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Introduction to the basic techniques
Successful calculations of the masses of low-lying baryons is a prerequisite for the validity of lattice QCD.

Choose the set of input parameters i.e. the bare quark masses and coupling constant
Choose lattice size
Create initial state of the hadron J†h |0〉. Some standard interpolating fields:

Jπ = d̄γ5u , Jρ = d̄γµu , JN = ε
abc(uaT Cγ5db)uc

, J∆ = ε
abc(uaT Cγνdb)uc

We can make the following observations for JN :
I The combination uaT (Cγ5db)uc transforms like a Lorentz scalar→ JN transform like u and thus is

a spin 1/2 Dirac spinor.
I The color variables are antisymmetrized
I The non-relativistic limit of JN agrees with the non-relativistic quark model: The upper components

of uCγ5d = u(−iσ2)d = −u↑d↓ + u↓d↑ → produces the SU(6) proton wave function.
Consider the pion two-point function:

Cππ(t) =

Z
d3x 〈0| Jπ(~x, t)J†π(~0, 0) |0〉

It is calculated by evaluating

Cππ(t) =

Z
d3x

Z
D[ψ̄ψ]D[U] e−ψ̄D(U)ψ−S[U]d̄(~x, t)γ5u(~x, t)ū(~0, 0)γ5d(~0, 0)

=

Z
d3x

Z
D[U] e− ln DetD(U)−S[U] D−1

u (U)(~x, t ;~0, 0)γ5D−1
d (~0, 0;~x, t)γ5

N→∞
=

1
N

X
U

Tr|G(U)(~x, y ;~0, 0)|2

where G = D−1 and we assume that u and d are degenerate.
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Effective mass
The physical content of Cki (t) can be seen as follows:

Cki (t) =

Z
d3xei~p.~x 〈0| etH−i~x.~q Jk (~0, 0) e−tH+i~x.~q

X
n

Z
d3q

˛̨
n,~q
¸ ˙

n,~q
˛̨

2En(~q)
J†i (~0, 0) |0〉

The integral over x projects onto momentum ~p and for large t only the lowest state of the quantum numbers of J
contributes
→ Cki (~p, t)

t→∞
= 〈0| Jk

˛̨
~p, h
¸ ˙
~p, h
˛̨

Ji |0〉 e−Eh(~p)t

2Eh(~p)

The mass of a given state is determined from the rate of exponential fall-off of Ckk (~0, t). Define an
effective mass

meff(t) = − log
` Ckk (~0, t)

Ckk (~0, t − 1)

´ t→∞−→ m

which, in the limit t →∞, converges to the desired value.
Optimize Jk to get a large overlap with the wave function, i.e. make

wn(~p) ≡ |〈0|Jk |n〉|
2

2En(~p)
: spectral weight of nth state, large for the state of interest and the small for the rest

Use enough statistics so that the
signal extends to large enough t at
which any remaining contamination
from higher states is negligible

Because of the finite extent of the
lattice one usually imposes
(anti)-periodic b.c.
=⇒ meson correlators are symmetric
in t and e−mt → e−mt + e−m(T−t)

where T is the time extent of the
lattice
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Comments on the behavior of the effective mass

The convergence of meff(t) to the asymptotic value m can be from above or below depending on the
choice of the interpolating field J. Only for Jk = Ji is the correlation function positive definite and the
convergence is monotonically and from above.

Interpolating fields project to all states with the same quantum numbers For large t the ground state
dominates
i.e meff(t)→ constant : plateau region
The onset and the length of the plateau region depends on the interpolating operators.

The statistical errors grow exponentially with t , except for the case of the pion.

For extracting higher states number of methods are developed: A common approach is to use k 6= i and
study the generalized eigenvalue equations.

Extracting the mass as described above, we then study its dependence as a function of quark masses, a, L,
before we can compare to experimental data.

Exercise:
Convince yourself that the statistical errors grow exponentially with t , except for the case of the pion.
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Current challenges

Construct optimized interpolating fields which maximize the spectral weight wn for a given state

Develop techniques to extract excited states from the two-point correlators

Develop techniques to study the internal structure of hadrons e.g. “molecular” versus multi-quark nature,
radial excitation, etc.

