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Lecture 3: Hadron spectrum

Outline

Spectrum calculations

@ Introduction to the basic techniques
@ Smearing techniques

@ Stochastic sources

e Low-lying hadrons
@ Comparison of results

Excited states

@ Variational principle

@ Anisotropic lattices

@ Excited states of the Nucleon

Exotics
@ Glueballs
@ Multi-quark states

e Resonances
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Introduction to the basic techniques

Successful calculations of the masses of low-lying baryons is a prerequisite for the validity of lattice QCD.
@ Choose the set of input parameters i.e. the bare quark masses and coupling constant
@ Choose lattice size

@ Create initial state of the hadron J;f |0). Some standard interpolating fields:
Jp = dysu, Jp = dyuu, Iy = W Crsd®)uC, Ja = (U Cr, d®)uf

We can make the following observations for Jy:
> The combination u?" (Cysd®)u® transforms like a Lorentz scalar — Jy transform like u and thus is
a spin 1/2 Dirac spinor.
> The color variables are antisymmetrized
> The non-relativistic limit of Jy agrees with the non-relativistic quark model: The upper components
of uCysd = u(—io?)d = —uyd) + u dy — produces the SU(6) proton wave function.
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Introduction to the basic techniques

Successful calculations of the masses of low-lying baryons is a prerequisite for the validity of lattice QCD.
@ Choose the set of input parameters i.e. the bare quark masses and coupling constant
@ Choose lattice size
@ Create initial state of the hadron J;f |0). Some standard interpolating fields:

Jp = dysu, Jp = dyuu, Iy = W Crsd®)uC, Ja = (U Cr, d®)uf

We can make the following observations for Jy:

> The combination u?" (Cysd®)u® transforms like a Lorentz scalar — Jy transform like u and thus is

a spin 1/2 Dirac spinor.
> The color variables are antisymmetrized

> The non-relativistic limit of Jy agrees with the non-relativistic quark model: The upper components

of uCysd = u(—io?)d = —uyd) + u dy — produces the SU(6) proton wave function.
Consider the pion two-point function:

Crr(t) = /d3x (0] J (%, £)J1(0,0) |0)
It is calculated by evaluating

Can(t) = / o’x / DGPID[U e~ PP G(R, t)ysu(%, 1)T(0, 0)15d(0, 0)

/d3x/73[u1 e~ MDD =S D=t (U)(%, 1,5, 0)ys D ' (6, 0; . t)ys
Nooo 1 L=
= 5 D TG, y:0,0)F

u

where G = D~ and we assume that v and d are degenerate.
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Effective mass
The physical content of Cy;(t) can be seen as follows:

Cult) = /da &P O\eeriy'aJk(ﬁ, 0) efrHJri)?.az/daqmzqg ég; gl J,-T(av 0) |0)
n n

The integral over x projects onto momentum g and for large t only the lowest state of the quantum numbers of J
contributes

~ oo = = —Ep(P)t
— Cu(B, 1) "= (0] i |B. ) (B, h| I 10) Szl

@ The mass of a given state is determined from the rate of exponential fall-off of Ckk(6, t). Define an
effective mass

Cu (0, t
( (0, £) ) =5 tooe o
Cu(0,t — 1)
which, in the limit { — oo, converges to the desired value.
@ Optimize Jy to get a large overlap with the wave function, i.e. make
S 1012

Mer(t) = — log

wn(P) = EG spectral weight of n™ state, large for the state of interest and the small for the rest
L. C(xo) 163-32, am,< 0 198910 0024
@ Use enough statistics so that the Y " T
signal extends to large enough t at
which any remaining contamination 0.001 B
from higher states is negligible . .
@ Because of the finite extent of the 0.0001 | 4
lattice one usually imposes b 1
(anti)-periodic b.c. \\" ,-"f/ ]
= meson correlators are symmetric 1o AR
intande™™ — e~ M 4 g~ MT-0)
where T is the time extent of the 107 e -
: 0 10 20 30
lattice Xo/a
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Comments on the behavior of the effective mass

@ The convergence of me(t) to the asymptotic value m can be from above or below depending on the
choice of the interpolating field J. Only for Jx = J; is the correlation function positive definite and the
convergence is monotonically and from above.

