the standard trick of calculating the
variation of the action

δS = κ
∑
x,µ

ψ̄(x)(γµ − r)Uµ(x)ψ(x + µ̂) exp(iθ(x) − iθ(x + µ))

− κ
∑
x,µ

ψ̄(x + µ)(γµ + r) U†
µ(x)ψ(x) exp(iθ(x + µ) − iθ(x))

which, to first order in θ, is

−
∑
x,µ

[
ψ̄(x)(γµ − r)Uµ(x)ψ(x + µ̂) +

ψ̄(x + µ)(γµ + r) U†
µ(x)ψ(x)

][
i
∂θ

∂xµ

]
.

The conserved current, obtained after integration by parts, is

V c
µ = ψ̄(x)(γµ − r)Uµ(x)ψ(x + µ̂) + ψ̄(x + µ)(γµ + r) U†

µ(x)ψ(x) .

V c
µ is hermitian and reduces to the symmetrized version of the 1-link vector current for r = 0.
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