

Exotic hadrons

Feng-Kun Guo

Institute of Theoretical Physics, CAS

GGI School on Frontiers in Nuclear and Hadronic Physics 2025 Feb. 17-28, 2025, Firenze, Italy Light meson SU(3) [u, d, s] multiplets (octet + singlet):

Vector mesons

meson	quark content	mass (MeV)
$ ho^+/ ho^-$	$u ar{d} / d ar{u}$	775
$ ho^0$	$(u\bar{u} - d\bar{d})/\sqrt{2}$	775
K^{*+}/K^{*-}	$u\bar{s}/s\bar{u}$	892
K^{*0}/\bar{K}^{*0}	$dar{s}/sar{d}$	896
ω	$(u\bar{u}+d\bar{d})/\sqrt{2}$	783
ϕ	$s\bar{s}$	1019

approximate SU(3) symmetry

very good isospin SU(2) symmetry

$$m_{
ho^0} - m_{
ho^\pm} = (-0.7 \pm 0.8) \text{ MeV}, \quad m_{K^{*0}} - m_{K^{*\pm}} = (6.7 \pm 1.2) \text{ MeV}$$

Light vector and pseudoscalar mesons

Light meson SU(3) [u, d, s] multiplets (octet + singlet):

Pseudoscalar mesons

meson	quark content	mass (MeV)
π^+/π^-	$uar{d}/dar{u}$	140
π^0	$(u\bar{u}-d\bar{d})/\sqrt{2}$	135
K^+/K^-	$uar{s}/sar{u}$	494
$K^0/ar{K}^0$	$dar{s}/sar{d}$	498
η	$\sim (u\bar{u} + d\bar{d} - 2s\bar{s})/\sqrt{6}$	548
η'	$\sim (u\bar{u} + d\bar{d} + s\bar{s})/\sqrt{3}$	958

very good isospin SU(2) symmetry

 $m_{\pi^{\pm}} - m_{\pi^{0}} = (4.5936 \pm 0.0005) \text{ MeV}, \quad m_{K^{0}} - m_{K^{\pm}} = (3.937 \pm 0.028) \text{ MeV}$

Why are the pions so light? Pseudo-Nambu-Goldstone bosons of the spontaneous breaking of chiral symmetry: $SU(2)_L \times SU(2)_R \rightarrow SU(2)_V$

Lectures by Juan Nieves

• J^{PC} of regular $q \bar{q}$ mesons

L: orbital angular momentum S = (0, 1): total spin of q and \bar{q} $P = (-1)^{L+1} \left[Y_{Lm}(\theta - \pi, \phi + \pi) = (-1)^L Y_{Lm}(\theta, \phi) \right]$ $C = (-1)^{L+S} = (-1)^{L+1+S+1}$ for flavor-neutral mesons $S = 0: \frac{1}{\sqrt{2}} |\uparrow_q \downarrow_{\bar{q}} - \downarrow_q \uparrow_{\bar{q}} \rangle; \quad S = 1: \left\{ |\uparrow_q \uparrow_{\bar{q}} \rangle, \frac{1}{\sqrt{2}} |\uparrow_q \downarrow_{\bar{q}} + \downarrow_q \uparrow_{\bar{q}} \rangle, |\downarrow_q \downarrow_{\bar{q}} \rangle \right\}$ For S = 0, the meson spin J = L, one has $P = (-1)^{J+1}$ and $C = (-1)^J$. Hence, $J^{PC} = even^{-+}$ and odd⁺⁻ For S = 1, one has $P = C = (-1)^{L+1}$. Hence, $J^{PC} = 1^{--}, \{0, 1, 2\}^{++}, \{1, 2, 3\}^{--}, \dots$

• Exotic J^{PC} for mesons:

$$J^{PC}=0^{--}, \mbox{even}^{+-}$$
 and \mbox{odd}^{-+}

• π_1 listed as established particles by the Particle Data Group (PDG)

$\pi_1(1400)$ $I^G(J^{PC}) = 1^-(1^{-+})$

See also the mini-review under non- q q candidates in PDG 2006, Journal of Physics G33 1 (2006).

π1(1400) MASS	$1354\pm25~{ m MeV}$ (S = 1.8)	
π1(1400) WIDTH	$330\pm35~{\rm MeV}$		
Decay Modes			
Mode	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P (MeV/c,
$\Gamma_1 = \eta \pi^0$	seen		557
$\Gamma_2 = \eta \pi^-$	seen		556
$\Gamma_3 \qquad \eta' \pi$			318
$\Gamma_4 = \rho(770)\pi$	not seen		442
π1(1600) MASS	1660 ⁺¹⁵ ₋₁₁ MeV (S	= 1.2)	
$\pi_1(1600)$ WIDTH	$257 \pm 60 \text{ MeV}$ (S	5 = 1.9)	
Decay Modes			
Mode	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P (MeV/c,
Mode Γ ₁ πππ	Fraction (Γ_i / Γ) seen	Scale Factor/ Conf. Level	P (MeV/c 802
$Mode$ $Γ_1 $	Fraction (Γ_i / Γ) seen seen	Scale Factor/ Conf. Level	P (MeV/c, 802 640
Mode Γ1 πππ Γ2 ρ ⁰ π ⁻ Γ3 f ₂ (1270)π ⁻	Fraction (Γ _i / Γ) seen seen not seen	Scale Factor/ Conf. Level	P (MeV/c) 802 640 316
Mode Γ_1 $\pi\pi\pi$ Γ_2 $\rho^0\pi^ \Gamma_3$ $f_{\mu}(1270)\pi^ \Gamma_4$ $b_{1}(1235)\pi^-$	Fraction (Γ _i / Γ) seen seen not seen seen	Scale Factor/ Conf. Level	P (MeV/c, 802 640 316 355
Mode πππ Γ_2 $\rho^0 \pi^ \Gamma_3$ $f_2(1270) \pi^ \Gamma_4$ $b_1(225) \pi$ Γ_5 $\eta'(068) \pi^-$	Fraction (Γ _i / Γ) seen seen nd seen seen seen	Scale Factor/ Conf. Level	P (MeV/c) 802 640 316 355 542
Mode ππ Γ_1 $\rho^0 \pi^ \Gamma_3$ $f_*(1270) \pi^ \Gamma_4$ $b_1(1235) \pi$ Γ_5 $\eta'(058) \pi^ \Gamma_6$ $f_*(1285) \pi$	Fraction ([\['_i / \[']) seen not seen seen seen seen	Scale Factor/ Conf. Level	P (MeV/c) 802 640 316 355 542 312

• $J^{PC}=1^{-+}\eta_1(1855)
ightarrow \eta\eta'$ recently observed by BESIII m BESIII, PRL129(2022)192002

It is unclear what they are: hybrids? hadronic molecules? or sth. else?

Some trivial facts about additive quantum numbers of regular mesons

- Light-flavor mesons (here S = strangeness)
 - Nonstrange mesons: S = 0, I = 0, 1
 - Strange mesons: $S = \pm 1$, $I = \frac{1}{2}$
- Open-flavor heavy mesons
 - $Q\bar{q}(q=u,d)$: S=0, I=1/2
 - $Q\bar{s}: S = 1, I = 0$

• Heavy quarkonia ($Q\bar{Q}$): S = 0, I = 0, neutral

Charge, isospin, strangeness etc. which cannot be achieved in the $q\bar{q}$ and qqq scheme would be a smoking gun for an exotic nature

QCD symmetries

$$\mathcal{L}_{\text{QCD}} = \sum_{\substack{f = \frac{u, d, s, }{c, b, t}}} \bar{q}_f (i \not\!\!D - m_f) q_f - \frac{1}{4} G^a_{\mu\nu} G^{\mu\nu, a} + \frac{g_s^2 \theta}{64\pi^2} \epsilon^{\mu\nu\rho\sigma} G^a_{\mu\nu} G^a_{\rho\sigma}$$

• Exact: Lorentz-invariance, $SU(3)_c$ gauge, C (for $\theta = 0$ w/ real m_f , P, T as well)

Approximate: d u s b ~1.3 GeV ~4.2 ~173 ~2 MeV ~5 MeV ~100 $\ll \Lambda_{\rm OCD} \ll$ GeV MeV GeV Light quarks Heavy quarks Spontaneously broken chiral Heavy quark spin symmetry (HQSS) 137 symmetry: Heavy quark flavor symmetry (HQFS) 137 $SU(N_f)_L \times SU(N_f)_R \xrightarrow{SSB}$ 137 Heavy aiguark-diguark symmetry $SU(N_f)_V$ (HADS)

Heavy quark symmetries

For heavy quarks (charm, bottom) in a hadron, typical momentum transfer Λ_{QCD}

Reavy quark spin symmetry (HQSS): chromomag. interaction $\propto \frac{\sigma \cdot B}{m_Q}$ spin of the heavy quark decouples

Let total angular momentum $J = s_Q + s_\ell$,

 s_Q : heavy quark spin,

 s_{ℓ} : spin of the light degrees of freedom (including orbital angular momentum)

HQSS:

 s_{ℓ} and s_{Q} are conserved separately in the heavy quark limit!

✓ spin multiplets:

for singly heavy mesons, e.g. $\{D, D^*\}, \{B, B^*\}$ with $s_{\ell}^P = \frac{1}{2}^-$; for heavy quarkonia, e.g. *S*-wave: $\{\eta_c, J/\psi\}, \{\eta_b, \Upsilon\}$;

P-wave: $\{h_c, \chi_{c0,c1,c2}\}, \{h_b, \chi_{b0,b1,b2}\}$

- For heavy quarks (charm, bottom) in a hadron, typical momentum transfer Λ_{QCD}
 - heavy quark flavor symmetry (HQFS) for any hadron containing one heavy quark:

velocity remains unchanged in the limit $m_Q \to \infty$: $\Delta v = \frac{\Delta p}{m_Q} = \frac{\Lambda_{\text{QCD}}}{m_Q}$

 \Rightarrow heavy quark is like a static color triplet source, m_Q is irrelevant

heavy anti-quark-diquark symmetry $m_Q v \gg \Lambda_{\rm QCD}$, the diquark serves as a point-like color- $\overline{3}$ source, like a heavy anti-quark. It relates doubly-heavy baryons to antiheavy mesons

• In the heavy quark limit $m_Q \rightarrow \infty$, consider the quark propagator

here $p = m_Q v + k$, with a residual momentum $k \sim \Lambda_{\sf QCD}$.

