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Standard model
The Standard Model (SM) is a synthesis of three of the four forces of nature described by gauge theories with
coupling constants:

Strong Interactions: αs ∼ 1
Electromagnetic interactions: αem ≈ 1/137
Weak interactions: GF ≈ 10−5 GeV−2.

Basic constituents of matter:
Six quarks, u, d, s, c, b, t , each in 3 colors, and six leptons e, νe, µ, νµ, τ, ντ
The quarks and leptons are classified into 3 generations of families.
The interactions between the particles are mediated by vector bosons: the 8 gluons mediate strong
interactions, the W± and Z mediate weak interactions, and the electromagnetic interactions are carried
by the photon γ.
The weak bosons acquire a mass through the Higgs mechanism.
The SM is a local gauge field theory with the gauge group SU(3) × SU(2) × U(1) specifying the
interactions among these constituents.

Masses in the Standard Model
Parameters Number Comments
Masses of quarks 6 u, d, s light

c, b heavy
t = 175 ± 6 GeV

Masses of leptons 6 e, µ, τ
Mνe, νµ, ντ non-zero

Mass of W± 1 80.3 GeV
Mass of Z 1 91.2 GeV
Mass of gluons, γ 0 (Gauge symmetry)

Mass of Higgs 1 125.35(15) GeV
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QCD versus QED
QCD is the theory of strong interactions formulated in terms of quarks and gluons as the basic degrees
of freedom of hadronic matter.
Conventional perturbative approach cannot be applied for hadronic process at scales ∼< 1 GeV since the
strong coupling constant αs ∼ 1
=⇒ we cannot calculate the masses of mesons and baryons from QCD even if we are given αs and the
masses of quarks.
Bound state in QCD very different from QED e.g. the binding energy of a hydrogen atom is to a good
approximation the sum of it constituent masses. Similarly for nuclei the binding energy is O(MeV). For
the proton almost all the mass is attributed to the strong non-linear interactions of the gluons.
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QCD on the lattice

Why Lattice QCD?

Discrete space-time lattice acts as a non-perturbative regularization scheme with the lattice spacing a
providing an ultraviolet cutoff at π/a → no infinities. Furthermore, renormalized physical quantities have
a finite well behaved limit as a → 0.

Can be simulated on the computer using methods analogous to those used for Statistical Mechanics
systems. These simulations allow us to calculate correlation functions of hadronic operators and matrix
elements of any operator between hadronic states in terms of the fundamental quark and gluon degrees
of freedom.

Like continuum QCD lattice QCD has as unknown input parameters the coupling constant αs and the masses
of the up, down, strange, charm and bottom quarks (the top quark is too short lived).
=⇒Lattice QCD provides a well-defined approach to calculate observables non-perturbative starting directly
from the QCD Langragian.
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Scalar field theory
Let the continuum r⃗ be defined on lattice points i.e. r⃗ → n⃗ ≡ (n1, n2, n3)a where a is the lattice spacing.
=⇒ equivalent to many-body problem where:

x̂i , p̂i → ϕ̂(⃗n), π̂(⃗n) x̂i |x⟩ = xi |x⟩ → ϕ̂(⃗n) = ϕ(⃗n) |ϕ⟩ .

We then have∫
d3r
{

1
2
π

2 (⃗r) +
1
2
|∇⃗ϕ(⃗r)|2 + V (ϕ(⃗r))

}
→
∑

n⃗

a3

{
1
2
π

2 (⃗n) +
1

2a2

3∑
i=1

|ϕ(⃗n + aµi ) − ϕ(⃗n)|2 + V (ϕ(⃗n))

}

where µi denotes a displacement by one lattice site in the i th direction.
The evolution operator in Euclidean time:

e−t
∑

n⃗ a3
{

1
2π

2 (⃗n)+F (ϕ(⃗n))
}
=

∫
D[ϕ(⃗n)]e

−∆ta3 ∑
n⃗,k

[
1

2∆t2
(ϕk+1 (⃗n)−ϕk (⃗n))2+F (ϕk (⃗n))

]

Take isotropic lattice i.e. ∆t = a
=⇒ time slicing replaces p̂i2 (⃗n) by 1

∆t (ϕk+1 (⃗n) − ϕk (⃗n))2 ≡ 1
∆t (ϕ(n + aµ0) − ϕ(n))2 which has the same

structure as the discrete spatial derivative and where n = (n0, n1, n2, n3)a.