@ Interpolating fields project to all states with the same quantum numbers. For large t the ground state
dominates
i.e Meg(t) — constant : plateau region
The onset and the length of the plateau region depends on the interpolating operators.

@ The statistical errors grow exponentially with ¢, except for the case of the pion.

@ For extracting higher states number of methods are developed: A common approach is to use k # i and
study the generalized eigenvalue equations.
Summary: Extract the mass as described above.

If computation is done with physical values of the quark masses, then study its dependence as a function of a,
and L before we can compare to experimental data.
If the computation is not done with physical values of the quark masses then study quark mass dependence.

Exercise:
Convince yourself that the statistical errors grow exponentially with ¢, except for the case of the pion.
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Current challenges

@ Construct optimized interpolating fields which maximize the spectral weight w, for a given state
@ Develop techniques to extract excited states from the two-point correlators

@ Develop techniques to study the internal structure of hadrons e.g. “molecular” versus multi-quark nature,
radial excitation, etc.

@ Develop techniques to study resonances and decay widths
@ At the physical point, it is crucial to combine optimized methods to keep statistical noise small
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Smearing techniques

Hadrons are extended objects having size O(1 fm). The interpolating fields create point sources

— they have a small overlap with the hadron state we want to study
— Optimize projection to the state of interest:

Employ "gauge invariant smearing” of quark fields:

P (R, ) = Z F(X, ¥, U(t)y(¥, 1)
y

e To enhance ground state dominance use Gaussian smearing

F(X,7,Ut) = (L+aH)"

3

Z (Uf(X)éx,y—7 + U,'T(X - 7)5x,y+7)

i=1

H(X, 7: U(1)

e Exponential smearing:

F(X, 7, U(t)) = (D* + m,) " (X, 7)
where one computes the propagator of a scalar particle propagating
in the 3-dimensional space of the same background gauge field U(t)

Adjust the smearing parameters « (msc) and n, (nsc) so that r.m.s
radius of the initial state made of the smeared quarks has a value
close to the experimental value.

repeat n-times

60
\\:"Wo\x\
50 Sszgk
40p g,
03174
< 30 02555, *
0.260,
200\ oz
0.2102;.
0 1 2 3 4 5
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Examples of effective mass plots
e Quenched at about 550 MeV pions:

e Reduce gauge noise by using APE, hypercubic or stout smearing on the links U that enter the smearing
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Stochastic sources
The calculation of hadron masses involves the computation of the
point-to-all propagator:

(A) Quenched QCD: quark loops neglected

o . . 4o
G(X, t; Xo, to)i‘j?o obtained from solving DG = §” (Xo, t0)5aao Spng

In order to reduce statistical noise as we approach the physical pion

mass one may want to sum over the source coordinates as well.

This requires a new inversion for each lattice point! (B)Full QD
= replace point source by stochastic noise vector such that:

Nr

19~ s 1SR oy ood ,
A 2 Sh 00 = (G =05 32 GG (0)r = 6 (X = X180 0
" =1 T or=1

Inverting using these ¢’s as sources one obtains a set of solutions vectors

20 = GPur(x,y) L) — G2 (x,y) = (L) (V))r
y

A common choice for the noise vectors is Z(2) noise. These satisfy only approximately the above relations and
so one introduces stochastic noise needing a large number of N;.

— reduce N; by employing “dilution schemes”

For mesons one can apply the ‘one-end’ trick that combines appropriately solution vectors to obtain the
two-point correlators. E.g. for the pion:

1 - .
m Zj Bl (%, ) br(X,yito) = > Tr|G(x, x0)[?
X,r

X%
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Systematic effects

@ Cut-off effects
ﬂ I]al _

Ny 1 o(a/n), p> 1
mq Q

where ry some length scale e.g. determined from the force between a static quark and anti-quark.
= we need to extrapolate to the continuum limit i.e. take a — 0

@ Finite volume effects: Use Lm,. > 3.5

@ Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV or at the physical point.

— Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.

