Frontiers in Nuclear and Hadronic Physics 2025

The Galileo Galilei Institute For Theoretical Physics

Centro Nazionale di Studi Avanzati dell'Istituto Nazionale di Fisica Nucleare

Arcetri, Firenze

Hadron Spectroscopy Feb 24, 2025 - Feb 28, 2025

J. Nieves

- Lowest lying odd parity resonances in the charm sector:
 SU(6)_{lsf} × HQSS model
 - $\checkmark \Lambda_c(2595) \text{ and } \Lambda_c(2625)$
 - ✓ Ω_c (LHCb) and Ξ_c excited states
 - $\checkmark\,$ Extension to the bottom sector
- Lowest lying $\left(\frac{1}{2}\right)^{-}$ and $\left(\frac{3}{2}\right)^{-} \Lambda_{Q}$ resonances: from the strange to the bottom sectors
 - ✓ Interplay between chiral meson-baryon and CQM degrees of freedom and the role played by the renormalization scheme
 - ✓ Molecular content, HQSS and thresholds: $\Lambda_b(5912)$ / $\Lambda_c(5920)$, $\Lambda_c(2595)/\Lambda_c(2625)$ and $\Lambda(1405)/\Lambda(1520)$ ✓ Higher resonances: $\Lambda_b(6070)$ and $\Lambda_c(2765)$; molecules

versus CQM 2S states

Lowest lying odd parity resonances in the charm sector: $SU(6)_{lsf} \times HQSS$ model

 $\Lambda_c(2625)^+$

 $I(J^P)$ = $0(3/2^-)$

The spin-parity has not been measured but is expected to be $3/2^-$: this is presumably the charm counterpart of the strange arLambda(1520) .

	cł	narn	ו se	ctor
--	----	------	------	------

$\Lambda_c(2625)^+$ MASS	2628.11 ± 0.19 MeV (S = 1.1)
$\Lambda_c(2625)^+ - \Lambda_c^+$ MASS DIFFERENCE	341.65 ± 0.13 MeV (S = 1.1)
$arLambda_c ig(2625)^+$ WIDTH	$< 0.97{ m MeV}$ CL=90.0%

 $\Lambda_c(2625)^+$ Decay Modes

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma(2455)\pi$ are the only strong decays allowed to an excited Λ_c^+ having this mass.

Γ_1	Mode $\Lambda_c^+\pi^+\pi^-$	Fraction (Γ_i $/ \Gamma$) Scale \sim 67%	Factor/ nf. Level
Γ_2	$\Sigma_c(2455)^{++}\pi^-$	< 5	CL=90
Γ_3	$\Sigma_c(2455)^0\pi^+$	< 5	CL=9(
Γ_4	$arLambda_c^+\pi^+\pi^-$ 3-body	large	
Γ_5	$arLambda_c^+\pi^0$	^[1] not seen	
Γ_6	$\Lambda_c^+\gamma$	not seen	

 $\Lambda_c(2595)^+$ $_{I(J^P)=0(1/2^-)}$

The $\Delta_c^+\pi^-\pi^-$ mode is largely, of perhaps entirely, $\Sigma_c\pi$, which is J^P here is almost certainly $1/2^-$. This, isult is in accord with the the counterpart of the strange $\Lambda(1405)$.		
$arLambda_c(2595)^+$ MASS	$2592.25\pm0.28~\text{MeV}$	\sim
${\Lambda_c}{\left({2595} ight)^ + - \Lambda _c^ + }$ MASS DIFFERENCE	305.79 ± 0.24 MeV	\sim
$arLambda_c(2595)^+$ WIDTH	$2.6\pm0.6~{ m MeV}$	\sim

$\left(\Lambda_{c}(2595)^{+} ight)$ Decay Modes

 $\Lambda_c^+\pi\pi$ and its submode $\Sigma_c(2455)\pi$ – the latter just barely – are the only strong decays allowed to an excited Λ_c^+ having this mass; and the submode seems to dominate.

un	d the submode seems to dominate.			D(14-1//-1	
	Mode	Fraction (Γ_i / Γ)	Scale Factor/ Conf. Level	P(MeV/c)	
Γ_1	$\Lambda_c^+\pi^+\pi^-$	[1]		117	\sim
Γ_2	$\Sigma_c(2455)^{++}\pi^-$	$24\pm7\%$	•	3	\sim
Γ_3	$\Sigma_c(2455)^0\pi^+$	$24\pm7\%$		3	\sim
Γ_4	$arLambda_c^+\pi^+\pi^-$ 3-body	$18 \pm 10\%$		117	\sim
Γ_5	$\Lambda_c^+\pi^0$	^[2] not seen		258	\sim
Γ_6	$\Lambda_c^+\gamma$	not seen		288	\sim

 $\Lambda_b(5920)^0$

Quantum numbers are based on quark model expectations.