=⇒ O(ϕ)e−t
∫

d3 r
{

1
2π

2 (⃗r)+ 1
2 |∇⃗ϕ(⃗r)|2+V (ϕ(⃗r))

}
→
∫

D[ϕ(n)]O(ϕ)e−Scl [ϕ]

where Scl[ϕ] =
∑

n a4
{∑3

i=0
(ϕ(n+aµi )−ϕ(n))

2

a2 + V (ϕ(n))
}

.

Note that Scl is completely symmetric in time and space → if we choose periodic b.c. then the shortest
dimension acts as a finite temperature.
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Coherent States for bosons
For the Feynman path integral of the 1-d QM example we needed:

Eigenstates of x̂ , x̂ |x⟩ = x |x⟩ and
Unity:

∫
dx |x⟩ ⟨x| = 1

The analogs for creation and annihilation operators are provided by boson coherent states.
Consider a creation operator a† then[

â, â†
]
= 1 â† |n⟩ =

√
n + 1 |n + 1⟩ â |n⟩ =

√
n |n − 1⟩ |n⟩ =

1√
n!

(
â†
)n

|0⟩

Define the coherent state |z⟩ by

|z⟩ ≡ eza† |0⟩ =
∑

n

zn

n!

(
â†
)n

|0⟩ =
∑

n

zn

√
n!

|n⟩

Properties:

â |z⟩ =
∑

n

zn

√
n!

â |n⟩ = z
∑

n

zn−1√
(n − 1)!

|n − 1⟩ = z |z⟩

⟨z| z′⟩ =
∑
mn

⟨m| z∗m

√
m!

z′n
√

n!
|n⟩ = ez∗z′

⟨z| : A(â†â) : |z⟩′ = ez∗z′A(z∗
, z′) (1)

1 =

∫
dzdz∗

2πi
e−z∗z′ |z⟩ ⟨z|
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Coherent States for bosons
For the Feynman path integral of the 1-d QM example we needed:

Eigenstates of x̂ , x̂ |x⟩ = x |x⟩ and

Unity:
∫

dx |x⟩ ⟨x| = 1

The analogs for creation and annihilation operators are provided by boson coherent states.
Consider a creation operator a† then[

â, â†
]
= 1 â† |n⟩ =

√
n + 1 |n + 1⟩ â |n⟩ =

√
n |n − 1⟩ |n⟩ =

1√
n!

(
â†
)n

|0⟩

Define the coherent state |z⟩ by

|z⟩ ≡ eza† |0⟩ =
∑

n

zn

n!

(
â†
)n

|0⟩ =
∑

n

zn

√
n!

|n⟩

Generalize for a set of creation operators â†
α

|z⟩ = e
∑
α zα â†α |0⟩

âα |z⟩ = zα |z⟩

⟨z| : A(â†â) : |z⟩′ = e
∑
α zαZ′

αA(z∗
, z′)

1 =

∫ ∏
α

dzαz∗
α

2πi
e−z∗αz′α |z⟩ ⟨z| ≡

∫
dµ(z) |z⟩ ⟨z|
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Path integral using coherent states

Time slicing the evolution operator:

⟨zf | e−tH |zi⟩ = ⟨zf | e−∆tH
∫

dµ(zN−1) |zN−1⟩ ⟨zN−1| e−∆tH
∫

dµ(zN−2) · · · e−∆tH |zi⟩

The matrix element of the infinitesimal evolution operator is

dµ(zk ) ⟨zk | e−tH |zk−1⟩ =
∏
α

dz∗
k,αdzk,α

2iπ
e−

∑
α z∗k,α(zk,α−zk−1,α)−∆tH(z∗k,α,zk−1,α)

resulting in

⟨zf | e−tH |zi⟩ =

∫
D[z∗

k,α, zk,α]e
−S(z∗k,α,zk,α)

S(z∗
, z) =

∑
k

∆t

{∑
α

z∗
k,α

(
zk,α − zk−1,α

∆t

)
+ H(z∗

k,α, zk−1,α)

}
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Coherent states for fermions

Fermions are represented by anti-commuting creation and annihilation operators c†
α and cα → need to

introduce anti-commuting Grassmann variables ξ such that

ĉα |ξ⟩ = ξα |ξ⟩ ĉαĉβ |ξ⟩ = ξαξβ |ξ⟩ = −ξβξα |ξ⟩ = −ĉβ ĉα |ξ⟩

Since ξ2
α = 0 (Pauli principle) the only functions allowed are monomials.