• Decompose heavy quark field into v-dep. fields $Q(x) = e^{-im_Q v \cdot x} \left[Q_v(x) + q_v(x) \right]:$

$$Q_{v}(x) = e^{im_{Q}v \cdot x} \frac{1 + \not}{2} Q(x), \qquad q_{v}(x) = e^{im_{Q}v \cdot x} \frac{1 - \not}{2} Q(x)$$

• At leading order (LO) of the $1/m_Q$ expansion:

$$\mathcal{L}_Q = \bar{Q}(i\not\!\!D - m_Q)Q = \bar{Q}_v(iv \cdot D)Q_v + \mathcal{O}\left(m_Q^{-1}\right)$$

- ${}^{\tiny \hbox{\tiny ISS}}$ No Dirac gamma matrices in the LO Lagrangian, so invariant under spin rotation \Rightarrow HQSS
- ${}^{\tiny \hbox{\scriptsize ISO}}$ No heavy quark mass term $\Rightarrow {\sf HQFS}$

Applications to states of current interest

Examples of HQSS phenomenology:

• In the Review of Particle Physics (RPP) by the Particle Data Group (PDG), there are two D_1 ($J^P = 1^+$) mesons with very different widths

 ${\tt IS} \ \ \Gamma[D_1(2420)] = (27.4 \pm 2.5) \ {\rm MeV} \ \ll \ \ \Gamma[D_1(2430)] = (384^{+130}_{-110}) \ {\rm MeV}$

 $s_\ell = s_q + L \; \Rightarrow \;$ for P-wave charmed mesons: $s_\ell^P = rac{1}{2}^+$ or $rac{3}{2}^+$

so for decays
$$D_1 \rightarrow D^*\pi$$
:

 $\frac{1}{2}^+ \rightarrow \frac{1}{2}^- + 0^-$ in *S*-wave \Rightarrow large width

 $\frac{3}{2}^+ \rightarrow \frac{1}{2}^- + 0^-$ in *D*-wave \Rightarrow small width

- solution that the second state of the second
- Suppression of the *S*-wave production of $\frac{3}{2}^+ + \frac{1}{2}^-$ heavy meson pairs in $e^+e^$ annihilation Table VI in E.Eichten et al., PRD17(1978)3090; X. Li, M. Voloshin, PRD88(2013)034012

Exercise: Try to understand this statement as a consequence of HQSS. Hint: in e^+e^- collisions, the leading production mechanism of heavy meson pairs is from the vector current $\bar{Q}\gamma^{\mu}Q$ which couples to the virtual photon, *i.e.*, $e^+e^- \rightarrow \gamma^* \rightarrow \bar{Q}Q$ with the $Q\bar{Q}$ pair in an *S*-wave.

Charm-strange mesons (1)

- $D^*_{s0}(2317)$: BaBar (2003) $J^P = 0^+, \ \Gamma < 3.8 \ {\rm MeV}$
- $D_{s1}(2460)$: CLEO (2003) $J^P = 1^+, \ \Gamma < 3.5 \ {\rm MeV}$
- no isospin partner observed, tiny widths $\Rightarrow I = 0$

- Mystery 1: Mass problem: Why are $D_{s0}^*(2317)$ and $D_{s1}(2460)$ so light?
- Mystery 2: Naturalness problem:

v

$$\underbrace{\text{Vhy}}_{(141.8\pm0.8)\text{ MeV}} \underbrace{\frac{M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)}}{(140.67\pm0.08)\text{ MeV}}} \simeq \underbrace{\frac{M_{D^{*\pm}} - M_{D^{\pm}}}{(140.67\pm0.08)\text{ MeV}}?$$

Charm-strange mesons (2)

- HQFS: for a singly-heavy hadron, $M_{H_Q} = m_Q + A + \mathcal{O}\left(m_Q^{-1}\right)$
- rough estimates of bottom analogues whatever the D_{sJ} states: Defining the spin-averaged mass for charmed mesons:

 $\bar{M}_c = \frac{1}{4} \left[M_{D^*_{s0}(2317)} + 3M_{D_{s1}(2460)} \right] \simeq 2.424$ GeV, then

$$M_{B_{s0}^*} = \bar{M}_c + \Delta_{b-c} + \left(M_{D_{s0}^*} - \bar{M}_c\right) \frac{m_c}{m_b} \simeq 5.71 \text{ GeV}$$
$$M_{B_{s1}} = \bar{M}_c + \Delta_{b-c} + \left(M_{D_{s1}} - \bar{M}_c\right) \frac{m_c}{m_b} \simeq 5.76 \text{ GeV}$$

here $\Delta_{b-c} \equiv m_b - m_c \simeq \overline{M}_{B_s} - \overline{M}_{D_s} \simeq 3.33$ GeV, where $\overline{M}_{B_s} = 5.403$ GeV, $\overline{M}_{D_s} = 2.076$ GeV: spin-averaged g.s. $Q\bar{s}$ meson masses comparing with the lattice QCD results: Lang et al., PLB750(2015)17

$$\begin{split} M_{B_{s_1}}^{\text{lat.}} &= (5.711 \pm 0.013 \pm 0.019) \text{ GeV} \\ M_{B_{s_1}}^{\text{lat.}} &= (5.750 \pm 0.017 \pm 0.019) \text{ GeV} \end{split}$$

both to be discovered ¹

• more precise predictions can be made in a given model, e.g. hadronic molecules ¹The established meson $B_{s1}(5830)$ is probably the bottom partner of $D_{s1}(2536)$.

Feng-Kun Guo (fkguo@itp.ac.cn)

• In the hadronic molecular model, the main component: $D_{s0}^*(2317) : DK(I = 0)$, $D_{s1}(2460) : D^*K(I = 0)$ as a consequence of HQSS:

similar binding energies $M_D + M_K - M_{D_{s0}^*} \simeq 45 \text{ MeV}$ $M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} \simeq M_{D^*} - M_D$ is natural

predicting the bottom-partner masses in one minute:

$$\begin{split} M_{B_{s0}^*} \simeq M_B + M_K - \text{45 MeV} ~\simeq 5.73 \text{ GeV} \\ M_{B_{s1}} \simeq M_{B^*} + M_K - \text{45 MeV} \simeq 5.78 \text{ GeV} \end{split}$$

to be compared with lattice results for the lowest positive-parity bottom-strange mesons: Lang, Mohler, Prelovsek, Woloshyn, PLB750(2015)17

$$\begin{split} M_{B_{s0}}^{\mathrm{lat.}} &= (5.711 \pm 0.013 \pm 0.019) \ \mathrm{GeV} \\ M_{B_{s1}}^{\mathrm{lat.}} &= (5.750 \pm 0.017 \pm 0.019) \ \mathrm{GeV} \end{split}$$

Development inspired by the LHCb discovery of the $\Xi_{cc}(3620)^{++}$

• Heavy antiquark-diquark symmetry (HADS): repalcing \bar{Q} in $\bar{Q}q$ by $QQ[\bar{3}_{color}] \Rightarrow QQq;$ repalcing \bar{Q} in $\bar{Q}\bar{q}\bar{q}$ by $QQ[\bar{3}_{color}] \Rightarrow QQ\bar{q}\bar{q};$

$$\begin{split} & \bar{Q}q \quad \Rightarrow \quad QQq, \qquad \bar{Q}\bar{q}\bar{q} \quad \Rightarrow \quad QQ\bar{q}\bar{q}\\ \text{mass} \approx \quad m_Q + A \quad \Rightarrow \quad m_{QQ} + A, \quad m_Q + B \quad \Rightarrow \quad m_{QQ} + B \end{split}$$

Prediction: $M_{QQ\bar{q}\bar{q}} - M_{\bar{Q}\bar{q}\bar{q}} \simeq M_{QQq} - M_{\bar{Q}q}$

Doubly-charmed baryon discovered by LHCb

PRL119(2017)112001 [arXiv:1707.01621]

 $M_{\Xi_{cc}^{++}} = (3621.40 \pm 0.78)$ MeV can be used as input

Applications from heavy baryons to doubly-heavy tetraquarks (2)

TABLE II. Expectations for the ground-state tetraquark masses, in MeV.^a The column labeled "HQS relation" is the result of our heavy-quark symmetry relations and is explicitly given by the sum of the right-hand side of Eq. (1) and the kinetic-energy mass shifts of Eq. (7). Here q denotes an up or down quark. For stable tetraquark states the Q value is highlighted in a box.

State	J^P	jℓ	$m(Q_iQ_jq_m)$ (c.g.)	HQS relation	$m(Q_i Q_j \bar{q}_k \bar{q}_l)$	Decay channel	Q (MeV)
${cc}[\bar{u}\bar{d}]$	1+	0	3663 ^b	$m({cc}u) + 315$	3978	D^+D^{*0} 3876	102
$\{cc\}[\bar{q}_k\bar{s}]$	1^{+}	0	3764 ^c	$m({cc}s) + 392$	4156	$D^+D_s^{*-}$ 3977	179
$\{cc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	1	3663	$m(\{cc\}u) + 526$	4146,4167,4210	D^+D^0, D^+D^{*0} 3734,3876	412,292,476
$[bc][\bar{u}\bar{d}]$	0^{+}	0	6914	m([bc]u) + 315	7229	$B^{-}D^{+}/B^{0}D^{0}$ 7146	83
$[bc][\bar{q}_k\bar{s}]$	0^{+}	0	7010 ^d	m([bc]s) + 392	7406	<i>B</i> _s <i>D</i> 7236	170
$[bc]\{\bar{q}_k\bar{q}_l\}$	1^{+}	1	6914	m([bc]u) + 526	7439	B*D/BD* 7190/7290	249
$\{bc\}[\bar{u}\bar{d}]$	1^{+}	0	6957	$m(\{bc\}u) + 315$	7272	B*D/BD* 7190/7290	82
$\{bc\}[\bar{q}_k\bar{s}]$	1^{+}	0	7053 ^d	$m(\{bc\}s) + 392$	7445	DB_{s}^{*} 7282	163
$\{bc\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	1	6957	$m(\{bc\}u) + 526$	7461,7472,7493	BD/B*D 7146/7190	317,282,349
$\{bb\}[\bar{u}\bar{d}]$	1+	0	10 176	$m(\{bb\}u) + 306$	10 482	$B^{-}\bar{B}^{*0}$ 10 603	-121
$\{bb\}[\bar{q}_k\bar{s}]$	1+	0	10 252 ^c	$m(\{bb\}s) + 391$	10 643	$\bar{B}\bar{B}_{s}^{*}/\bar{B}_{s}\bar{B}^{*}$ 10 695/10 691	-48
$\{bb\}\{\bar{q}_k\bar{q}_l\}$	$0^+, 1^+, 2^+$	1	10 176	$m(\{bb\}u) + 512$	$10674,\!10681,\!10695$	$B^{-}B^{0}, B^{-}B^{*0}$ 10 559,10 603	115,78,136

^aMasses of the unobserved doubly heavy baryons are taken from Ref. [14]; for lattice evaluations of *b*-baryon masses, see Ref. [15]. ^bBased on the mass of the LHCb Ξ_{cc}^+ candidate, 3621.40 MeV, Ref. [10].