 $I(J^P)$ = $0(3/2^-)$

$arLambda_b (5920)^0$ MASS	5920.09 ± 0.17 MeV	bottom sector
$arLambda_b (5920)^0$ WIDTH	< 0.19 MeV CL=90.0%	\sim
$egin{aligned} &\Lambda_b ig(5920ig)^0 extbf{Decay Modes} \ && \mathcal{M} o de \ &\Gamma_1 & \Lambda_b^0 \pi^+ \pi^- \end{aligned}$	Scale Factor/ $P(MeV/c)$ Fraction (Γ_i / Γ) Conf. Level seen 108	
	${arLambda}_b (5912)^0$ Quantum numbers are based on quark model expectations.	$I(J^P)$ = $0(1/2^-)$
	$\Lambda_b(5912)^0$ MASS	5912.19 ± 0.17 MeV \checkmark
	$arLambda_b (5912)^0$ width	< 0.25 MeV CL=90.0%
	$egin{aligned} &\Lambda_b(5912)^0 extbf{Decay Modes} \ &&\mathcal{M} ode \ &\Gamma_1 & \Lambda_b^0 \pi^+ \pi^- \end{aligned}$	$\begin{array}{c c} Scale \ Factor/ & P(MeV/c) \\ \hline Fraction (\Gamma_i / \Gamma) & Conf. \ Level \\ \hline & & 86 \end{array} \\ \end{array}$

Heavy guark mass [GeV]

 λ mode: excitations between the Q and the ldof ρ mode.: excitations in the inner structure of the ldof

Heavy quark spin-flavor symmetry

The light degrees of freedom in the hadron orbit around the heavy quark, which acts as a source of color moving with the hadrons's velocity. On average, this is also the velocity of the "brown muck".

HQSS predicts that all types of spin interactions vanish for infinitely massive quarks: the dynamics is unchanged under arbitrary transformations in the spin of the heavy quark Q. The spin-dependent interactions are proportional to the chromomagnetic moment of the heavy quark, hence are of the order of $1/m_0$.

The total angular momentum \vec{j}_{ldof} of the brown muck, which is the subsystem of the hadron apart from the heavy quark, is conserved and hadrons with $J = j_{ldof} \pm 1/2$ form a degenerate doublet. For instance, $m_{\bar{B}^*}(J^P = 1^-) - m_{\bar{B}}(J^P = 0^-) = 45.22 \pm 0.21$ MeV ~ Λ_{QCD} , m_d , m_u <u>doublet</u> for $j_{ldof}^P = 1/2^-$

HQFS predicts that, besides de mass of the heavy quark, the single-heavy hadron mass is independent of the flavor of the heavy quark Q. The flavor-dependent interactions are proportional to $1/m_Q$, $M_H/m_Q \sim (1 + \frac{O(\Lambda_{QCD})}{M_Q})$ $[m_{\bar{B}^*}(J^P = 1^-) - m_{\bar{B}}(J^P = 0^-)] \sim [m_{D^*}(J^P = 1^-) - m_D(J^P = 0^-)] \sim \Lambda_{QCD}, m_d, m_u$

HQSFS $SU(2N_h)$ approximate symmetry seen in the hadron spectrum

Juan Nieves, IFIC (CSIC & UV)

PHYSICAL REVIEW D

Chiral perturbation theory for hadrons containing a heavy quark

consistent with the $1/m_0$ expansion: <u>HMChPT</u>

Goldstone bosons

Mark B. Wise

California Institute of Technology, Pasadena, California 91125 (Received 10 January 1992)

An effective Lagrangian that describes the low-momentum interactions of mesons containing a heavy quark with the pseudo Goldstone bosons π , K, and η is constructed. It is invariant under both heavyquark spin symmetry and chiral SU(3)_L×SU(3)_R symmetry. Implications for semileptonic B and D decays are discussed.