Develop techniques to study resonances and decay widths

Near chiral regime it is crucial to combine optimized methods to keep statistical noise small
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Smearing techniques
Hadrons are extended objects having size O(1 fm). The interpolating fields create point sources
→ they have a small overlap with the hadron state we want to study
=⇒ Optimize projection to the state of interest:

Employ ”gauge invariant smearing” of quark fields:

ψ
smear(~x, t) =

X
~y

F (~x,~y,U(t))ψ(~y, t)

• To enhance ground state dominance use Gaussian smearing

F (~x,~y,U(t)) = (1 + αH)nσ

H(~x,~y ; U(t)) =
3X

i=1

“
Ui (x)δx,y−î + U†i (x − î)δx,y+î

” α 1      + 

repeat n-times 

• Exponential smearing:
F (~x,~y,U(t)) = (D2 + m2

sc)−nsc (~x,~y)

where one computes the propagator of a scalar particle propagating
in the 3-dimensional space of the same background gauge field U(t)

Adjust the smearing parameters α (msc ) and nσ (nsc ) so that r .m.s
radius of the initial state made of the smeared quarks has a value
close to the experimental value.

!
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Examples of effective mass plots
• Quenched at about 550 MeV pions:

amπeff amN
eff

• Reduce gauge noise by using APE, hypercubic or stout smearing on the links U that enter the smearing
function F (~x,~y,U(t)).
• NF = 2

H. Wittig, SFB/TR16, August, 2009
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Stochastic sources
The calculation of hadron masses involves the computation of the
point-to-all propagator:

G(~x, t ;~x0, t0)aa0
µµ0

obtained from solving DG = δ
4(~x0, t0)δaa0δµµ0

In order to reduce statistical noise as we approach the physical pion
mass one may want to sum over the source coordinates as well.
This requires a new inversion for each lattice point!

(A) Quenched QCD: quark loops neglected

(B) Full QCD

=⇒ replace point source by stochastic noise vector such that:

1
Nr

NrX
r=1

ζ
a
µ(x)r ≡ 〈ζa

µ〉r = 0 ,
1
Nr

NrX
r=1

ζ
a
µ(x′)rζ

∗a′
µ′ (x)r = δ

4(x − x ′)δµµ′δaa′

Inverting using these ζ′s as sources one obtains a set of solutions vectors

φ
a
µ(x)r =

X
y

Gab
µν(x, y) ζb

ν(y)r → Gab
µν(x, y) = 〈φa

µ(x)ζ∗b(y)〉r

A common choice for the noise vectors is Z(2) noise. These satisfy only approximately the above relations and
so one introduces stochastic noise needing a large number of Nr .
=⇒ reduce Nr by employing “dilution schemes”
For mesons one can apply the ’one-end’ trick that combines appropriately solution vectors to obtain the
two-point correlators. E.g. for the pion:

1
Nr

X
~x,r

φ
†
r (~x, t ; t0)φr (~x, y ; t0) =

X
~x,~x0

Tr|G(x, x0)|2
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Systematic effects

Cut-off effects
mN

mΩ

|lat =
mN

mΩ

|exp +O(a/r0)p
, p ≥ 1

where r0 is determined from the force between a static quark and anti-quark.
=⇒ we need to extrapolate to the continuum limit i.e. take a→ 0

Finite volume effects: Use Lmπ > 3.5

Larger light quark masses:
Use chiral perturbation theory to extrapolate. Most collaborations are now simulating at pion masses
below 200 MeV.

=⇒ Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.
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=⇒ Calculation of the ground state of mesons and baryons checks lattice artifacts, finite volume effects and
chiral extrapolations.

Quenched calculation with Wilson fermions CP-PACS
Collaboration, S. Aoki et al. Phys. Rev. D 67 (2003)

Calculation done at 4 values of a→ take
continuum limit

The scale is set using mρ
The strange quark mass is set by the kaon mass
and by the φ mass

Established that the quenched approximation
reproduces the experimental spectrum with up to
15% deviations
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Unquenched calculations

Nf = 2 + 1 smeared Clover fermions BMW Collaboration, S. Dürr et al. Science 322 (2008)

3 lattice spacing: a ∼ 0.125, 0.085, 0.065 fm
set by mΞ

Pion masses: mπ
∼
> 190 MeV

Volume:mmin
π L

∼
> 4
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Nucleon mass
Use nucleon mass at physical limit
Cut-off effects negligible⇒ use continuous chiral perturbation.
Correct for volume dependence coming from pions propagating around the lattice [A. Ali Khan et al.
(QCDSF) NPB689, 175 (2004)

Nf = 2 twisted mass, mmin
π ∼ 270 MeV, Lmmin

π ∼ 3.3 [C. Alexandrou et al. (ETMC) PRD78 (2008) 014509]
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Lattice spacing determination
Use nucleon mass at physical limit
Cut-off effects negligible⇒ use continuous chiral perturbation.
Correct for volume dependence coming from pions propagating around the lattice A. Ali Khan et al.
(QCDSF) NPB689, 175 (2004)

Extrapolate using LO expansion: mN = m0
N − 4c1m2

π −
3g2

A
16πf2π

m3
π

Simultaneous fits to β = 3.9, β = 4.05 and β = 4.2 results

We find r0 = 0.462(5)(27) fm where the
systematic error is estimated using HBχPT to
O(p4)
=⇒ aβ=3.9 = 0.089(1)(5) fm,
aβ=4.05 = 0.070(1)(4) fm and
aβ=3.9 = 0.056(1)(4) fm

These are consistent with the lattice spacings
from fπ .