^cUsing the s/d mass differences of the corresponding heavy-light mesons.

^dEvaluated as $\frac{1}{2}[m(c\bar{s}) - m(c\bar{d}) + m(b\bar{s}) - m(b\bar{d})] + m(bcd)$.

Eichten, Quigg, PRL119(2017)202002

HADS ⇒ stable doubly-bottom tetraquarks (only decay weakly) are likely to exist

see also Carlson, Heller, Tjon, PRD37(1988)744; Manohar, Wise, NPB399(1993)17; Karliner, Rosner,

PRL119(2017)202001; Czarnecki, Leng, Voloshin, PLB778(2018)233; ...

- support from lattice QCD Francis, Hudspith, Lewis, Maltman, PRL118(2017)142001; ...
- Possible detecting method: T. Gershon, A. Poluektov, Displaced B_c mesons as an inclusive

signature of weakly decaying double beauty hadrons, JHEP 01 (2019) 019

Charmonium spectrum: current status

18/55

Naming convention

For states with properties in conflict with naive quark model (normally):

• $X: I = 0, J^{PC}$ other than 1^{--} or unknown

•
$$Y: I = 0, J^{PC} = 1^{-1}$$

• Z: I = 1

PDG naming scheme:

$J^{PC} =$	$\begin{cases} 0^{-+} \\ 2^{-+} \\ \vdots \end{cases}$	${}^{1^{+-}}_{3^{+-}}$:	$2^{}$:	0^{++} 1^{++} \vdots
Minimal quark content	·			
$\overline{u\overline{d},u\overline{u}-d\overline{d},d\overline{u}}$ $(I=1)$	π	b	ρ	a
$ \frac{d\overline{d} + u\overline{u}}{\text{and/or } s\overline{s}} $ $\left\{ \begin{array}{c} (I=0) \\ \end{array} \right\} $	η,η^\prime	h, h'	ω,ϕ	f, f'
$c\overline{c}$	η_c	h_c	ψ^{\dagger}	χ_c
$b\overline{b}$	η_b	h_b	Υ	χ_b
$I = 1$ with $c\overline{c}$	(Π_c)	Z_c	R_c	(W_c)
$I = 1$ with $b\overline{b}$	(Π_b)	Z_b	(R_b)	(W_b)

[†]The J/ψ remains the J/ψ .

"Young man, if I could remember the names of these particles, I would have been a botanist." — Enrico Fermi

Feng-Kun Guo	(fkguo@itp.ac.cn
--------------	------------------

X(3872) (1)

Belle, PRL91(2003)262001 [hep-ex/0309032]

- The beginning of the XYZ story, discovered in $B^{\pm} \rightarrow K^{\pm}J/\psi\pi\pi$
 - $M_X = (3871.69 \pm 0.17) \text{ MeV}$
- $\Gamma < 1.2~{\rm MeV}$ Belle, PRD84(2011)052004
- Confirmed in many experiments: Belle, BaBar, BESIII, CDF, CMS, D0, LHCb, ...
- 10 years later, $J^{PC} = 1^{++}$

```
LHCb, PRL110(2013)222001
```

 $\Rightarrow S\text{-wave coupling to }D\bar{D}^{*}$

Mysterious properties:

• Mass coincides with the $D^0 \overline{D}^{*0}$ threshold:

 $M_{D^0} + M_{D^{*0}} - M_X = (0.01 \pm 0.14) \text{ MeV}$

LHCb, PRD102(2020)092005

Mysterious properties (cont.):

• Large coupling to $D^0 \overline{D}^{*0}$:

$$\begin{split} \mathcal{B}(X \to D^0 \bar{D}^{*0}) &> 30\% \quad \text{Belle, PRD81(2010)031103} \\ \mathcal{B}(X \to D^0 \bar{D}^0 \pi^0) &> 40\% \quad \text{Belle, PRL97(2006)162002} \end{split}$$

 No isospin partner observed ⇒ I = 0 but, large isospin breaking:

$$\frac{\mathcal{B}(X \to \omega J/\psi)}{\mathcal{B}(X \to \pi^+ \pi^- J/\psi)} = 0.8 \pm 0.3$$

$$C(X) = +, C(J/\psi) = - \Rightarrow C(\pi^+\pi^-) = - \Rightarrow I(\pi^+\pi^-) = 1$$

Exercise:

Why is the isospin of the negative C-parity $\pi^+\pi^-$ system equal to 1?

More exotic structures: Z_c^\pm and Z_b^\pm with hidden Qar Q

• Z_c^{\pm}, Z_b^{\pm} : charged structures in heavy quarkonium mass region, $Q\bar{Q}\bar{d}u, Q\bar{Q}\bar{u}d$ $Z_c(3900), Z_c(4020), Z_c(4200), Z_c(4430), \ldots$

Belle, arXiv:1105.4583; PRL108(2012)122001

• $Z_b(10610)$ and $Z_b(10650)$ (the latter also called Z'_b sometimes):

observed in $\Upsilon(10860) \rightarrow \pi^{\mp}[\pi^{\pm}\Upsilon(1S, 2S, 3S)/h_b(1P, 2P)]$ (a) (Events/10 MeV ents/4 MeV/c Events/5 20 901 0 10.4 10.45 10.58 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.5 10 55 10.7 10.75 10.6 10.62 10.64 10.66 $M(Y(1S)\pi)_{max}$, (GeV/c²) $M(Y(3S)\pi)_{max}$, (GeV/c²) M(Y(2S)π) (GeV) also in $\Upsilon(10860) \rightarrow \pi^{\mp} [B^{(*)} \overline{B}^*]^{\pm}$ Belle, arXiv:1209.6450; PRL116(2016)212001 RS data RS data (a) (Ъ) MeV/c² fode1-0 del-3 Svents/(5 Background Background 20 100 10 71 10 73 (π) GeV/ c^2 Feng-Kun Guo (fkguo@itp.ac.cn) Exotic hadrons Feb.24-28, 2025

Z_c^\pm and Z_b^\pm with hidden Qar Q (2)

• $Z_c(3900/3885)^{\pm}$: structure around 3.9 GeV seen in $J/\psi\pi$ by BESIII and Belle in $Y(4260) \rightarrow J/\psi\pi^+\pi^-$, BESIII, PRL110(2013)252001; Belle, PRL110(2013)252002; and in $D\bar{D}^*$ by BESIII in $Y(4260) \rightarrow \pi^{\pm}(D\bar{D}^*)^{\mp}$ BESIII, PRD92(2015)092006

• $Z_c(4020)^{\pm}$ observed in $h_c \pi^{\pm}$ and $(\bar{D}^* D^*)^{\pm}$ distributions

BESIII, PRL111(2013)242001; PRL112(2014)132001

HQSS for XYZ (1)

- Hadronic molecular model: X(3872): $D\bar{D}^*$; $Z_b(10610, 10650)$: $B\bar{B}^*$ and $B^*\bar{B}^*$
- Consider S-wave interaction between a pair of $s_{\ell}^P = \frac{1}{2}^-$ (anti-)heavy mesons:

$$\begin{array}{rcl} 0^{++}: & D\bar{D}, & D^*\bar{D}^* \\ 1^{+-}: & \frac{1}{\sqrt{2}} \left(D\bar{D}^* + D^*\bar{D} \right), & D^*\bar{D}^* \\ 1^{++}: & \frac{1}{\sqrt{2}} \left(D\bar{D}^* - D^*\bar{D} \right); & 2^{++}: & D^*\bar{D}^* \end{array}$$

here, phase convention: $D \xrightarrow{C} + \bar{D}, \; D^* \xrightarrow{C} - \bar{D}^*$

• Heavy quark spin irrelevant \Rightarrow interaction matrix elements:

$$\left\langle s_{1c}, s_{2c}, s_{c\bar{c}}; s_{1\,\ell}, s_{2\,\ell}, \boldsymbol{s_L}; J \left| \hat{\mathcal{H}} \right| s_{1c}', s_{2c}', s_{c\bar{c}}'; s_{1\,\ell}', s_{2\,\ell}', \boldsymbol{s_L}'; J' \right\rangle$$
$$= \left\langle s_{1\,\ell}, s_{2\,\ell}, \boldsymbol{s_L} \left| \hat{\mathcal{H}} \right| s_{1\,\ell}', s_{2\,\ell}', \boldsymbol{s_L} \right\rangle \delta_{s_{c\bar{c}}}, s_{c\bar{c}}' \delta_{s_L}, s_{L}' \delta_{JJ'}$$

For each isospin, 2 independent terms

$$\left\langle \frac{1}{2}, \frac{1}{2}, \mathbf{0} \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, \mathbf{0} \right\rangle, \qquad \left\langle \frac{1}{2}, \frac{1}{2}, \mathbf{1} \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, \mathbf{1} \right\rangle$$

 \Rightarrow 6 pairs grouped in 2 multiplets with $s_L = 0$ and 1, respectively

- For the HQSS consequences, convenient to use the basis of states: $s_L^{PC} \otimes s_{c\bar{c}}^{PC}$ $s_L^{PC} \otimes s_{c\bar{c}}^{PC} = 0^{-+}$ or 1^{--} multiplet with $s_L = 0$:
 - .

$$0_L^{-+} \otimes 0_{c\bar{c}}^{-+} = 0^{++}, \qquad 0_L^{-+} \otimes 1_{c\bar{c}}^{--} = 1^{+-}$$

multiplet with $s_L = 1$:

$$\mathbf{1}_{L}^{--} \otimes \mathbf{0}_{c\bar{c}}^{-+} = \mathbf{1}^{+-}, \qquad \mathbf{1}_{L}^{--} \otimes \mathbf{1}_{c\bar{c}}^{--} = \mathbf{0}^{++} \oplus \boxed{\mathbf{1}^{++}} \oplus \mathbf{2}^{++}$$

- Multiplets in strict heavy quark limit:
 - ${\ensuremath{\,{\rm \tiny SM}}}\xspace X(3872)$ has three partners with $0^{++}, 2^{++}$ and 1^{+-}

Hidalgo-Duque et al., PLB727(2013)432; Baru et al., PLB763(2016)20

 $\mathbb{I} Z_b, Z_b'$ as $B^{(*)}\bar{B}^*$ molecules would imply 6 I=1 hadronic molecules:

$$Z_b[1^{+-}], Z_b'[1^{+-}]$$
 and $W_{b0}[0^{++}], W_{b0}'[0^{++}], W_{b1}[1^{++}]$ and $W_{b2}[2^{++}]$

Bondar et al., PRD84(2011)054010; Voloshin, PRD84(2011)031502;

Mehen, Powell, PRD84(2011)114013

• Recall the exercise on page 50:

Is $\Upsilon \pi^+ \pi^-$ a good choice of final states for the search of X_b , the $J^{PC} = 1^{++}$ bottom analogue of the X(3872)?