The rules for integration over a Grassmann variable ξ and ξ∗ are∫
dξα =

∫
dξ∗α = 0,

∫
dξαξα =

∫
dξ∗αξ

∗
α = 1

A fermion coherent state is defined by

|ξ⟩ ≡ e−
∑
α ξαc†α |0⟩

with similar properties to bosons. The path integral have similar form to that for bosons with some minus signs
that distinguish between bosons and fermions.
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Integration over fermions

For numerical evaluation we can not have the path integrals in terms of Grassmann variables. Fortunately for
normalizable field theories we can integrate analytically over the fermionic degrees of freedom
Recall Gaussian integral

∫ ∏
i

dz∗
i dzi

2iπ
e−z∗i Hij zj+J∗i zi+z∗i Ji = [detH]−1 e

J∗i H−1
ij Jj

An analogous result is obtained for Grassmann “Gaussian”: For one pair of Grassmann variables we have∫
dξ∗dξ e−ξ∗aξ =

∫
dξ∗dξ(1 − ξ

∗aξ) = a

This generalizes to ∫ ∏
i

dξ∗i dξi e−ξ∗i Hijξj+η
∗
i ξi+ξ

∗
i ηi = [detH] e

η∗i H−1
ij ηj

i.e. the only difference is that detH appears in the numerator → accounts for the minus sign of fermion loops.
If our action is of the form S(ξ∗, ξ, ϕ) = ξ∗i M(ϕ)ijξj + SB(ϕ) then

∫
dξ∗dξdϕ eξ

∗
i M(ϕ)ijξj+SB (ϕ)

=

∫
dϕ detM(ϕ) eSB (ϕ)

i.e. Seff(ϕ) = ln detM(ϕ) + SB(ϕ)
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Fermion propagators
Consider the time ordered product of field creation and annihilation operators at space-time points j = (xj , tj )
and i = (xi , ti ) respectively:

⟨T̂ψi ψ̄j⟩ = TrT̂ψi ψ̄j e−ψ̄M(ϕ)ψ+SB (ϕ) =

∫
D[ϕ]D[ξ̄ξ]ξi ξ̄j e−ξ̄M(ϕ)ξ+SB (ϕ) =

∫
D[ϕ] M−1

ij (ϕ) eSeff(ϕ)

In general for n pairs of creation and annihilation operators∫
D(ξ∗, ξ) ξi1 · · · ξinξ

∗
jn · · · ξj1 e−ξ∗Mξ

=
δ2n

δη∗i1
· · · δη∗inδηjn · · · δηj1

∫
D(ξ∗, ξ) e−ξ∗i Mijξj+η

∗
i ξi+ξ

∗
i ηi |η=η

∗=0

=
δ2n

δη∗i1
· · · δη∗inδjn · · · δηj1

detM e
η∗i M−1

ij ηj |η=η
∗=0

=
∑

P

(−1)P M−1
iPn jn

· · · M−1
iP1

j1
eln detM

where P denotes a permutation of the indices. This is nothing else but Wick’s theorem.
=⇒ fermions can be integrated out and we left only with an effective action with the bosonic degrees of
freedom.
Boundary conditions:

Tre−tH =

∫
dz∗

0 dz0e−z∗0 z0 ⟨±z0| e−tH |z0⟩ =

∫
dz∗

0 dz0e−z∗0 z0

∫
dD[z∗

, z] e−S(z∗,z)

where the plus is for bosons and minus for fermions and
S(z∗, z) = ±z∗

0 (±z0 − zN−1) + H0.N−1 + z∗
N−1(zN−1 − zN−2) + HN−1,N−2 + · · · + z∗

1 (z1 − z0)H1,0.
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Lattice Gauge theories

K. Wilson: 1974 formulated Euclidean gauge theories on the lattice as a tool for the study of confinement
and non-perturbative properties of QCD.

M. Creutz: 1980 perform the first numerical implementation of the path integral for gauge theories.

The set-up for the numerical evaluation requires

Discretization of space-time: Discretize space-time in 4 Euclidean dimensions → simplest isotropic
hypercubic grid with spacing a = aS = aT and size NS × NS × NS × NT

Definition of the gauge and fermion degrees on the discrete space-time: The quark field is represented
by anticommuting Grassmann variables defined at each site of the lattice. They belong to the
fundamental representation of SU(3). The gauge field is discussed below.

Construction of an appropriate action

Definition of the measure of integration in the path integral.

Construction of the operators used to probe the physics
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Gauge degrees of freedom

In the continuum a fermion moving from site x to y in the presence of a gauge field Aµ(x) picks up a phase
factor given by the path ordered product

ψ(y) = P ei
∫ y
x gAµ(x)dxµ ψ(x) .