We use the lattice spacing determined from
the nucleon mass for converting to physical
units for baryon structure.
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Comparison of results using different actions
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Good agreement between different discretization schemes

=⇒ Significant progress in understanding the masses of low-lying mesons ans baryons
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Excited states

Lattice calculations of excited states are much less advanced:

Usually calculations are done on coarse lattices and at one lattice spacing→ no continuum
extrapolations

Up to very recently only in quenched QCD

Chiral extrapolations are scarce

The width of resonances is mostly ignored

1 One major challenge is to isolate the sub-leading contributions to the two-point correlator. Various

methods are used:
I Variational
I Bayesian
I χ2-histogram searches

2 Another major challenge is to distinguish resonances from multi-quark or multi-hadron states
I Use scaling of spectral weight with the spatial volume
I Dependence on boundary conditions
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Variational principle

Consider a basis of interpolating fields Ji , i = 1, · · · ,N having the same quantum numbers

Define an N × N correlator matrix:

Ckj (t) = 〈Jk (t)J†j 〉 =
∞X

n=1

〈0| Jk |n〉 〈n| J†j |0〉 e−Ent

Define the N principal correlators λk (t, t0) as the eigenvalues of the generalized eigenvalue problem
(GEVP):

C(t)vn(t, t0) = λn(t, t0)C(t0)vn(t, t0)

where t0 is some reference time separation.

The vectors ṽn(t, t0) ≡ C1/2(t0)vn(t, t0) diagonalize C−1/2(t0)C(t)C−1/2(t0)→ use to define a basis of
interpolating fields J̃n =

PN
k=1(ṽ∗n )k Jk

J̃n
† creates the nth eigenstate: |n〉 = J̃†n |0〉.

The N principal eigenvalues correspond to the N lowest-lying stationary-state energies [Lüscher and
Wolff 1990]

Eeff
n (t, t0) = −∂tλn(t, t0) = En +O

“
e−∆Ent

”
, ∆En =

m 6=n
min |Em − En|
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Anisotropic lattices

Use a different lattice space at for time direction as that for the spatial directions as
=⇒ this is advantageous for studying excitations which have larger masses since the two-point correlation
function fall off rapidly:

C(~0, t) t�0→ e−at m(t/at )

Typically ξ ≡ as
at
∼ 3 and as ∼ 0.1− 0.15 fm (check for spatial lattice spacing effects)
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χ2-method

Assign to each solution
{A1, · · · ,An} a χ2 and a probability.

Construct an ensemble of solutions.

The probability distribution for any
parameter assuming a given value is
the solution.

Assume a maximum number of L
excited states in the spectral
decomposition of the correlator
C(t) =

PL
l=0 Al e−ml t and select a

suitable range of values for each of
the parameters Al > 0 and
m0 < m1 < m2 < · · · .
Evaluate the χ2(1 + L, j)
corresponding to the particular
solution using our lattice data. We
repeat this procedure a large number,
typically a few hundred thousand,
generating an ensemble of solutions.

We find m0 = 1.3171(13), m1 = 1.608(9), m2 = 2.010(11)
as compared to 1.3169(1), 1.62(2) and 1.98(22) from a Bayesian
analysis, [G. P. Lepage at al,, NP109A (2002) 185]

[C. A., C.N. Papanicolas and E. Stiliaris, PoS LAT2008, arXvi:0810.3882]
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Results using the variational principle

If t0 = t/2 then correction is only O
“

e−∆EN+1 t
”

[Blossier et al. (Alpha Collaboration), arXiv:0902.1265]
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Results using the variational principle
If t0 = t/2 then correction is only O

“
e−∆EN+1 t

”
[Blossier et al. (Alpha Collaboration), arXiv:0902.1265]

Nucleon effective mass plots with mπ = 450 MeV using differing Gaussian smearings
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Excited states of the Nucleon

The first excited state of the nucleon is known as the Roper. It has a mass below the negative parity state of the
nucleon.
It has been difficult to obtain the Roper in lattice calculations most of which are done in the quenched
approximation

Quenched calculation, using variational principle [M. S.
Mahbub et al., arXiv:1007.4871]

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 20 / 26



Excited states of the Nucleon/∆

BGR Collaboration, Quenched, domain wall fermions [Burch et al., Phys. Rev. D74 (2006)]

Two lattice spacings: a = 0.15 fm, a = 0.12 fm

mπ
>∼ 350 MeV and lattice sizes 163 × 32 and 203 × 32 with mmin

π L ∼ 4

Variational approach using different levels of Gaussian smearing; 6× 6 correlation matrix