<u>Answer:</u> No. $X_b \rightarrow \Upsilon \pi \pi$ breaks isospin symmetry

FKG, Hidalgo-Duque, Nieves, Valderrama, PRD88(2013)054007; Karliner, Rosner, PRD91(2015)014014 $M_{B^0} - M_{B^\pm} = (0.31 \pm 0.06) \text{ MeV} \quad [M_{D^\pm} - M_{D^0} = (4.822 \pm 0.015) \text{ MeV}]$

Negative results:

CMS, Search for a new bottomonium state decaying to $\Upsilon(1S)\pi^+\pi^-$ in pp collisions at $\sqrt{s} = 8$ TeV, PLB727(2013)57;

ATLAS, Search for the X_b and other hidden-beauty states in the $\pi^+\pi^-\Upsilon(1S)$ channel at ATLAS, PLB740(2015)199

• The results can be reinterpreted as for the search of W_{bJ} ($I = 1, J^{++}$)

HQSS for XYZ (4)

$$\mathbf{1}_{L}^{--} \otimes \mathbf{1}_{c\bar{c}}^{--} = 0^{++} \oplus \boxed{\mathbf{1}^{++}} \oplus 2^{++}$$

- Heavy quark spin selection rule for X(3872): for X(3872) being a $1^{++} D\bar{D}^*$ molecule, $s_L = 1$, $s_{c\bar{c}} = 1$
- spin structure of QQ̄:

	s_L	$s_{c\bar{c}}$	J^{PC}	$c\bar{c}$
$S ext{-wave}$	0	0	0^{-+}	η_c
	0	1	1	J/ψ
P-wave	1	0	1+-	h_c
	1	1	$(0, 1, 2)^{++}$	$\chi_{c0}, \chi_{c1}, \chi_{c2}$

• allowed: $X(3872) \to J/\psi \pi \pi$, $X(3872) \to \chi_{cJ}\pi$, $X(3872) \to \chi_{cJ}\pi \pi$ suppressed: $X(3872) \to \eta_c \pi \pi$, $X(3872) \to h_c \pi \pi$

• Interesting feature of $Z_b^{(')}$: observed with similar rates in both $\Upsilon \pi \pi [s_{b\bar{b}} = 1]$ and $h_b \pi \pi [s_{b\bar{b}} = 0]$ Bondar, Garmash, Milstein, Mizuk, Voloshin, PRD84(2011)054010 $Z_b \sim B\bar{B}^* \sim 0_{b\bar{b}}^- \otimes 1_{q\bar{q}}^- - 1_{b\bar{b}}^- \otimes 0_{q\bar{q}}^-, \ Z_b' \sim B^*\bar{B}^* \sim 0_{b\bar{b}}^- \otimes 1_{q\bar{q}}^- + 1_{b\bar{b}}^- \otimes 0_{q\bar{q}}^-$

Voloshin, PLB604(2004)69

HQSS for XYZ (5)

unitary transformation from two-meson basis to $|s_{1c}, s_{2c}, s_{c\bar{c}}; s_{1\ell}, s_{2\ell}, s_L; J\rangle$:

$$\begin{aligned} |s_{1c}, s_{1\ell}, j_1; s_{2c}, s_{2\ell}, j_2; J\rangle &= \sum_{s_{c\bar{c}}, s_L} \sqrt{(2j_1 + 1)(2j_2 + 1)(2s_{c\bar{c}} + 1)(2s_L + 1)} \\ &\times \begin{cases} s_{1c} & s_{2c} & s_{c\bar{c}} \\ s_{1\ell} & s_{2\ell} & s_L \\ j_1 & j_2 & J \end{cases} |s_{1c}, s_{2c}, s_{c\bar{c}}; s_{1\ell}, s_{2\ell}, s_L; J\rangle \end{aligned}$$

 $j_{1,2}$: meson spins;

J: the total angular momentum of the whole system

 $s_{1c(2c)} = \frac{1}{2}$: spin of the heavy quark in meson 1 (2)

 $s_{1\ell(2\ell)} = \frac{1}{2}$: angular momentum of the light quarks in meson 1 (2)

- $s_{c\bar{c}} = 0, 1$: total spin of $c\bar{c}$, conserved but decoupled
- $s_L = 0, 1$: total angular momentum of the light-quark system, conserved
- only two independent $\langle s_{\ell 1}, s_{\ell 2}, s_L | \hat{\mathcal{H}} | s'_{\ell 1}, s'_{\ell 2}, s_L \rangle_I$ terms for each isospin I:

$$F_{I0} = \left\langle \frac{1}{2}, \frac{1}{2}, 0 \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, 0 \right\rangle_{I}, \quad F_{I1} = \left\langle \frac{1}{2}, \frac{1}{2}, 1 \left| \hat{\mathcal{H}} \right| \frac{1}{2}, \frac{1}{2}, 1 \right\rangle_{I}$$

Feng-Kun Guo (fkguo@itp.ac.cn)

Exercise:

Show that the combinations of the LO contact terms in the *S*-wave interaction matrix elements for $D^{(*)}\overline{D}^{(*)}$ are as follows:

$$\begin{pmatrix} D\bar{D} \\ D^*\bar{D}^* \end{pmatrix}: \quad V^{(0^{++})} = \begin{pmatrix} C_{IA} & \sqrt{3}C_{IB} \\ \sqrt{3}C_{IB} & C_{IA} - 2C_{IB} \end{pmatrix},$$
$$\begin{pmatrix} D\bar{D}^* \\ D^*\bar{D}^* \end{pmatrix}: \quad V^{(1^{+-})} = \begin{pmatrix} C_{IA} - C_{IB} & 2C_{IB} \\ 2C_{IB} & C_{IA} - C_{IB} \end{pmatrix},$$
$$D\bar{D}^*: \quad V^{(1^{++})} = C_{IA} + C_{IB},$$
$$D^*\bar{D}^*: \quad V^{(2^{++})} = C_{IA} + C_{IB},$$

here, $C_{IA} = \frac{1}{4}(3F_{I1} + F_{I0}), C_{IB} = \frac{1}{4}(F_{I1} - F_{I0})$

• This would suggest spin multiplets. Good candidates:

 $\propto X(3872) \text{ and } X_2(4013) \text{ (not observed yet!);} \qquad Z_c(3900) \text{ and } Z_c(4020) \text{ Nieves, Valderrama, PRD86(2012)056004;} \dots$

$$M_{X_2(4013)} - M_{X(3872)} \approx M_{Z_c(4020)} - M_{Z_c(3900)} \approx M_{D^*} - M_D$$

ightharpoonup $Z_b(10610)$ and $Z_b(10650)$: Bondar et al., PRD84(2011)054010; \dots

 $M_{Z_b(10650)} - M_{Z_b(10610)} \approx M_{B^*} - M_B$

 \mathbb{Z}_c and Z_b states need a suppression of coupled-channel effect (reason?)

LHCb's P_c (1)

$$M_1 = (4380 \pm 8 \pm 29) \text{ MeV},$$

$$M_2 = (4449.8 \pm 1.7 \pm 2.5) \text{ MeV},$$

$$\label{eq:Gamma} \begin{split} \Gamma_1 &= (205 \pm 18 \pm 86) \; \text{MeV}, \\ \Gamma_2 &= (39 \pm 5 \pm 19) \; \text{MeV}. \end{split}$$

Feng-Kun Guo (fkguo@itp.ac.cn)

LHCb's P_c (2)

- In $J/\psi p$ invariant mass distribution, with hidden charm \Rightarrow pentaguarks if they are hadron resonances
- Quantum numbers not fully determined, for ($P_c(4380), P_c(4450)$): $(3/2^-, 5/2^+), (3/2^+, 5/2^-), (5/2^+, 3/2^-), \ldots$ LHCb, PRL11

From a reanalysis using an extended Λ^* model:

LHCb, PRL115(2015)072001

N. Jurik, CERN-THESIS-2016-086

		$P_{c}(4380)$		$P_{c}(44)$	50)	
$J^p(4380, 4450)$	$(\sqrt{\Delta(-2\ln\mathcal{L})})^2$	M_0	Γ_0	M_0	Γ_0	
	$(3/2-,5/2^+)$	solutior	1			
$3/2^{-}, 5/2^{+}$		4359	151	4450.1	49	
Δ from $(3/2-, 5/2^+)$ solution						
$5/2^+, 3/2^-$	-3.6^{2}	10	-7	-1.6	-6	
$5/2^{-}, \frac{3/2^{+}}{}$	-2.7^{2}	-4	-9	-3.6	-2	
$3/2^{-}, 5/2^{+}$	_	_	_	_	_	

Early prediction:

Prediction of narrow N^* and Λ^* resonances with hidden charm above 4 GeV, J.-J. Wu, R. Molina, E. Oset, B.-S. Zou, PRL105(2010)232001