=⇒ associate gauge fields with links that connect sites on the lattice. So, with each link associate a discrete
version of the path ordered product:

U(x ; x + µ̂) ≡ Uµ(x) = eiagAµ(x)
,

U is a 3 × 3 unitary matrix with unit determinant. It follows that

U(x ; x − µ̂) ≡ U−µ(x) = e−iagAµ(x) = U†(x − µ̂; x) .
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Local gauge symmetry
The effect of a local gauge transformation V (x) on the variables ψ(x) and U is defined as

ψ(x) → V (x)ψ(x)

ψ̄(x) → ψ̄(x)V†(x)

Uµ(x) → V (x)Uµ(x)V
†(x + µ̂)

where V (x) is in the same representation as the Uµ(x), i.e.,
it is an SU(3) matrix. With these definitions there are two
types of gauge invariant objects that one can construct on
the lattice.

A string consisting of a path-ordered product of links capped by a fermion and an antifermion e.g.

Tr ψ̄(x) Uµ(x) Uν(x + µ̂) . . .Uρ(y − ρ̂) ψ(y)

where the trace is over the color indices.
If the string stretches across the lattice and is closed by the periodicity are called Polyakov lines.
The simplest example of closed Wilson loops is the plaquette, a 1 × 1 loop,

W 1×1
µν = Pµν(x) = Re Tr

(
Uµ(x) Uν(x + µ̂) U†

µ(x + ν̂) U†
ν(x)

)
.

Preserve gauge invariance at all a → protects from having many more parameters to tune (the zero gluon
mass, and the equality of the quark-gluon, 3-gluon, and 4-gluon couplings) and there would arise many more
operators at any given order in a.
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U(1) gauge theory
Consider a Lagrangian of a complex field ϕ: L = ∂µϕ

∗∂µϕ− V (ϕ∗, ϕ). If we require that the Lagrangian is
invariant under a local gauge transformation ϕ′(x) = e−iα(x)ϕ(x) then we need a field Aµ(x) to compensate
the change in the derivative ∂µϕ that transforms as

A′
µ(x) = Aµ(x) +

1
g
∂µα(x) ∂µ → Dµ ≡ ∂µ + igAµ(x)

The gauge invariant Lagrangian is written as

L = − 1
4

FµνFµν + (Dµϕ)
∗Dµϕ− V (ϕ∗

, ϕ)

A scalar moving from site x to y in the presence of a gauge field Aµ(x) picks up a phase factor given by

U(x ; y) = eig
∫ y
x dxµAµ(x)

which removes the phase between the value of the field
at the two points and yields a gauge invariant result.

The action is defined in terms of link variables assigned to links between sites
of the space-time lattice.
The link variable from site n in the µ direction to site n+ aêµ is defined as the

discrete approximation to the integral eig
∫ n+µ
n : Uµ(n) = eiθµ(n) with θµ(n)

the approximation of g
∫ n+µ

n dxµAµ(x).

The integral over the field variables is the invariant group measure for U(1):
1

2π

∫ π
−π dθ.

Uµ(n)n n + µ

n + µ + νn + ν

Uν(n + µ)

U†
µ(n + ν)

U†
ν (n) P 

The action is the sum of all plaquettes Pµν = U(n)µUν(n + µ)U†
µ(n + ν)U†

ν(n).

For U(1): Pµν(n) = eiθµ(n)eiθν (n+µ)e−iθµ(n+µ)e−iθν (n) ≡ eiBµν , Bµν = ∆µθν − ∆νθµ
a→0→ Fµν .
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Lattice action of U(1)

Since a plaquette produces Fµν the action can be constructed by choosing a function of the plaquette such that
it generates F 2

µν in the continuum limit.

S = β
∑

n

∑
µ>ν

(1 − Re Pµν(n)) = β
∑

n

∑
µ>ν

(1 − cos Bµν) ,

where β = 1
g2 and Bµν = ∆µθν − ∆νθµ

a→0→ Fµν .

In the limit a → 0 we recover continuum QED:
Taking θµ(n) = agAµ(n) and expanding θν(n + êµa) = θν(n) + a∂µθν(n) + O(a2)

S ∼ 1
g2

∑
P

[1 − cos(a∂µθν − a∂νθµ)] =
1
g2

∑
P

[
1 − cos(a2gFµν)

]
=

1
g2

∑
n

∑
µ>ν

[
a4g2

2
F 2
µν + · · ·

]

→ 1
4

∫
d4x F 2

µν(x)
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SU(N) Gauge Theory on a lattice
The generalization to non-Abelian gauge theory is straightforward. The link variable is

Uµ(n) = eiagλc Ac
µ(n)

= eiagAµ(n) and U−µ(n) = e−iagλc Ac
µ(n)

= U†
µ(n − µ)