- O TR
ETMC, Ni=2
O CLS, Ni=2+1 Wilson-type
S 200 V' BMW, Ni=2+1
< [ JLab/W&M/LANL/MIT, Ny=2+1
= PACS, Ni=2+1
E 150 < BMW,Ni=2+1+1 :
MILC, Ny=2+141 Staggered
@ RBC/UKQCD, Ny=2+1 Domain wall

0.04 006 008 010 012 014 0.6
a[fm]
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Systematic effects

@ Cut-off effects
LY

P4 O(a/r)P, p> 1
o mﬂ| +0(a/n)’, p>

where ry some length scale e.g. determined from the force between a static quark and anti-quark.
— we need to extrapolate to the continuum limit i.e. take a — 0
@ Finite volume effects: Use Lm,, > 3.5
@ Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV or at the physical point.
— Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.

1.8
"""" & Quenched calculation with Wilson fermions CP-PACS
e s Collaboration, S. Aoki et al. Phys. Rev. D 67 (2003)
1.4 £ ¥ @
’ D o = @ Calculation done at 4 values of a — take
S A 22 continuum limit
© 1.2 ¢ — B 5=
% P @ The scale is set using m,
1.0 P o : A @ The strange quark mass is set by the kaon mass
' (1] Kinput and by the ¢ mass
® Kinpu
08 ¢ insut @ Established that the quenched approximation
K experiment reproduces the experimental spectrum with up to
061 15% deviations
-—
0.4
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Unquenched calculations

N; = 2 + 1 smeared Clover fermions BMW Collaboration, S. Dlrr et al. Science 322 (2008)

T T T
09 =® b
0.8+ g 1
o7k ° : s g § —piigm ]
o8- L, ° % . ° o - @ 3 lattice spacing: a ~ 0.125,0.085, 0.065 fm
—jPe——
SOl @ =] set by m=
0.5 s
© s _ 3 e § ~
0.4f ? ¢ s =t Ny @ Pion masses: m, > 190 MeV
0.3r y @ Volume:m™ L S 4
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Unquenched calculations
N; = 2 + 1 smeared Clover fermions BMW Collaboration, S. Dlrr et al. Science 322 (2008)
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Low-lying hadron masses

Simulation parameters used by the Extended Twisted Mass Collaboration (ETMC)

Ensemble | v | B8 | 1 Io s | L-mz | mz[MeV]
cB211.072.64 128 x 64° 1.778 0.00072 0.1246826 0.1315052 3.62 140.1 (0.2)
¢cC211.060.80 160 x 80° 1.836 0.00060 0.106586 0.107146 3.78 136.7 (0.2)
cD211.054.96 192 x 96° 1.900 0.00054 0.087911 0.086224 3.9 140.8 (0.2)

0.45 .
0.40 *
N
EE“35 - .
Smn "’—M i;‘1‘1£%¥ T{ lll
0.25
s e t ] J

015, M Platean

20

30

10

t/a
0250 oy . [
= ° - -
o021 - ° 0 o , o K oaof FE g g
Simf 3 PIQ] CFEE et |0 T TR
0 5 10 15 20 2% B T T T
tiow/a tiow/a
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Low-lying hadron masses

Simulation parameters used by the Extended Twisted Mass Collaboration (ETMC)

Ensemble | v | B8 | wm ] Ko | is | L-my | mg[MeV]
cB211.072.64 | 128 x 64° 1.778 | 0.00072 | 0.1246826 | 0.1315052 3.62 140.1 (0.2)

cC211.060.80 | 160 x 80° | 1.836 | 0.00060 0.106586 0.107146 3.78 136.7 (0.2)
cD211.054.96 | 192 x 96° | 1.900 | 0.00054 0.087911 0.086224 3.9 140.8 (0.2)
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/ 299 - \\ ]
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Continuum limit extrapolation for the mass of the Q™ (top) and the A} (bottom)
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Comparison of results using different actions

L7F mm poc ok 380 = poa 3
his worl & This worl i 1
1.6 2 ;:)CD - 36[ 3 ;:wcnoc‘;al. f}T
BMW lis ¥ Brownetal.
1.5 3.4
o % %3.2
Qo, 13 e § 0,30
= o | S o
11 i 26 Hs
1.0 24 * [54]
09 T 22
N A Y 2 A X EQ Ao Yo Z0 B Qo Eee Qe
T e work -f3
T e
— 4.0
5 TR
o, 3
S 35 ETMC, C. Alexandrou et al. Phys. Rev. D 108
(2023) 9, 094510, arXiv: 2309.04401 [hep-lat]
30
e
25 54