PACS number(s): 14.40.Jz, 11.30.Rd, 13.20.Fc, 13.20.Jf

 $\mathcal{L} = -i \operatorname{Tr} \overline{H}_{a} v_{\mu} \partial^{\mu} H_{a} + \frac{1}{2} i \operatorname{Tr} \overline{H}_{a} H_{b} v^{\mu} (\xi^{\dagger} \partial_{\mu} \xi + \xi \partial_{\mu} \xi^{\dagger})_{ba}$

+
$$\frac{1}{2}$$
 ig Tr $\overline{H}_a H_b \gamma_v \gamma_5 (\xi^{\dagger} \partial^{\nu} \xi - \xi \partial^{\nu} \xi^{\dagger})_{ba} + \cdots$, (12)

For instance, for heavy mesons: super-field including the $j^P_{ldof} = 1/2^-$ doublet

 $\frac{1+\nu}{2}(P_{a\mu}^*\gamma^{\mu}-P_a\gamma_5)$

hadron velocity

HQSFS: ground states

The light degrees of freedom in the hadron orbit around the heavy quark, which acts as a source of color moving with the hadrons's velocity. On average, this is also the velocity of the "brown muck".

HQSFS: odd parity excited states

chiral molecules

$$\underbrace{\Sigma_c^{(*)}\pi}_{ldof:\ 1^+\otimes\ 0^-=1^-} \Rightarrow J^P = 1/2^-, 3/2^-$$

NLO SU(3) ChPT: J.-X. Lu, Y. Zhou, H.-X. Chen, J.-J. Xie, and L.-S. Geng, PRD92 (2015) 014036 obtains the $\Lambda_c(2625) \left[J^P = \frac{3}{2}^{-1}\right]$ using a moderately large UV cutoff ~ 2.1 GeV

✓ CQM degrees of freedom ✓ <u>Analogy</u> $\Lambda(1520)$, $\Lambda(1405)$ $\Sigma^{(*)} \leftrightarrow \Sigma_c^{(*)}$, $\overline{K}^{(*)} \leftrightarrow D^{(*)}$ L. Tolos, J. Schaner-Bielich, and A. Mishra, PRC70 (2004) 025203 ; J. Hofmann and M. Lutz, NPA763 (2005) 90; 766 (2006) 7 ; T. Mizutani and A. Ramos, PRC74 (2006) 065201 existence of some relevant degrees of freedom (CQM states and/or $ND^{(*)}$ components) that are not properly accounted for ?

F.-K. Guo, U.-G. Meissner, and B.-S. Zou, Commun. Theor. Phys. 65 (2016) 593 M. Albaladejo, JN, E. Oset, Z.-F. Sun, and X. Liu, PLB757 (2016) 515

HQSFS: odd parity excited states hadron molecules

key issue: $ND^{(*)} \rightarrow ND^{(*)}$, $\Sigma_c^{(*)}\pi$ coupled-channels interaction consistent with <u>HQSS</u> and its breaking pattern. In addition renormalization of BSE amplitudes & short distance (UV) physics

 Σ_c and Σ_c^* or D and D^* are related by a charm quark spin rotation, which commutes with H_{QCD} , up to Λ_{QCD}/m_c corrections.

<u>LO HQSS does not fix</u> $ND^{(*)} \rightarrow ND^{(*)}$, $\Sigma_c^{(*)}\pi$ coupled-channels interaction; There exist several models in the literature consistent with LO HQSS constraints. Moreover, <u>renormalization parameters can be fine tuned</u> to reproduce the position of the $\Lambda_c(2595)$ and $\Lambda_c(2625)$ resonances....

Extended local hidden gauge (ELHG) model W. Liang, T. Uchino, C. Xiao, E. Oset, EPJ A**51** (2015) 16

A <u>different approach</u>: $SU(6)_{lsf} \times SU(2)_{HQSS}$ extension of the Weinberg-Tomozawa $N\pi$ interaction /

 $\sqrt[]{\pi} - \text{octet}, \rho - \text{nonet}, \\ D_{(s)}^{(*)}, \overline{D}_{(s)}^{(*)} \qquad \text{ligh} \\ \text{and} \\ \sqrt[]{N} - \text{octet}, \Delta - \text{decuplet}, \\ \Lambda_{c}, \Sigma_{c}^{(*)}, \Xi_{c}^{(*,\prime)}, \Omega_{c}^{(*)}$

light spin-flavor (mesons and baryons)

 consistent with HQSS and chiral symmetry

 dependence of renormalization scheme

- C = 1, C. Garcia-Recio, V.K. Magas, T. Mizutani, JN, A. Ramos, L.L. Salcedo, L. Tolos, PRD79 (2009), 054004; O. Romanets, L. Tolos, C. Garcia-Recio, JN, L.L. Salcedo and R.G.E. Timmermans, PRD85 (2012) 114032.
- *C* = -1, D. Gamermann, C. Garcia-Recio, JN, L.L. Salcedo and L. Tolos, PRD81 (2010) 094016.
- beauty Λ_b(5912) and Λ_b(5920), C. Garcia-Recio, JN, O. Romanets, L.L. Salcedo and L. Tolos, PRD 87 (2013) 034032.
- LHCb Ω_c^* states, JN, R. Pavao and L. Tolos, EPJC78 (2018) 114.
- Ξ_c^* and Ξ_b^* states, JN, R. Pavao and L. Tolos, EPJC80 (2020) 22.