For SU(3) λc are the Gell-Mann matrices and c = 1, · · · , 8 is a color label. The 8 group generators are
normalized as Trλaλb = 2δab and U is a 3 × 3 unitary matrix with unit determinant.
The action is given in terms of the product of SU(N) group elements around an elementary plaquette

Pµν(n) = Uµ(n)Uν(n + µ)U†
µ(n + ν)U†

ν(n) = eiagAµ(n)eiagAν (n+µ)e−iagAµ(n+ν)e−igAν (n)

In order to find the continuum limit of this plaquette we expand A by applying the the Baker-Hausdorff identity

eX eY = eX+Y+ 1
2 [X,Y ]+···

Pµν ∼ eiagAµ(n)eiag(Aν (n)+a∂µAν (n))e−iag(Aµ(n)+a∂νAµ(n))e−iagAν (n)

∼ eiag
(

Aµ(n)+Aν (n)+a∂µAν (n)+ 1
2 iag[Aµ,Aν ]

)
e−iag

(
Aµ(n)+Aν (n)+a∂νAµ(n)− 1

2 iag[Aµ,Aν ]
)

∼ eia2g(∂µAν (n)−∂νAµ(n)+ig[Aµ,Aν ]) = eia2gFµν

and therefore we may define the SU(N) action by choosing a function of the plaquette which yields F 2
µν :

S(U) = β
∑

n

∑
µ>ν

(
1 − 1

N
Re TrPµν

)
, β =

2N
g2
,
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SU(N) Gauge Theory

S(U) = β
∑

n

∑
µ>ν

(
1 − 1

N
Re TrPµν

)
, β =

2N
g2
,

Using the continuum limit of the plaquette we can easily obtain the continuum limit of the above action:

S(U) = β
∑

n

∑
µ>ν

(
1 − 1

N
Re Tr

(
1 + ia2Fµν − 1

2
a4g2F 2

µν + · · ·
))

∼ 1
2
βa4g2

∑
n

∑
µ>ν

1
N

Tr
(

1
2
λ

cF c
µν(n)

1
2
λ

bF b
µν(n)

)
∼ β

g2

2N

∑
n

a4
∑
µν

1
2

F c
µνF c

µν(n)

→ 1
4

∫
d4xF c

µν(x)F
c
µν

The fact that the generators λc are traceless is used to eliminate linear terms. The relation Trλbλc = 2δbc has
been used to get the diagonal piece.
There is a great freedom to construct other expressions with the same continuum limit. E.g. considering a
product of link variables around a larger rectangle ja × ka we obtain

1
a4

(
1 − 1

N
ReTrW j×k

)
= cjk F 2

µν + a2
∑

m

dm
jk Im(Dµ,Dν , Fαβ , Fγδ) + O(a4)

where Im denotes an invariant from two derivatives and two F ’s and the coefficients c and d are calculable →
we can construct improved actions by taking linear combinations for various rectangles.
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Gauge action

There are four important points to note based on the above construction of the lattice action.

1 The leading correction is O(a2): The term a2
6 Fµν(∂3

µAν − ∂3
νAµ) is present in the expansion of all

planar Wilson loops. Thus at the classical level it can be gotten rid of by choosing an action that is a
linear combination of say 1 × 1 and 1 × 2 Wilson loops with the appropriate relative strength given by the
Taylor expansion

2 Quantum effects will give rise to corrections, i.e. a2 → X(g2)a2 where in perturbation theory
X(g2) = 1 + c1g2 + . . ., and will bring in additional non-planar loops. Improvement of the action will
consequently require including these additional loops, and adjusting the relative strengths which become
functions of g2.

3 The reason for defining the action in terms of small loops is computational speed and reducing the size of
the discretization errors. For example the leading correction to 1 × 1 loops is proportional to a2/6
whereas for 1 × 2 loops it increases to 5a2/12. Also, the cost of simulation increases by a factor of 2 − 3.

4 The electric and magnetic fields E and B are proportional to Fµν . They are are given in terms of the

imaginary part of Wilson loops: ImPµν
a→0
= a2gFµν .
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Wilson loops
In the pure gauge theory the only gauge invariant objects are closed loops. The Wilson loop

W = TrUi (x)Uk (x + ja) · · · Ui (x − ia)

Consider a space-time Wilson loop: Under a gauge transformation a product of gauge links becomes

Ui (x) · · · Uj (x + ka) → V (x)Ui (x) · · · Uj (x + ka)V†(x + ka)

whereas
ψ(x)ψ̄(x + ka) → V (x)ψ(x)ψ̄(x + ka)V†(x + ka).

i.e as far as the gauge fields are concerned the ends of a chain of link variables are equivalent to an external
quark-antiquark source → response of system to an external quark-antiquark source.
The expectation of the space-time Wilson loop

⟨W⟩ =

∫
DUe−S(u)W∫
DUe−S(u)

gives the time evolution of the system: Prior to ti there are no color
sources → |0⟩ = e−ti H |Q = 0⟩.