O Zh QL Qe
Good agreement between different discretization schemes

= Significant progress in understanding the masses of low-lying mesons and baryons
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Isospin and QED corrections to masses
BMW collaboration computed isospin and QED corrections determining the mass splitting for the low-lying
baryons, Sz. Borsanyi et al., Science 347 (2015) 1452

I AZ — experiment
r — A= e QCD+QED
L . ,
L AD i
| _
| AE . 1
L AN ¢ 4
¢
| Acg |
I~ Science 347, 1452 (2015) ]
mass splitting [MeV] | QCD [MeV] | QED [MeV]
AN=n—-p 1.51(16)(23) 2.52(17)24) | -1.00(07)(14)
AL =% -3t 8.09(16)(11) 8.09(16)(11) 0
==2" -2 6.66(11)(09) 5.53(17)(17) | 1.14(16)(09)
AD =D* - D° 4.68(10)(13) 2.54(08)(10) | 2.14(11)(07)
Be=ELt —EL 2.16(11)(17) -2.53(11)(06) | 4.69(10)(17)
Acc = AN — AT + A= 0.00(11)(06) -0.00(13)(05) | 0.00(06)(02)
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Excited states

Lattice calculations of excited states are harder:

@ Usually calculations are done on coarse lattices and at one lattice spacing — no continuum
extrapolations

@ Still done at larger than physical pion masses and the width of resonances is mostly ignored
@ At the physical point most are resonances

o One major challenge is to isolate the sub-leading contributions to the two-point correlator. Various

methods are used:

> Variational

> Bayesian, see e.g. G. P. Lepage at al, NP109A (2002) 185

> x2—histogram searches, see [C. Alexandrou, C.N. Papanicolas and E. Stiliaris, PoS LAT2008,
arXvi:0810.3882

e Another major challenge is to distinguish resonances from multi-quark or multi-hadron states

> Use scaling of spectral weight with the spatial volume
> Dependence on boundary conditions
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Variational principle

Consider a basis of interpolating fields J;, i = 1, - - - , N having the same quantum numbers
@ Define an N x N correlator matrix:

Cy(t) = (h(D)J) = >~ (0] Ji [m) (n| J 0) &~ FN
n=1

@ Define the N principal correlators A«(t, ) as the eigenvalues of the generalized eigenvalue problem

(GEVP):
C(t)va(t, o) = An(t, to)C(f)Va(t, to)

where {; is some reference time separation.

@ The vectors n(t, ty) = C'/2(to)va(t, to) diagonalize C~1/2(1,)C(t)C~"/?(ty) — use to define a basis of
interpolating fields Jy, = SN, (7% )k Jk

@ J," creates the n eigenstate: [n) = Ji |0).
The N principal eigenvalues correspond to the N lowest-lying stationary-state energies [Lischer and
Wolff 1990]

m+#n
ES(t, 1) = —8n(t o) = En+ O (e’AE”t) . AE, =min |Ep — E,|
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Anisotropic lattices

Use a different lattice space a; for time direction as that for the spatial directions as
— this is advantageous for studying excitations which have larger masses since the two-point correlation

function fall off rapidly:
C(0, 1) 'B° e~ amt/a)

Typically ¢ = ZT? ~ 3and as ~ 0.1 — 0.15 fm (check for spatial lattice spacing effects)

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD February 2025 | GGI School 17/28



Results using the variational principle

If to = t/2 then correction is only O (e*AEN+1 ’) [Blossier et al. (Alpha Collaboration), arXiv:0902.1265]

0.42
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Results using the variational principle
If t, = t/2 then correction is only © (e—AEN+1 ’) [Blossier et al. (Alpha Collaboration), arXiv:0902.1265]
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Excited states of the Nucleon
The first excited state of the nucleon is known as the Roper. It has a mass below the negative parity state of the

nucleon.