CHARMED BARYONS (C = +1)

 $\begin{array}{l} \Lambda_c^+ = udc \;,\; \varSigma_c^{++} = uuc \;,\; \varSigma_c^+ = udc \;,\; \varSigma_c^0 = ddc \;,\\ \varXi_c^+ = usc \;,\; \varXi_c^0 = dsc \;,\; \varOmega_c^0 = ssc \end{array}$

See related review:

Charmed Baryons

Λ^+	1/2+	****
$arLambda_c(2595)^+$	$1/2^{-}$	***
$\Lambda_c(2625)^+$	$3/2^{-}$	***
$\Lambda_c(2765)^+$ or $arsigma_c(2765)$		*
$\Lambda_c(2860)^+$	$3/2^+$	***
$\Lambda_c(2880)^+$	$5/2^+$	***
$\Lambda_c(2940)^+$	$3/2^{-}$	***
$\Sigma_c(2455)$	$1/2^+$	****
$\Sigma_c(2520)$	$3/2^+$	***
$\Sigma_c(2800)$		***
Ξ_c^+	$1/2^{+}$	***
Ξ_c^0	$1/2^+$	****
$egin{array}{llllllllllllllllllllllllllllllllllll$	$1/2^+$	***
$\Xi_c^{\prime 0}$	$1/2^+$	***
$\Xi_{c}(2645)$	$3/2^+$	***
$\Xi_c(2790)$	$1/2^{-}$	***
$\Xi_c(2815)$	$3/2^{-}$	***
$\Xi_c(2930)$ Belle		**
$\Xi_c(2970)$		***
was $\Xi_c(2980)$		
$arepsilon_c(3055)$		***
$arepsilon_c(3080)$		***
$\Xi_c(3123)$		*
Ω_c^0	$1/2^+$	***
$\Omega_c(2770)^0$	$3/2^+$	***
$\Omega_c(3000)^0$		***
$arOmega_c(3050)^0$		***
$\Omega_c(3065)^0$		***
$arOmega_c(3090)^0$		***
$arOmega_c(3120)^0$		***

BOTTOM BARYONS (B = -1)

 Λ^0_b = udb , \varXi^0_b = usb , \varXi^-_b = dsb , \varOmega^-_b = ssb

Λ_b^0	$1/2^{+}$	***
$A_b(5912)^0$	$1/2^-$	***
$A_b(5920)^0$	$3/2^-$	***
Σ_b	$1/2^+$	***
Σ_b^*	$3/2^{+}$	***
$\Sigma_b(6097)^+$		***
$\Sigma_b(6097)^-$		***
$\Xi_b^0, \ \Xi_b^-$	$1/2^+$	***
$arepsilon_{b}^{'}(5935)^{-}$	$1/2^+$	***
$\Xi_b(5945)^0$	$3/2^+$	***
E (5055)	$3/2^+$	***
$\Xi_b(6227)$ LHCb		***
$arOmega_b^-$	$1/2^+$	***
b-baryon ADMIXTURE $(\Lambda_b, \Xi_b, \Sigma_b, \Omega_b)$		

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

Odd parity open heavy-flavor baryons

**** Existence is certain, and properties are at least fairly explored.

*** Existence ranges from very likely to certain, but further confirmation is desirable and/or quantum numbers, branching fractions, etc. are not well determined.

- ** Evidence of existence is only fair.
- * Evidence of existence is poor.

With four flavors and the inclusion of spin, there are

state $_{\mathrm{the}}$ lowest bound Assuming that relative since $_{\mathrm{the}}$ parand s-state fermion-antifermion pair is odd, itv \mathbf{a} SU(4)15-plet pseudoscalar the of $(D_s, D, K, \pi, \eta, \eta_c, \overline{K}, \overline{D}, \overline{D}_s)$ and the 16-plet of vector $(D_s^*, D^*, K^*, \rho, \omega, J/\Psi, \bar{K}^*, \bar{D}^*, \bar{D}_s^*, \phi)$ mesons are placed in the 63 representation.