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 21 / 26



Excited states of the Nucleon/∆

BGR Collaboration, Quenched, domain wall fermions [Burch et al., Phys. Rev. D74 (2006)]

Two lattice spacings: a = 0.15 fm, a = 0.12 fm

mπ
>∼ 350 MeV and lattice sizes 163 × 32 and 203 × 32 with mmin

π L ∼ 4

Variational approach using different levels of Gaussian smearing; 6× 6 correlation matrix

C. Alexandrou (Univ. of Cyprus & Cyprus Inst.) Introduction to Lattice QCD Aurora School, ECT* Trento 21 / 26



Results using variational method and anisotropic lattices
Hadron Spectrum Collaboration [Bulava et al., Phys. Rev. D79 (2009) 034505]
Use extended fields operators in a variational approach→ 16× 16 correlator matrix

• Nf = 2 Wilson fermions with at
as

= 3 and a = 0.11 fm at mπ = 420 MeV and 580 MeV on a volume of

L = 2.64 fm→ mmin
π ∼ 5.6.

Extrapolation of the mass of the nucleon linearly in m2
π yields mN = 972(28) Mev

Excited states of nucleon:
mP11
mN

= 1.83 (experiment 1.53) and
mP11
mS11

= 1.19 (experiment 0.94) i.e. wrong ordering
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Glueballs
The non-Abelian nature of QCD allows bound
states of gluon
Candidate states observed experimentally:
f0(1370), f0(1500), f0(1710), f0(222)
→ can be calculated in lattice QCD

Interpolating fields purely gluonic→ JPC

assignment ambiguous

Use variational approach using interpolating
operators for given irreducible representation of
the hypercubic group→ recover spin-parity in
the continuum limit

Quenched results: m0++ = 1710(50)(80) MeV, m2++ = 2390(30)(120) MeV [Chen et al., hep-lat/0510074]
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Multi-quark states

Up now only bound states of q̄q and qqq have been clearly established
QCD predicts many more: quarks+glue, tetra-quarks (candidate σ-meson), molecular states of mesons,
pentaquarks, etc
Example: Pentaquark state Θ+(1540)-experimental evidence faded away?
Very narrow resonance about 100 MeV above K − N threshold =⇒ presents a challenge for lattice QCD since
we need to distinguish between a resonance and a 2-particle scattering state

L=0 

L=1 

u        d 

u        d 

s 
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Lattice study of Θ+

Techniques developed:
Identify the two lowest states and check for volume dependence of their mass: For scattering state

E =
q

m2
n + (2π~n/L)2 +

q
m2

k + (2π~n/L)2. For -ve parity channel we have S-wave KN scattering.

Extract spectral weights and check their scaling with the spatial volume: Spectral weight for a resonance
is independent of spatial volume whereas for a scattering state scales as ∼ 1/L3

Change from periodic to anti-periodic b.c. in the spatial directions and check if the mass in the negative
parity channel changes: Use anti-periodic for light quarks and periodic for the strange
→ Θ+ is not affected since it has an even number of light quarks
N has three and K one→ smallest allowed momentum for each quark id π/L and therefore the S-wave
KN scattering energy is increased.
Use interpolating fields in which the quarks are spatially separated
Check whether the binding increases with quark mass

[C.A. & A. Tsapalis, PRD73 (2006) 014507]

All lattice computations are done in the quenched
theory using Wilson, domain wall or overlap
fermions and a number of different actions. All
groups but one agree that if the pentaquark exists
it has negative parity
=⇒ no real evidence for its existence
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Resonances
As we approach the physical point it is important to develop techniques to study unstable particle
The favorite method is to study the energy of a two-particle state as a function of the spatial length of the box.
The ρ-meson width was studied in NF = 2 twisted mass fermions (ETMC) by Xu Feng, K. Jansen and D.
Renner.

Consider π+π− in the I = 1-channel
Estimate P-wave scattering phase shift δ11(k) using finite size methods
Use Lüscher’s relation between energy in a finite box and the phase in infinite volume
Use Center of Mass frame and Moving frame

Use effective range formula: tanδ11(k) =
g2
ρππ
6π

k3

E
“

m2
R−E2

” , k =
p

E2/4− m2
π → determine MR and

gρππ and then extract Γρ =
g2
ρππ
6π

k3
R

m2
R
, kR =

q
m2

R/4− m2
π

mπ = 309 MeV, L = 2.8 fm

0.3 0.35 0.4 0.45 0.5 0.55 0.6
aE

CM

0

0.5

1

si
n2 (δ

)

CMF
MF1
MF2
sin

2
(δ)=1=>aM

R
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