The 2019 update of LHCb's P_c : three narrow states

State	$M \; [{\rm MeV}]$	Γ [MeV]	(95% CL)	R [%]
$P_c(4312)^+$	$4311.9\pm0.7^{+6.8}_{-0.6}$	$9.8 \pm 2.7^{+}_{-} ~ {}^{3.7}_{4.5}$	(< 27)	$0.30\pm0.07^{+0.34}_{-0.09}$
$P_c(4440)^+$	$4440.3 \pm 1.3^{+4.1}_{-4.7}$	$20.6 \pm 4.9^{+\ 8.7}_{-10.1}$	(< 49)	$1.11\pm0.33^{+0.22}_{-0.10}$
$P_c(4457)^+$	$4457.3 \pm 0.6^{+4.1}_{-1.7}$	$6.4 \pm 2.0^{+}_{-} ~ {}^{5.7}_{1.9}$	(< 20)	$0.53 \pm 0.16^{+0.15}_{-0.13}$

$$\mathcal{R} \equiv \mathcal{B}(\Lambda_b^0 \to P_c^+ K^-) \mathcal{B}(P_c^+ \to J/\psi p) / \mathcal{B}(\Lambda_b^0 \to J/\psi p K^-)$$

HQSS for P_c (1)

The LHCb P_c states might be $\Sigma_c^{(*)} \bar{D}^{(*)}$ molecules predicted in Wu, Molina, Oset, Zou (2010) $P_c(4312) \sim \Sigma_c \bar{D}, P_c(4440, 4457) \sim \Sigma_c \bar{D}^*$

Consider S-wave pairs of $\Sigma_c^{(*)} \bar{D}^{(*)} [J_{\Sigma_c} = \frac{1}{2}, J_{\Sigma_c^*} = \frac{3}{2}]$:

$$J^{P} = \frac{1}{2}^{-} : \Sigma_{c}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{3}{2}^{-} : \Sigma_{c}^{*}\bar{D}, \ \Sigma_{c}\bar{D}^{*}, \ \Sigma_{c}^{*}\bar{D}^{*}$$
$$J^{P} = \frac{5}{2}^{-} : \Sigma_{c}^{*}\bar{D}^{*}$$

Spin of the light degrees of freedom s_{ℓ} : $s_{\ell}(D^{(*)}) = \frac{1}{2}$, $s_{\ell}(\Sigma_c^{(*)}) = 1$. Thus, $s_L = \frac{1}{2}, \frac{3}{2}$ For each isospin, 2 independent terms

$$\left\langle 1, \frac{1}{2}, \frac{1}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{1}{2} \right\rangle, \qquad \left\langle 1, \frac{1}{2}, \frac{3}{2} \left| \hat{\mathcal{H}} \right| 1, \frac{1}{2}, \frac{3}{2} \right\rangle$$

Thus, the 7 pairs are in two spin multiplets: 3 with $s_L = \frac{1}{2}$ and 4 with $s_L = \frac{3}{2}$
HQSS for P_c (2)

Seven P_c generally expected in this hadronic molecular model Xiao, Nieves, Oset (2013); Liu et al. (2018, 2019); Sakai et al. (2019); ...

Predictions using the masses of $P_c(4440, 445)$	57) as inputs
--	---------------

Liu et al., PRL122(2019)242001

Scenario	Molecule	J^P	B (MeV)	M (MeV)
Α	$\bar{D}\Sigma_c$	$\frac{1}{2}^{-}$	7.8 – 9.0	4311.8 - 4313.0
Α	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	8.3 - 9.2	4376.1 - 4377.0
Α	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4440.3
Α	$ar{D}^*\Sigma_c$	$\frac{3}{2}^{-}$	Input	4457.3
Α	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	25.7 - 26.5	4500.2 - 4501.0
Α	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	15.9 - 16.1	4510.6 - 4510.8
Α	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}$ -	3.2 - 3.5	4523.3 - 4523.6
В	$ar{D}\Sigma_c$	$\frac{1}{2}^{-}$	13.1 - 14.5	4306.3 - 4307.7
В	$ar{D}\Sigma_c^*$	$\frac{3}{2}^{-}$	13.6 – 14.8	4370.5 - 4371.7
В	$ar{D}^*\Sigma_c$	$\frac{1}{2}^{-}$	Input	4457.3
В	$ar{D}^*\Sigma_c$	$\frac{\overline{3}}{2}$	Input	4440.3
В	$ar{D}^*\Sigma_c^*$	$\frac{1}{2}^{-}$	3.1 - 3.5	4523.2 - 4523.6
В	$ar{D}^*\Sigma_c^*$	$\frac{3}{2}^{-}$	10.1 - 10.2	4516.5 - 4516.6
В	$ar{D}^*\Sigma_c^*$	$\frac{5}{2}$ -	25.7 - 26.5	4500.2 - 4501.0

HQSS for P_c (3)

Fit to the LHCb measured $J/\psi p$ invariant mass distribution using hadronic molecular model with HQSS

> 1200 (II)Cont.+OPE Data: LHCb 1000 800

M.-L. Du, V. Baru, F.-K. Guo, C. Hanhart, U.-G. Meißner, J. A. Oller, Q. Wang, PRL124(2020)072001

Weighted candidates/(2 MeV 600 4004300 4250 4350 4400 4450 4500 m_{Iht} [MeV]

Scenario B in the previous page in favored in the fit after considering the one-pion exchange.

• X(5568) by D0 Collaboration ($p\bar{p}$ collisions)

$$M = (5567.8 \pm 2.9^{+0.9}_{-1.9}) \text{ MeV}$$

$$\Gamma = (21.9 \pm 6.4^{+5.0}_{-2.5}) \text{ MeV}$$

• Observed in $B_s^{(*)0}\pi^+$, sizeable width $\Rightarrow I = 1$:

minimal quark contents is \overline{bsdu} !

 a favorite mulqituark candidate: explicitly flavor exotic, minimal number of quarks ≥ 4 Estimate of isospin breaking decay width:

$$\Gamma_{I} \sim \left(\left(\frac{m_{d} - m_{u}}{\Lambda_{\rm QCD}} \right)^{2} \\ \alpha^{2} \right) \times \mathcal{O} (100 \text{ MeV})$$
$$= \mathcal{O} (10 \text{ keV})$$

PRL117(2016)022003

X(5568) (2)

FKG, Meißner, Zou, How the X(5568) challenges our understanding of QCD, Commun. Theor. Phys. 65 (2016) 593

• mass too low for X(5568) to be a $\bar{b}s\bar{u}d$: $M \simeq M_{B_s} + 200 \text{ MeV}$

 $^{\rm ISS}~M_\pi\simeq 140~{\rm MeV}$ because pions are pseudo-Goldstone bosons

is For any matter field: $M_R \gg M_\pi$; we expect $M_{\bar{q}q} \sim M_R \gtrsim M_\sigma$

 $M_{\bar{b}s\bar{u}d}\gtrsim M_{B_s}+500~{\rm MeV}\sim 5.9~{\rm GeV}$

• HQFS predicts an isovector X_c:

$$M_{X_c} = M_{X(5568)} - \Delta_{b-c} + \mathcal{O}\left(\Lambda_{\text{QCD}}^2 \left(\frac{1}{m_c} - \frac{1}{m_b}\right)\right) \simeq (2.24 \pm 0.15) \text{ GeV}$$

but in $D_s\pi$, only the isoscalar $D_{s0}^*(2317)$ was observed!

BaBar (2003)

negative results reported by LHCb,

by CMS, by CDF, by ATLAS LHCb, PRL117(2016)152003 CMS, PRL120(2018)202005 CDF, PRL120(2018)202006

ATLAS, PRL120(2018)202007

Hadronic molecules

FKG, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, *Hadronic molecules*, Rev. Mod. Phys. 90 (2018) 015004

• Hadronic molecule:

dominant component is a composite state of 2 or more hadrons

 Concept at large distances, so that can be approximated by system of multi-hadrons at low energies

Consider a 2-body bound state with a mass $M = m_1 + m_2 - E_B$

size:
$$\sim rac{1}{\sqrt{2\mu E_B}} \gg r_{ ext{hadron}}$$

- scale separation \Rightarrow (nonrelativistic) EFT applicable!
- Only narrow hadrons can be considered as components of hadronic molecules, $\Gamma_h \ll 1/r, r$: range of forces

Filin et al., PRL105(2010)019101; FKG, Meißner, PRD84(2011)014013

Compositeness (1)

S. Weinberg, PR137(1965)B672; V. Baru *et al.*, PLB586(2004)53; T. Hyodo, IJMPA28(2013)1330045, . . .

Model-independent result for *S*-wave loosely bound composite states:

Consider a system with Hamiltonian

$$\mathcal{H} = \mathcal{H}_0 + V$$

 \mathcal{H}_0 : free Hamiltonian, V: interaction potential

Compositeness:

the probability of finding the physical state $|B\rangle$ in the 2-body continuum $|q\rangle$

$$1 - Z = \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \left| \langle \boldsymbol{q} | B \rangle \right|^2$$

• $Z = |\langle B_0 | B \rangle|^2$, $0 \le (1 - Z) \le 1$

 $\square Z = 0$: pure bound (composite) state

 $\square Z = 1$: pure elementary state

Compositeness (2)

Compositeness :
$$1 - Z = \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \left| \langle \boldsymbol{q} | B \rangle \right|^2$$

Schrödinger equation

$$(\mathcal{H}_0 + V)|B\rangle = -E_B|B\rangle$$

multiplying by $\langle q |$ and using $\mathcal{H}_0 | q \rangle = \frac{q^2}{2\mu} | q \rangle$: \Rightarrow momentum-space wave function:

$$\langle {\pmb q} | B \rangle = - \frac{\langle {\pmb q} | V | B \rangle}{E_B + {\pmb q}^2/(2\mu)}$$

• Compositeness:

$$1 - Z = \int \frac{d^3 \boldsymbol{q}}{(2\pi)^3} \frac{g_{\rm NR}^2}{\left[E_B + \boldsymbol{q}^2/(2\mu)\right]^2} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right] = \frac{\mu^2 g_{\rm NR}^2}{2\pi\sqrt{2\mu E_B}} \left[1 + \mathcal{O}\left(\frac{r}{R}\right)\right]$$

 $|q\rangle$

 $|B_0\rangle$

 $m_1 + m_2$

 \mathcal{H}

 $|q_{(+)}
angle$

 $|B\rangle$

 E_B

Compositeness (3)