At time ti the line of link variables between 0 and R creates
an external antiquark source at 0 and a quark source at R.

The links in the time direction between ti and tf maintain
these sources at 0 and R → state evolves to the lowest
gluon state in the presence of a quark-antiquark source.

The q − q̄ pair is annihilated at time tf .

=⇒ ⟨W⟩ ∝ e−(tf −ti )V (R) where V (R) is the potential between two
static quarks.
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Area law

Consider a non-relativistic particle

H =
p2

2m
+ V (r)

Propagator:
G(⃗r ′, t ; r⃗ , 0) =

〈
r ′
∣∣ e−iHt |r⟩ m→∞−→ δ

3(r ′ − r)e−iV (r)t

Wick rotation: t → −it
=⇒ GE (r

′
, t ; r , 0) m→∞−→ δ

3(r ′ − r)e−V (r)t

i.e. the potential is determined by the exponential behavior of the propagator of a static particle.
In the gauge theory we need to generate the eigenstate of the QCD Hamiltonian for static quark-antiquark →
e.g.time evolving the Wilson loop or correlation between two Polyakov loops.
If there are J links in the time direction and K links in the space direction then

⟨W J×K ⟩ J→∞∼ e−aJV (aK ) K→∞∼ e−a2σJK

where we used the fact that at large distances the potential is linear since in pure gauge no quark-antiquark can
be produced.
=⇒ Area law - Signature of confinement
Note that this holds in the limit of large Wilson loops and for the Wilson loops considered one has corrections
that are proportional to the perimeter of the loop as well as a constant term. Take ratios to eliminate these:

=⇒ χ(I, J) = − log

(
W I×J W J−1×J−1

W I×J−1W J−1×J

)
∼ a2

σ.
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Wilson loop revisited
Consider a heavy quark Q and a heavy antiquark Q̄. Construct a gauge invariant state at t = 0

|ϕα,β⟩ (⃗x, y⃗) = Q̄α (⃗x, 0)U (⃗x, 0; y⃗, 0)Qβ (⃗y, 0) |Ω⟩

Propagate at later time t and annihilate the QQ̄:

Gβ′,α′ ;α,β(y
′x ′; x, y) ≡ ⟨Ω| T̂ Q̄β′ (⃗y

′
, t)U (⃗y ′

, t ; x⃗ ′
, t)Qα′ (⃗x ′

, t)Q̄α (⃗x, 0)U (⃗x, 0; y⃗, 0)Qβ (⃗y, 0) |Ω⟩

=
1
Z

∫
DUD(Q̄,Q)Q̄β′ (y

′) · · · Qβ(x) eiS

where x = (⃗x, 0), y = (⃗y, 0), x ′ = (⃗x ′, t) and y ′ = (⃗y ′, t).
Do in the continuum theory, i.e.

S = SG(A) + SQ(Q̄,Q,A) , SQ =

∫
d4xQ̄(x)

(
iγµDµ − MQ

)
Q(x)

Integrate over heavy fermions:

Gβ′,α′ ;α,β(y
′x ′; x, y) =

1
Z

∫
D(A)

[
Sββ′ (y, y

′; A)Sα′α(x
′
, x ; A) − Sα′β′ (x

′
, y ′; A)Sβα(y, x ; A)

]
U(x ; y)U(y ′; x ′) DetDQ(A) eiSG

S(z, z′; A) is the quark propagator in an external field Aµ i.e.

(iγµDµ − MQ)S(z, z′; A) = δ
4(z − z′)
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Take MQ → ∞:

S(z, z′; A) = Peig
∫ t
0 dt′A0 (⃗x,t

′) S(z − z′) , (iγ0∂0 − MQ)S(z − z′) = δ
4(z − z′)

=⇒ iS(z, z′; A) = δ
(3) (⃗z − z⃗′)P eig

∫ t
0 dt′A0 (⃗x,t

′)
{
Θ(z0 − z′

0)

(
1 + γ0

2

)
e−iMQ (z0−z′0)

+ Θ(z′
0 − z0)

(
1 − γ0

2

)
eiMQ (z0−z′0)

}

Gβ′,α′ ;α,β(y
′x ′; x, y)