It has been difficult to obtain the Roper in lattice calculations most of which are done in the quenched
approximation

3.5
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0.5

| ' I ‘ T > !
s a s, N¥2° 3x3 1
L o gs, NV# °° ) ]
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; wE ]
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[ ©©° ° ® gs, NY#(exp.) R
* =  Roper, N (exp.) |
. 4 gs, NY# (exp)
L | X | X | |
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Quenched calculation, using variational principle [M. S. Mahbub et al., arXiv:1007.4871]
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Excited states of the Nucleon/A

BGR Collaboration, Quenched, domain wall fermions [Burch et al., Phys. Rev. D74 (2006)]
@ Two lattice spacings: a = 0.15fm, a=0.12 fm
@ m, R 350 MeV and lattice sizes 16° x 32 and 20° x 32 with m™"L ~ 4
@ Variational approach using different levels of Gaussian smearing; 6 x 6 correlation matrix

positive parity negative parity
T T T T T T T T T F
0F 1 - z 30
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26— 5 = £ 3T -
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24 : 5 fz T3 % a -
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= L - i L
z
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= e nNa7i0) . = ] A
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16 - v 3 a=0.148m
L - . ; i |® N(1535) .
1.4 |@ N(1440) - LS 1486m ] I
s = A0 1486 | L .
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r o @ 119fm | [ O 37 a=0.119m
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Excited states of the Nucleon/A

BGR Collaboration, Quenched, domain wall fermions [Burch et al., Phys. Rev. D74 (2006)]
@ Two lattice spacings: a = 0.15fm, a = 0.12 fm
@ m, R 350 MeV and lattice sizes 16° x 32 and 20° x 32 with m™"L ~ 4
@ Variational approach using different levels of Gaussian smearing; 6 x 6 correlation matrix
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Results using variational method and anisotropic lattices
Hadron Spectrum Collaboration [Bulava et al., Phys. Rev. D79 (2009) 034505]
Use extended fields operators in a variational approach — 16 x 16 correlator matrix

SRS N e

single  singly doubly doubly
site  displaced displaced I displaced L.

4000

3500

3000 '
" T
2500 .

E (MeV)

1500

1000

500 M,

0
- Gl

HL G‘l,q Gly HuiGQu

q

triply

displaced T displaced O

e Ny = 2 Wilson fermions with & = 3 and

'S
a = 0.11 fm at m, = 420 MeV and 580 MeV on a
volume of L = 2.64 fm — m" ~ 5.6.
eExtrapolation of the mass of the nucleon linearly in
m2 yields my = 972(28) Mev

of Excited states of nucleon:
# = 1.83 (experiment 1.53) and
N

(experiment 0.94) i.e. wrong ordering

m
P11

mel = 119
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Recent results on nulceon excited states

e Ny = 2 + 1 Wilson-clover dynamical fermions, m, = 156 MeV
Variational basis: N(0), N(0)c(0) and N(p)w(—p) with p = 27 /L
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o No Roper state observed
C. B. Lang, L. Leskovec, M. Padmanath and S. Prelovsek,
Phys. Rev. D 95 (2017) 1, 014510, arXiv:1610.01422 [hep-lat]
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Excited meson states

Analysis using Ny = 2 + 1 clover fermions on a 24% x 128 anisotropic lattice with a pion mass m, ~240 MeV.
A correlation matrix of 58 operators including extended operators

3.0 3.0
Ty T:u
2.5 25+ II
} ]
Eq 2.0 é" 2.0
q (1780) —
2 | S | e
© 1.5+ K'(1410) © 15+ . ,,(,—450)
1.0 K (892) 1.0 1
=T p(770) -1
0.5 0.5
Expe;lment La‘rltice Experliment Lat;lee

J. Bulava, et al., PoS(Lattice 2013):266 (2013) (arXiv:1310.7887 [hep-lat])

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD



Excited meson states

Analysis using Ny = 2 + 1 clover fermions on a 24° x 128 anisotropic lattice with a pion mass m,. ~390 MeV.
A correlation matrix of 13 x 13 correlation matrix including the scalar gluon operator

20 i+ dd
=
18 l i wzn I - —
h I .
£ = -
Ml —— J— —
o — e — @ 0N
12 - ()R (1) 12 _— K (OR()
— — - —
1.0 o80) ™ T(n(1) n(@n(0) 10 e — () OO
o980) 1)k 0) J0(980) ¢ 9y 0)
0.8 0.8
— —
—(0)(0) -0 (0)
061 o 064 o
0 1 2 3 4 5 7T 6 8 9 10 1 0 1 2 3 4 5 6 7 12 8 9 10 1

Level

Without the gluon operator

C. Morningstar, arXiv:2502.02547 [hep-lat])
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Glueballs

@ The non-Abelian nature of QCD allows bound
states of gluon
Candidate states observed experimentally:
(1370), ,(1500), f,(1710), (222)
— can be calculated in lattice QCD

@ |Interpolating fields purely gluonic — J™¢
assignment ambiguous

@ Use variational approach using interpolating
operators for given irreducible representation of
the hypercubic group — recover spin-parity in
the continuum limit

OO e S
£ 5
— —
4}‘77 L{;’/?? Lg—}-v L‘v_lL'
v Lo/ S Z._/7
7
| G S N

Computation with Ny = 4 and Ny = 2 + 1 + 1 twisted mass fermions with m, ~260 MeV.