• Coupling constant measures the compositeness for an *S*-wave shallow bound state $g_{\rm NR}^2 \approx (1-Z) \frac{2\pi}{\mu^2} \sqrt{2\mu E_B} \le \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$

bounded from the above

It can be shown that $g_{\rm NR}^2$ is the residue of the *T*-matrix element at the pole $E = -E_B$ ($E \equiv \sqrt{s} - m_1 - m_2$):

$$g_{\rm NR}^2 = \lim_{E \to -E_B} (E + E_B) \langle \boldsymbol{k} | T_{\rm NR} | \boldsymbol{k} \rangle$$

here nonrelativistic normalization is used, comparing with the T-matrix using relativistic normalization in the first part of this lecture (also a sign difference in the definition), $T_{\rm NR} = -\frac{T}{4\mu\sqrt{s}} \simeq -\frac{T}{4m_1m_2}$. Hint: use the Lippmann–Schwinger equation $T_{\rm NR} = V + V \frac{1}{E - \mathcal{H}_0 + i\epsilon} T_{\rm NR}$ and the completeness relation $|B\rangle\langle B| + \int \frac{d^3q}{(2\pi)^3} |q_{(+)}\rangle\langle q_{(+)}| = 1$ to derive the Low equation (noticing $T_{\rm NR} |q\rangle = V |q_{(+)}\rangle$):

$$\langle \mathbf{k}' | T_{\rm NR} | \mathbf{k} \rangle = \langle \mathbf{k}' | V | \mathbf{k} \rangle + \frac{\langle \mathbf{k}' | V | B \rangle \langle B | V | \mathbf{k} \rangle}{E + E_B + i\epsilon} + \int \frac{d^3q}{(2\pi)^3} \frac{\langle \mathbf{k}' | T_{\rm NR} | \mathbf{q} \rangle \langle \mathbf{q} | T_{\rm NR}^{\dagger} | \mathbf{k} \rangle}{E - \mathbf{q}^2 / (2\mu) + i\epsilon}$$

• Z can be related to scattering length a and effective range r_e Weinberg (1965)

$$a_0 = \frac{2R(1-Z)}{2-Z} \left[1 + \mathcal{O}\left(\frac{r}{R}\right) \right], \quad r_{e0} = -\frac{RZ}{1-Z} \left[1 + \mathcal{O}\left(\frac{r}{R}\right) \right]$$

Effective range expansion (S-wave): $f_0^{-1}(k) = -1/a_0 + r_{e0}k^2/2 - ik + \mathcal{O}(k^4)$

Derivation:

$$T_{\rm NR}(E) \equiv \langle k | T_{\rm NR} | k \rangle = -\frac{2\pi}{\mu} f_0(k) \implies \text{Im} T_{\rm NR}^{-1}(E) = \frac{\mu}{2\pi} \sqrt{2\mu E} \, \theta(E)$$

Twice-subtracted dispersion relation for $t^{-1}(E)$

$$T_{\rm NR}^{-1}(E) = \frac{E + E_B}{g_{\rm NR}^2} + \frac{(E + E_B)^2}{\pi} \int_0^{+\infty} dw \frac{{\rm Im} \, T_{\rm NR}^{-1}(w)}{(w - E - i\epsilon)(w + E_B)^2} = \frac{E + E_B}{g_{\rm NR}^2} + \frac{\mu \, R}{4\pi} \left(\frac{1}{R} - \sqrt{-2\mu E - i\epsilon}\right)^2$$

• Purely composite: $Z = 0 \Rightarrow a_0 = \frac{1}{\sqrt{2\mu E_B}}, r_{e0} = 0$

• Purely elementary: $Z = 1 \Rightarrow a_0 = 0, r_{e0} = -\infty$

Classic example: deuteron as pn bound state. Exp.: $E_B = 2.2$ MeV, $a_{0[^{3}S_{1}]} = 5.4 \text{ fm}, r_{e0[^{3}S_{1}]} = 1.8 \text{ fm}$

$$a_{Z=1} \simeq 0 \text{ fm}, \qquad a_{Z=0} \simeq 4.3 \text{ fm}$$

However, problematic for systems with positive effective range I. Matuschek, V. Baru. FKG, C. Hanhart, EPJA 57 (2021) 101; Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502 $r_{e0} > 0 \Rightarrow Z \notin (0,1)$, thus Z or $1 - Z = \sqrt{\frac{a_0}{a_0 + 2r_{e0}}}$ in Weinberg's relations loses a probability interpretation A generalization is suggested in

Y. Li, FKG, J.-Y. Pang, J.-J. Wu, PRD 105 (2022) L071502

$$Z = \exp\left(\frac{1}{\pi} \int_0^\infty dE \frac{\delta_0(E)}{E - E_B}\right) \in [0, 1]$$

which reduces to Weinberg's relations for $r_{e0} < 0$.

NREFT at LO (1)

We consider a system of two particles of masses m_1, m_2

• in the near-threshold region, a momentum expansion for the interactions with the LO being a constant

$$\mathcal{L} = \sum_{i=1,2} \phi_i^{\dagger} \left(i\partial_0 - m_i + \frac{\nabla^2}{2m_i} \right) \phi_i - C_0 \phi_1^{\dagger} \phi_2^{\dagger} \phi_1 \phi_2 + \dots$$

nonrelativistic propagator: $rac{i}{p^0-m_i-p^2/(2m_i)+i\epsilon}$

to have a near-threshold bound state (hadronic molecule)

 $T_{\rm NR}(E) = C_0 + C_0 G_{\rm NR}(E) C_0 + C_0 G_{\rm NR}(E) C_0 G_{\rm NR}(E) C_0 + \dots$ $= \frac{1}{C_0^{-1} - G_{\rm NR}(E)}$

• The loop integral is linearly divergent (E defined relative to $m_1 + m_2$), regularized with, e.g., a sharp cut

$$G_{\rm NR}(E) = i \int \frac{d^3 \mathbf{k} dk^0}{(2\pi)^4} \left[\left(k^0 - \frac{\mathbf{k}^2}{2m_1} + i\epsilon \right) \left(E - k^0 - \frac{\mathbf{k}^2}{2m_2} + i\epsilon \right) \right]^{-1}$$

$$= -i2\mu(2\pi i) \int^{\Lambda} \frac{d^3 \mathbf{k}}{(2\pi)^4} \frac{1}{2\mu E - \mathbf{k}^2 + i\epsilon}$$

$$E - \frac{\mathbf{k}^2}{2m_1} + i\epsilon^{\Lambda} = -\frac{\mu}{\pi^2} \left(\Lambda - \sqrt{-2\mu E - i\epsilon} \arctan \frac{\Lambda}{\sqrt{-2\mu E - i\epsilon}} \right)$$

$$\frac{\mathbf{k}^2}{2m_1 - i\epsilon} = -\frac{\mu}{\pi^2} \Lambda + \frac{\mu}{2\pi} \sqrt{-2\mu E - i\epsilon} + \mathcal{O} \left(\Lambda^{-1} \right)$$

for real $E, \quad \sqrt{-2\mu E - i\epsilon} = \sqrt{-2\mu E}\,\theta(-E) - i\sqrt{2\mu E}\,\theta(E)$

• Renormalization: $T_{\rm NR}$ is Λ -independent,

$$T_{\rm NR}(E) = \frac{1}{C_0^{-1} - G_{\rm NR}} \\ = \left(\frac{1}{C_0} + \frac{\mu}{\pi^2}\Lambda - \frac{\mu}{2\pi}\sqrt{-2\mu E - i\epsilon}\right)^{-1} \\ = \frac{2\pi/C_0^r}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}}$$

- Other regularization can be used as well, equiavalent to the sharp cutoff up to $1/\Lambda$ suppressed terms, e.g.
 - with a Gaussian regulator $\exp\left(-{m k}^2/\Lambda_{
 m G}^2
 ight),\,\Lambda_{
 m G}=\sqrt{2/\pi}\Lambda$
 - with the power divergence subtraction (PDS) scheme in dimensional regularization by letting, $\Lambda_{\rm PDS}=2\Lambda/\pi$ Kaplan, Savage, Wise (1998)

NREFT at LO (4)

$$T_{\rm NR}(E) = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}} = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) + ik}$$

from matching to effective range expansion,

$$f_0^{-1}(k) = -\frac{2\pi}{\mu} T_{\rm NR}^{-1} = -\frac{1}{a_0} + \frac{1}{2} r_{e0} k^2 - i k + \mathcal{O}\left(k^4\right)$$

 $2\pi/(\mu C_0^r)=1/a_0;$ higher terms are necessary to match both a and r_e

- pole below threshold at $E = -E_B$ with $E_B > 0$ $\kappa \equiv |\sqrt{2\mu E_B}|$ • bound state pole, in the 1st Riemann sheet $\Rightarrow 2\pi/(\mu C_0^r) = \kappa$ • virtual state pole, in the 2nd Riemann sheet $\Rightarrow 2\pi/(\mu C_0^r) = -\kappa$ • unitary cut Rek virtual state pole $k = -i\kappa$
 - unable to get a resonance pole at LO with a single channel

Bound state and virtual state

 If the same binding energy, bound and virtual states cannot be distinguished above threshold (*E* > 0):

$$|T_{\rm NR}(E)|^2 \propto \left|\frac{1}{\pm\kappa + i\sqrt{2\mu E}}\right|^2 = \frac{1}{\kappa^2 + 2\mu E}$$

• Bound state and virtual state are different below threshold (*E* < 0):

bound state: peaked below threshold

$$|T_{\rm NR}(E)|^2 \propto \frac{1}{(\kappa - \sqrt{-2\mu E})^2}$$

virtual state: a sharp cusp at threshold

$$|T_{\rm NR}(E)|^2 \propto \frac{1}{(\kappa + \sqrt{-2\mu E})^2}$$

Lower Fig.: bound state and virtual state with $E_B = 5$ MeV and a small width to the inelastic channel

For complexity of near-threshold line shapes, see X.-K. Dong, FKG, B.-S. Zou, PRL126(2021)152001

Coupling constant for S-wave bound state

$$T_{\rm NR}(E) = \frac{2\pi/\mu}{2\pi/(\mu C_0^r) - \sqrt{-2\mu E - i\epsilon}}$$