MQ→∞
−→ δ

(3) (⃗x − x⃗ ′)δ(3) (⃗y − y⃗ ′)

(
1 + γ0

2

)
α′α

(
1 − γ0

2

)
ββ′

e−2iMQ t⟨Peig
∮

dxµAµ ⟩

Rotate in Euclidean time and discretize:

Gβ′,α′ ;α,β(y
′x ′; x, y)

MQ→∞
−→ δ

(3) (⃗x − x⃗ ′)δ(3) (⃗y − y⃗ ′)

(
1 + γ0

2

)
α′α

(
1 − γ0

2

)
ββ′

e−2MQ t⟨WC(U)⟩

where WC is the Wilson loop: ⟨WC⟩ = 1
Z

∫
D(U) WC(u) e−SG(U) → e−V (R)t .
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String tension
Can we relate the string tension extracted from the Wilson loop to a quantity measured in experiment?
Families of mesons with a given set of quantum numbers have masses obeying the Regge formula

M2
J =

1
α

J, α = 0.9 GeV−1

Consider a simple model: [J. W. Negele]

A massless quark and an antiquark connected by a string of
length 2L.

Since they are massless they are moving with the speed of
light and the speed of a segment of string a distance x from
the origin is v = x

L c

σ=energy per unit length of the flux in its rest frame

Contribution to energy and angular momentum of the
element dx :

dE = γσdx, dJ = γσvxdx

=⇒ M =

∫ L

−L
dx

σ√
1 −

( x
L

)2
= πσL , J =

∫ L

−L
dx

σx2/L√
1 −

( x
L

)2
=
π

2
σL2 =⇒ M2 = 2πσJ

or
√
σ = 2πα−1/2 = 420 MeV.

v=c 

v=c 

x 

L 

-L 

dx
 

v=cx/L 

Note that this is a rough model and disagreement to the 10% level will not come as a surprise.
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Results

G. Bali, K. Schilling, C. Schlichter, 1995

Flux

tube

forms

between

qq

quarks fixedQQ

free
gluons

flux
tube

E
(GeV)

1 fm

2 6
2
11

0

[S. Necco and R. Sommer, NPB622 (2002)]
r0 extracted from the qq̄ force: r2 ∂V (r)

∂r |r=r0 = 1.65.
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Continuum limit

Pure gauge on a lattice has only two parameters: the dimensionless bare coupling constant g and the lattice
spacing a.
As we change a, g must be adjusted to keep physical quantities fixed.
The renormalization procedure is in principle simple:

Pick an initial value of g

Calculate a set of dimensionful physical quantities ⟨Oi⟩. These can be written in the form:

⟨Oi⟩ = a−di ⟨OL
i (g)⟩, di = dimension of operator, and OL

i dimensionless.

e.g. the string tension has the form σ = a−2χ

Use the physical value of one operator, e.g. O1 to determine a that corresponds to the particular value of
g e.g. if we choose σ then a =

√
χ/0.420 GeV−1

All other observables are then determined

One should then repeat the above steps for smaller values of g to determine g(a) and the physical quantities
⟨O2⟩ · · · ⟨ON⟩.
The existence of a continuum limit implies that

⟨Oi (g(a), a)⟩ = a−di ⟨OL
i (g)⟩

a→0−→ Ophys.
i

i.e. the values of these observables should approach a limit as g → 0 and agree with experiment.
All dimensionful quantities in lattice simulations are measured in units of the lattice spacing e.g. for masses one
measures mL ≡ Ma and not M. As a → 0 Ma → 0 or the correlation length ξL ≡ 1/Ma diverges. This is
precisely what one wants to happen so that the system looses memory of the lattice.
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Asymptotic freedom
Asymptotic freedom: the running coupling g → 0 as the momentum scale of the probe µ or 1/a → ∞. It is
characterized by renormalization group function a dg

da or the β-function

−a
∂g
∂a

≡ β(g) = −β0g3 − β1g5 + . . .

The perturbative β-function satisfies for N colors and nf active flavors [’t Hooft, Politzer, Gross and Wilczek]

β0 =
(

11N−2nf
3

)
1

16π2 , β1 =

(
34N2

3 − 10Nnf
3 − nf (N

2−1)
N

)
1

(16π2)2
.