3500

3000

2500 1 3 :; | ® The pseudoscalar and tensor glueball mass are not
MeV §ix f affected by including light quarks.
2000 f | @ A lowest state is observed in the scalar channel
2L when introducing dynamical light quarks - multipion
1500 i | state.

1000

500

0

A. Athenodorou et al., 2308.10054 [hep-lat]
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Multi-quark states

e Bound states of gg and qgqq have been clearly established
e QCD predicts many more: quarks+glue, tetra-quarks, molecular states of mesons, pentaquarks, etc

Conventional Conventional
Meson Baryon

© Lfe
© Ce

Conventional Hadrons

Hybrid Hybrid
Meson Baryon Hadronic molecule

C:) @ LoD
@ ¢ &

Glueball (@)
Compact

Tetraquark EE EE S
@ Q Pentaquark

© G’ Hadro-quarkonium © Q@
e @

& .

Unconventional Hadrons
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Multi-quark states
e Bound states of gg and qgqq have been clearly established
e QCD predicts many more: quarks+glue, tetra-quarks, molecular states of mesons, pentaquarks, etc
Examples are the recently discovered X, Y and Z states at LHCb and BESII

Very narrow resonances near threshold = presents a challenge for lattice QCD since we need to distinguish
between a resonance and a 2-particle scattering state

110
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7.5 47 new hadrons at the LHC from 1/1/2017]
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Resonances

At the physical point it is important to develop techniques to study unstable particle

Luscher method: study the energy of a two-particle state as a function of the spatial length of the box.
The p-meson width was studied in N = 2 twisted mass fermions (ETMC) by Xu Feng, K. Jansen and D.
Renner.

Consider 77~ in the | = 1-channel

Estimate P-wave scattering phase shift 511 (k) using finite size methods

Use Lischer’s relation between energy in a finite box and the phase in infinite volume
Use Center of Mass frame and Moving frame

2
Use effective range formula: tans1 (k) = g%% ﬁ, k = \/E?/4 — m2 — determine Mg and
-

2 3
g k
Jpo=r and then extract I, = &7~ %, kp = \/m%/4 — m2

m, = 309 MeV, L = 2.8 fm
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Resonances

At the physical point it is important to develop techniques to study unstable particle

Luscher method: study the energy of a two-particle state as a function of the spatial length of the box.
The p-meson width was studied in N = 2 twisted mass fermions (ETMC) by Xu Feng, K. Jansen and D.
Renner.

@ Consider 777~ in the | = 1-channel

@ Estimate P-wave scattering phase shift §11(k) using finite size methods

@ Use Luscher’s relation between energy in a finite box and the phase in infinite volume
@ Use Center of Mass frame and Moving frame
o

2
Use effective range formula: tans1 (k) = g%% ﬁ, k = \/E?/4 — m2 — determine Mg and
-

2 3
g k
Jpo=r and then extract I, = &7~ %, kp = \/m%/4 — m2

m, = 309 MeV, L = 2.8 fm

| L !
0 0.05 0.1 0.15 0.2
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Resonances - A

Elastic pion-nucleon scattering in 1=3/2 channel [S. Paul el. PoS LATTICE2018 (2018) 089]
Use Ny = 2 + 1 clover fermions with m,. ~ 250 MeV, and two volumes

Basis: A and N=
A I N
u(ul’yd)
A 1

dysu—
w(ulyu)
u(uld)=*
7N
J=3/2, P-wave Analysis
4 OP.Hg
180 4 5.6
+ CR.G;
135
2 90
S
Ma,,, = 1414(36) MeV
9a-nn =26(7)
45
0
1300 1350 1400 1450 1500 1550 1600 1650 1700 1750
Vs (MeV)
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