At LO, effective coupling strength for bound state

$$g_{\rm NR}^2 = \lim_{E \to -E_B} (E + E_B) T_{\rm NR}(E) = -\frac{2\pi}{\mu} \left(\frac{d}{dE} \sqrt{-2\mu E - i\epsilon} \right)_{E=-E_B}^{-1} = \frac{2\pi}{\mu^2} \sqrt{2\mu E_B}$$

Recall the compositeness formula:

$$g_{\rm NR}^2 = (1-Z)\frac{2\pi}{\mu^2}\sqrt{2\mu E_B}$$

This means that the pole obtained at LO NREFT with only a constant contact term corresponds to a purely composite state (Z = 0)

Range corrections: other components at shorter distances

- energy/momentum-dependent interactions: higher order
- coupling to additional states/channels

Example: T_{cc}

- Consider $D^0 \overline{D}^{*+}$ - $D^+ D^{*0}$ coupled-channel system
- Contact term (two low-energy constants $C_{I=0}$ and $C_{I=1}$, assuming $C_{I=1}$ vanish) + one-pion exchange; 3-body effects $(2m_D + m_\pi \simeq m_D + m_{D^*})$

Feng-Kun Guo (fkguo@itp.ac.cn)

Lots of new hadron resonances and resonance-like structures were found since 2003

- H.-X. Chen et al., *The hidden-charm pentaquark and tetraquark states*, Phys. Rept. 639 (2016) 1 [arXiv:1601.02092]
- A. Hosaka et al., Exotic hadrons with heavy flavors X, Y, Z and related states, Prog. Theor. Exp. Phys. 2016, 062C01 [arXiv:1603.09229]
- R. F. Lebed, R. E. Mitchell, E. Swanson, *Heavy-quark QCD exotica*, Prog. Part. Nucl. Phys. 93 (2017) 143 [arXiv:1610.04528]
- A. Esposito, A. Pilloni, A. D. Polosa, *Multiquark resonances*, Phys. Rept. 668 (2017) 1 [arXiv:1611.07920]
- F.-K. Guo, C. Hanhart, U.-G. Meißner, Q. Wang, Q. Zhao, B.-S. Zou, *Hadronic molecules*, Rev. Mod. Phys. 90 (2018) 015004 [arXiv:1705.00141]
- S. L. Olsen, T. Skwarnicki, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 (2018) 015003 [arXiv:1708.04012]
- M. Karliner, J. L. Rosner, T. Skwarnicki, *Multiquark states*, Ann. Rev. Nucl. Part. Sci. 68 (2018) 17 [arXiv:1711.10626]
- C.-Z. Yuan, The XYZ states revisited, Int. J. Mod. Phys. A 33 (2018) 1830018 [arXiv:1808.01570]
- N. Brambilla et al., *The XYZ states: experimental and theoretical status and perspectives*, Phys. Rept. 873 (2020) 154 [arXiv:1907.07583]
- F.-K. Guo, X.-H. Liu, S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112 (2020) 103757 [arXiv:1912.07030]

• ...

Thank you for your attention!

Bispinor fields for heavy mesons (1)

- $\frac{1}{2}(1 + \psi)$ projects onto the particle component of the heavy quark spinor.
- Convenient to introduce heavy mesons as bispinors:

$$H_a = \frac{1+\not p}{2} \left[P_a^{*\mu} \gamma_\mu - P_a \gamma_5 \right], \qquad \bar{H}_a = \gamma_0 H_a^{\dagger} \gamma_0$$

 $P = \{Q\bar{u}, Q\bar{d}, Q\bar{s}\}$: pseudoscalar heavy mesons, P^* : vector heavy mesons For hadrons with arbitrary spin, see A. Falk, NPB378(1992)79

Charge conjugation:

- ${}^{\hspace*{-0.5ex} ext{scalar}}$ H_a destroys mesons containing a Q, but does not create mesons with a $ar{Q}$
- Free to choose the phase convention for charge conjugation. If we use, e.g.,

$$P_a \xrightarrow{C} + P_a^{(\bar{Q})}, \quad P_{a,\mu}^* \xrightarrow{C} - P_{a,\mu}^{*(\bar{Q})},$$

then the fields annihilating mesons containing a \bar{Q} is $(\mathcal{C} = i\gamma^2\gamma^0)$ $H_a^{(\bar{Q})} = \mathcal{C} \left[\frac{1 + \psi}{2} \left(\underbrace{-P_{a,\mu}^{*(\bar{Q})}}_{P_{a,\mu} \stackrel{C}{\hookrightarrow}} \gamma^{\mu} - \underbrace{P_a^{(\bar{Q})}}_{P_a \stackrel{C}{\to}} \gamma_5 \right) \right]^T \mathcal{C}^{-1}$ $= \left(+ P_{a,\mu}^{*(\bar{Q})} \gamma^{\mu} - P_a^{(\bar{Q})} \gamma_5 \right) \frac{1 - \psi}{2}$

Bispinor fields for heavy mesons (2)

Free heavy-meson Lagrangian:

$$\mathcal{L}_{\text{free}} = -i \operatorname{Tr} \left[\bar{H}_a v_\mu \partial^\mu H_a \right] = 2i P_a^\dagger v_\mu \partial^\mu P_a - 2i P_a^{*\dagger} v_\mu \partial^\mu P_a^{*\nu}$$

Tr: trace in the spinor space, a, b: indices in the light flavor space

• Notice that the mass dimension of H_a is 3/2.

Nonrelativistic normalization: $H_a \simeq \sqrt{M_H} H_a^{\rm rel.}$

D-meson propagator:

$$\frac{i}{2v \cdot k + i\epsilon} \simeq M_H \times \underbrace{\frac{i}{p^2 - M_H^2 + i\epsilon}}_{=\frac{i}{2M_H v \cdot k + i\epsilon} \left[1 + \mathcal{O}\left(k^2/M_H^2\right)\right]} (p = M_H v + k)$$

In some papers, the normalization factor is $\sqrt{2M_H}$, instead of $\sqrt{M_H}$. Then the corresponding propagator should be

$$rac{i}{v\cdot k+i\epsilon}$$
 or $rac{i}{k^0-ec k^{\,2}/(2M_H)+i\epsilon}$

Simplified two-component notation

The superfield for pseudoscalar and vector heavy mesons: (in this page, we use $^{(4)}$ to mean the usual 4-component notation)

$$H_a^{(4)} = \frac{1 + \not\!\!\!/}{2} \left[P_a^{*\mu} \gamma_\mu - P_a \gamma_5 \right]$$

In the rest frame of heavy meson, $v^{\mu}=(1,\mathbf{0}).$ We take the Dirac basis

$$\begin{split} \gamma^0 &= \begin{pmatrix} \mathbbm{1} & 0\\ 0 & -\mathbbm{1} \end{pmatrix}, \qquad \gamma^i = \begin{pmatrix} 0 & \sigma^i\\ -\sigma^i & 0 \end{pmatrix}, \qquad \gamma^5 \begin{pmatrix} 0 & \mathbbm{1}\\ \mathbbm{1} & 0 \end{pmatrix}.\\ \text{Simplifications:} & \frac{1+\not p}{2} = \frac{1+\gamma^0}{2} = \begin{pmatrix} \mathbbm{1} & 0\\ 0 & 0 \end{pmatrix}\\ H_a^{(4)} &= \begin{pmatrix} 0 & -(P_a + \boldsymbol{P}_a^* \cdot \boldsymbol{\sigma})\\ 0 & 0 \end{pmatrix}, \qquad \bar{H}_a^{(4)} = \begin{pmatrix} 0 & 0\\ (P_a^\dagger + \boldsymbol{P}_a^{*\dagger} \cdot \boldsymbol{\sigma}) & 0 \end{pmatrix} \end{split}$$

Thus, it is convenient to simply use the two-component notation

$$H_a = P_a + {\pmb P}_a^* \cdot {\pmb \sigma}, \qquad H_a^{(4)} \to -H_a, \qquad \bar H_a^{(4)} \to H_a^\dagger$$

Mass splittings among heavy mesons (1)

Spin-dependent term ⇒ mass difference between vector and pseudoscalar mesons (σ^{µν} = ⁱ/₂ [γ^µ, γ^ν])

~ >

$$\begin{split} \mathcal{L}_{\Delta} &= \frac{\lambda_2}{m_Q} \mathrm{Tr} \left[\bar{H}_a^{(4)} \sigma_{\mu\nu} H_a^{(4)} \sigma^{\mu\nu} \right] = -\frac{2\lambda_2}{m_Q} \mathrm{Tr} \left[H_a^{\dagger} \sigma^i H_a \sigma^i \right] \\ &= \frac{4\lambda_2}{m_Q} \left(\boldsymbol{P}_a^{*\,\dagger} \cdot \boldsymbol{P}_a^{*} - 3P_a^{\dagger} P_a \right) \qquad \qquad H_a = P_a + P_a^{*} \cdot \sigma \end{split}$$

$$\Rightarrow \qquad M_{P_a^*} - M_{P_a} = -\frac{8\lambda_2}{m_O}$$

Thus, we expect

$$\frac{M_{B^*}-M_B}{M_{D^*}-M_D} \simeq \frac{m_c}{m_b} \simeq 0.3$$

measured values:

$$M_{D^*}-M_D\simeq 140~{\rm MeV},\qquad M_{B^*}-M_B\simeq 46~{\rm MeV}$$

LO effective Lagrangian for interaction of heavy meson pair

 At LO of nonrelativistic expansion, constant contact terms for S-wave interaction between a pair of heavy mesons

$$\mathcal{L}_{4H} = -\frac{1}{4} \operatorname{Tr} \left[H^{a\dagger} H_b \right] \operatorname{Tr} \left[\bar{H}^c \bar{H}_d^{\dagger} \right] \left(F_A \delta^b_a \delta^d_c + F^{\lambda}_A \vec{\lambda}_a^b \cdot \vec{\lambda}_c^d \right) + \frac{1}{4} \operatorname{Tr} \left[H^{a\dagger} H_b \sigma^m \right] \operatorname{Tr} \left[\bar{H}^c \bar{H}_d^{\dagger} \sigma^m \right] \left(F_B \delta^b_a \delta^d_c + F^{\lambda}_B \vec{\lambda}_a^b \cdot \vec{\lambda}_c^d \right)$$