The point is that these two leading terms in the expansion of β(g) are gauge and regularization scheme
invariant → can be used in lattice regularization.
Integration of this relation yields

a(g2) =
1
ΛL

(
β0g2

)−
β1

2β2
0 e

− 1
2β0g2 ≡ 1

ΛL
f (g) ,

where nf = 0 for pure gauge and ΛL is an integration constant which is regularization scheme dependent.
Inverting we obtain:

g(a)−2 = β0 ln(a
−2Λ−2

L ) +
β1

β0
ln
(
ln(a−2Λ−2

L )
)
+ · · ·

i.e. changing a one must tune g such that physical observables remain independent. Vanishing a corresponds
to vanishing g → asymptotic freedom.
From our lattice calculation we can calculate a(g2) e.g.

a(g2) =

[
a2σ|g2

σexper.

]1/2

=

√
χ

0.42 GeV

should coincide with the perturbative result as a → 0 and be independent of the obsrvable used. This is called
asymptotic scaling.
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Mass scale ΛQCD

Asymptotic freedom implies that QCD dynamically generates a mass scale.
Consider: µ ∂g

∂µ = β = −β0g3 − β1g5.
Integrate from momentum scale µ1 to µ2 with µ2 > µ1 keeping only the β0 term:

1
2β0g2(µ2)

− 1
2β0g2(µ1)

= log
µ2

µ1
,

i.e. the coupling constant of non-abelian gauge theories depends logarithmically on the momentum scale of the
process. Equivalently:

1
2β0g2(µ)

− log µ = log ΛQCD =⇒ exp
{ 1

2β0g2(µ)

}
=

µ

ΛQCD

=⇒ αs(µ) =
g2(µ)

4π
=

1
8πβ0 log

µ
ΛQCD

introduces ΛQCD , the invariant scale of the theory with dimensions of mass.
=⇒ QCD in pure gauge with g dimensionless dynamically generates a mass scale.
This happens because to specify g we need a momentum scale at which it is defined.
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Mass scale ΛQCD
Extending the above analysis to include β1 gives

ΛQCD = lim
µ→∞

µ
( 1
β0g2(µ)

) β1
2β2

0 exp[− 1
2β0g2(µ)

] ≡ µ f
(
g(µ)

)
.

This 2-loop definition of ΛQCD is not unique; the value of ΛQCD depends on the the precise relation between g
and µ. However, once the value of Λ is determined in one scheme it can be related to that in any other
perturbative scheme. For example, in the lattice regularized theory Λlatt is also defined by the same equation
but with µ replaced by 1/a. Then to 1-loop

ΛQCD

Λlatt
= µa exp

{
− 1

2β0

[
1

g2(µ)
− 1

g2(a)

]}
.

In perturbation theory the two coupling constants are related as

g2(µ) = g2(a)
{

1 − β0g2(a)
(

log(µa)2 − log C2
)

+ O(g4)

}
and

ΛQCD = C Λlatt

i.e. the two constants, ΛQCD and Λlatt , are related by a multiplicative constant. To calculate C requires knowing
the finite part of the coupling constant renormalization to 1-loop in both the lattice and continuum regularization
schemes.
The results are listed in the following Table for ΛMOM and Λ

MS
.

nf 0 1 2 3 4

Λ
MS

/Λlatt 28.8 34.0 41.1 51.0 65.5

ΛMOM/Λlatt 83.4 89.4 96.7 105.8 117.4
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Exercises
1 Using fermion coherent states find the path integral representation of the evolution operator. Then find

the partition function and propagator for a non-interacting many partilce system.
2 Uisng the SPA evaluate the 1-D integral

I(l) =
∫ ∞

−∞
dx e−lf (x)

to O(1/l) assuming l ≫ 1 and f (x) a real function with a minimum at x = x0. Try to use a diagramatic
expression and then give the diagrams for the O(1/l2)-terms.

3 Write a computer program to implement the Metropolis Monte Carlo algorithm for the one dimensional
harmonic oscillator V (x) = x2

2 with m = 1. Compare your results with those of standard quantum
mechanics:

⟨x| e−HT |x⟩ ≈ |⟨x| E0⟩|2 e−E0T

where E0 = 1/2 and ⟨x| E0⟩ = e−x2/2

π1/4 .

Extract the energy and wave-function from your numerical result. In addition calculate

G(t) =
1
N

∑
j

⟨x(tj + t)x(tj )⟩

for all t = 0, a, 2a . . . (N − 1)a; i.e. calculate Gn = 1
N
∑

j⟨x(j+n)modN xj⟩ for n = 0 . . .N − 1 with periodic
boundary conditions. Try N = 20 lattice sites with lattice spacing a = 1/2, and set ϵ = 1.4 and
Ncor = 20. Try Ncf ’s of 25, 100, 1000 and 10000. Use the results to compute the excitation energy from

∆En ≡ log(Gn/Gn+1)
n large−→ (E1 − E0)a

Repeat this exercise for V (x) = x4/2.
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