• Using the completeness relations for SU(N) generators T_m satisfying $Tr[T_mT_n] = C\delta_{mn}$:

$$\delta_i^l \delta_k^j = \frac{1}{N} \delta_i^j \delta_k^l + \frac{1}{C} \left(T_m \right)_i^j \left(T_m \right)_k^l$$

Proof: Any $N \times N$ complex matrix can be expanded as $X = X_0 + X_m T_m$ $(m = 1, \dots, N^2 - 1)$. Using $\operatorname{Tr}[T_m T_n] = C\delta_{mn}$, one gets $X_0 = \frac{1}{N}\operatorname{Tr}[X] = \frac{1}{N}X_i^i, \qquad X_m = \frac{1}{C}\operatorname{Tr}[XT_m] = \frac{1}{C}X_l^k(T_m)_k^l.$

Then

$$X_{l}^{k}\delta_{i}^{l}\delta_{k}^{j} = \frac{1}{N}X_{l}^{k}\delta_{k}^{l}\delta_{i}^{j} + \frac{1}{C}X_{l}^{k}(T_{m})_{k}^{l}(T_{m})_{i}^{j}.$$

one finds that the two-trace terms can be rewritten in the form of single-trace terms:

$$\begin{aligned} \operatorname{Tr}\left[H^{a\dagger}H_{a}\right]\operatorname{Tr}\left[\bar{H}^{b}\bar{H}_{b}^{\dagger}\right] &= \left(H^{a\dagger}H_{a}\right)_{l}^{i}\delta_{i}^{l}\left(\bar{H}^{b}\bar{H}_{b}^{\dagger}\right)_{j}^{k}\delta_{k}^{j} \\ &= \left(H^{a\dagger}H_{a}\right)_{l}^{i}\left(\bar{H}^{b}\bar{H}_{b}^{\dagger}\right)_{j}^{k}\left[\frac{1}{2}\delta_{k}^{l}\delta_{i}^{j} + \frac{1}{2}\left(\sigma_{m}\right)_{k}^{l}\left(\sigma_{m}\right)_{i}^{j}\right] \\ &= \frac{1}{2}\operatorname{Tr}\left[H^{a\dagger}H_{a}\bar{H}^{b}\bar{H}_{b}^{\dagger}\right] + \frac{1}{2}\operatorname{Tr}\left[H^{a\dagger}H_{a}\sigma_{m}\bar{H}^{b}\bar{H}_{b}^{\dagger}\sigma_{m}\right], \\ \operatorname{Tr}\left[H^{a\dagger}H_{a}\sigma_{m}\right]\operatorname{Tr}\left[\bar{H}^{b}\bar{H}_{b}^{\dagger}\sigma_{m}\right] = \left(H^{a\dagger}H_{a}\right)_{l}^{k}\left(\sigma_{m}\right)_{k}^{l}\left(\bar{H}^{b}\bar{H}_{b}^{\dagger}\right)_{j}^{i}\left(\sigma_{m}\right)_{i}^{j} \\ &= \left(H^{a\dagger}H_{a}\right)_{l}^{k}\left(\bar{H}^{b}\bar{H}_{b}^{\dagger}\right)_{j}^{i}\left(2\delta_{i}^{l}\delta_{k}^{j} - \delta_{k}^{l}\delta_{i}^{j}\right) \\ &= 2\operatorname{Tr}\left[H^{a\dagger}H_{a}\bar{H}^{b}\bar{H}_{b}^{\dagger}\right] - \operatorname{Tr}\left[H^{a\dagger}H_{a}\right]\operatorname{Tr}\left[\bar{H}^{b}\bar{H}_{b}^{\dagger}\right] \\ &= \frac{3}{2}\operatorname{Tr}\left[H^{a\dagger}H_{a}\bar{H}^{b}\bar{H}_{b}^{\dagger}\right] - \frac{1}{2}\operatorname{Tr}\left[H^{a\dagger}H_{a}\sigma_{m}\bar{H}^{b}\bar{H}_{b}^{\dagger}\sigma_{m}\right]. \end{aligned}$$

Triangle singularity

FKG, X.-H. Liu, S. Sakai, *Threshold cusps and triangle singularities in hadronic reactions*, Prog. Part. Nucl. Phys. 112 (2020) 103757

M. Bayar, F. Aceti, FKG, E. Oset, PRD 94 (2016) 074039

Consider the scalar three-point loop integral

$$I = i \int \frac{d^4q}{(2\pi)^4} \frac{1}{\left[(P-q)^2 - m_1^2 + i\epsilon\right]\left(q^2 - m_2^2 + i\epsilon\right)\left[(p_{23} - q)^2 - m_3^2 + i\epsilon\right]}$$

Rewriting a propagator into two poles:

$$\frac{1}{q^2-m_2^2+i\epsilon}=\frac{1}{\left(q^0-\omega_2+i\epsilon\right)\left(q^0+\omega_2-i\epsilon\right)}\quad\text{with}\quad\omega_2=\sqrt{m_2^2+q^{\,2}}$$

Nonrelativistically, on the positive-energy poles

$$I \simeq \frac{i}{8m_1m_2m_3} \int \frac{dq^0 d^3 \mathbf{q}}{(2\pi)^4} \frac{1}{(P^0 - q^0 - \omega_1 + i\epsilon) \left(q^0 - \omega_2 + i\epsilon\right) \left(p_{23}^0 - q^0 - \omega_3 + i\epsilon\right)}$$

TS: some details (2)

$$I \propto \int \frac{d^3 q}{(2\pi)^3} \frac{1}{[P^0 - \omega_1(q) - \omega_2(q) + i\epsilon][E_{23} - \omega_2(q) - \omega_3(p_{23} - q) + i\epsilon]} \\ \propto \int_0^\infty dq \; \frac{q^2}{P^0 - \omega_1(q) - \omega_2(q) + i\epsilon} f(q)$$

The second cut:

$$f(q) = \int_{-1}^{1} dz \, \frac{1}{E_{23} - \omega_2(q) - \sqrt{m_3^2 + q^2 + p_{23}^2 - 2p_{23}qz} + i\,\epsilon}$$

Relation between singularities of integrand and integral

- singularity of integrand does not necessarily give a singularity of integral: integral contour can be deformed to avoid the singularity
- Two cases that a singularity cannot be avoided:
 - endpoint singularity
 - pinch singularity

Singularities of the **integrand** in the rest frame of initial particle:

- First cut: $M \omega_1(l) \omega_2(l) + i\epsilon = 0 \Rightarrow q_{\text{on}+} \equiv \frac{1}{2M} \sqrt{\lambda(M^2, m_1^2, m_2^2)} + i\epsilon$
- Second cut: $A(q, \pm 1) = 0 \Rightarrow$ endpoint singularities of f(q)

$$z = +1: \quad q_{a+} = \gamma \left(\beta E_2^* + p_2^*\right) + i \epsilon, \qquad q_{a-} = \gamma \left(\beta E_2^* - p_2^*\right) - i \epsilon,$$

$$z = -1: \quad q_{b+} = \gamma \left(-\beta E_2^* + p_2^*\right) + i \epsilon, \qquad q_{b-} = -\gamma \left(\beta E_2^* + p_2^*\right) - i \epsilon$$

$$\beta = |\mathbf{p}_{23}|/E_{23}, \qquad \gamma = 1/\sqrt{1 - \beta^2} = E_{23}/m_{23}$$

 $E_2^*(p_2^*)$: energy (momentum) of particle-2 in the cmf of the (2,3) system

All singularities of the integrand:

 $q_{\text{on}+}, \qquad q_{a+} = \gamma \left(\beta E_2^* + p_2^*\right) + i\epsilon, \qquad q_{a-} = \gamma \left(\beta E_2^* - p_2^*\right) - i\epsilon,$ $q_{b+} = -q_{a-}, \qquad q_{b-} = -q_{a+} < 0 \text{ (for } \epsilon = 0)$ $\lim q$ $\lim q$ $\operatorname{Im} q$ (a) (b) (c) $\lim q$ 2-body threshold triangle singularity at singularity at $q_{\rm on+} = q_{a-}$

Rewrite $q_{a-} = p_2 - i \epsilon$, $p_2 \equiv \gamma \left(\beta E_2^* - p_2^*\right)$ Kinematics for $p_2 > 0$, which is relevant to triangle singularity:

- $p_3 = \gamma \left(\beta E_3^* + p_2^*\right) > 0 \Rightarrow$ particles 2 and 3 move in the same direction in the rest frame of initial particle
- velocities in the rest frame of the initial particle: $v_3 > \beta > v_2$

$$v_2 = \beta \, \frac{E_2^* - p_2^* / \beta}{E_2^* - \beta \, p_2^*} < \beta \,, \qquad v_3 = \beta \, \frac{E_3^* + p_2^* / \beta}{E_3^* + \beta \, p_2^*} > \beta$$

particle 3 moves faster than particle 2 in the rest frame of initial particle

<u>Coleman–Norton theorem</u>: S. Coleman and R. E. Norton, Nuovo Cim. 38 (1965) 438
 The singularity is on the physical boundary if and only if the diagram can be interpreted as a classical process in space-time.

physical boundary: upper edge (lower edge) of the unitary cut in the first (second) Riemann sheet

- Translation:
 - all three intermediate states can go on shell
 - $\mathbf{w} \mathbf{p}_2 \parallel \mathbf{p}_3, m_3$ can catch up with the m_2 to rescatter

TS: kinematical region

• For fixed $m_{B,C}$, m_A and m_D , TS on the physical boundary only when

$$m_{R}^{2} \in \left[\frac{m_{A}^{2}m_{C} + m_{D}^{2}m_{B}}{m_{B} + m_{C}} - m_{B}m_{C}, (m_{A} - m_{B})^{2}\right]$$

• TS on the physical boundary only when

$$m_A^2 \in \left[\left(m_R + m_B \right)^2, \left(m_R + m_B \right)^2 + \frac{m_B}{m_C} \left[\left(m_R - m_C \right)^2 - m_D^2 \right] \right],$$
$$m_{BC}^2 \in \left[\left(m_B + m_C \right)^2, \left(m_B + m_C \right)^2 + \frac{m_B}{m_R} \left[\left(m_R - m_C \right)^2 - m_D^2 \right] \right]$$

TS: invariant mass spectra

TS: Argand plot

The argand plot is counterclockwise, resembling that of a resonance