MESONS

BARYONS

With four flavors and the inclusion of spin, there are 512 three quark states,

$$\underbrace{8\otimes8\otimes8=120\oplus56\oplus168\oplus168=}_{120\oplus20'_4)\oplus\underbrace{(4_4\oplus20_2)}_{56}\oplus2\times\underbrace{(20'_2\oplus20_4\oplus20_2\oplus4_2)}_{168}}_{168}$$

with \square and \square , the **20** and **20'** SU(4) representations, respectively. Lowest-lying baryons are placed in the 120 of SU(8), since it can accommodate in the light sector an octet of spin-1/2 baryons and a decuplet of spin-3/2 baryons, which are precisely the SU(3)-spin combinations of the low-lying baryon states $(N, \Sigma, \Lambda, \Xi)$ and Δ , Σ^* , Ξ^* , Ω). The remaining states in the 20_2 and $20'_4$ are completed with the charmed baryons: $\Xi_{cc}, \Omega_{cc}, \Lambda_c, \Sigma_c, \Xi_c, \Xi_c', \Omega_c$ and $\Omega^*_{ccc}, \Xi^*_{cc}, \Omega^*_{cc}, \Sigma^*_c, \Xi^*_c$, respectively.

(a)

(b)

 Σ^{-} dds

uud

ucc

udd

 $63 \otimes 120 = 120 \oplus 168 \oplus 2520 \oplus 4752$

SU(8) symmetry $\rightarrow 4$ WEIME's. Equivalently,

 $egin{array}{rll} 63\otimes 63&=&1\oplus 63_s\oplus 63_a\oplus 720\oplus 945\oplus 945^*\oplus 1232\ 120\otimes 120^*&=&1\oplus 63\oplus 1232\oplus 13104 \end{array}$

lead^a to a total of 4 different t-channel SU(8) couplings

$$\begin{split} & \left((M^{\dagger} \otimes M)_{\mathbf{1}} \otimes (B^{\dagger} \otimes B)_{\mathbf{1}} \right)_{\mathbf{1}}, \qquad \left((M^{\dagger} \otimes M)_{\mathbf{63}_{a}} \otimes (B^{\dagger} \otimes B)_{\mathbf{63}} \right)_{\mathbf{1}}, \\ & \left((M^{\dagger} \otimes M)_{\mathbf{63}_{s}} \otimes (B^{\dagger} \otimes B)_{\mathbf{63}} \right)_{\mathbf{1}}, \qquad \left((M^{\dagger} \otimes M)_{\mathbf{1232}} \otimes (B^{\dagger} \otimes B)_{\mathbf{1232}} \right)_{\mathbf{1}} \end{split}$$

^aThe singlet representation **1** only appears in the reduction of the product of one representation by its complex-conjugate. **1**, **63** and **1232** are self-complex conjugate representations.

TABLE II: I = 0, J = 1/2, S = 0, C = 1. Meson-Baryon states with more than one c quark have not been included.

		IAI	DLE II: I	$\equiv 0, J \equiv$: 1/2, <i>S</i> =	0, 0 = 1.	Weson-r	baryon sta	tes with h	nore than	one c qua	ITK Have h	ot been inc	nuded.		
	ND	ΛD_s	$\Lambda_c \eta$	$\Lambda_c \eta'$	$\Sigma_c \pi$	$\Xi_c'K$	$\Xi_c K$	ND^*	ΛD_s^*	$\Lambda_c \omega$	$\Lambda_c \phi$	$\Sigma_c \rho$	$\Xi_c' K^*$	$\Xi_c K^*$	$\Sigma_c^* \rho$	$\Xi_c^* K^*$
ND	-3	$-\sqrt{3}$	$\sqrt{\frac{1}{2}}$	1	$\sqrt{\frac{3}{2}}$	0	0	$-\sqrt{27}$	-3	$\sqrt{\frac{9}{2}}$	0	$-\sqrt{\frac{1}{2}}$	0	0	2	0
ΛD_s	$-\sqrt{3}$	$^{-1}$	$-\sqrt{\frac{2}{3}}$	$\sqrt{\frac{1}{3}}$	0	$\sqrt{\frac{3}{2}}$	$\sqrt{\frac{1}{2}}$	$^{-3}$	$-\sqrt{3}$	0	$-\sqrt{3}$	0	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{3}{2}}$	0	2
$\Lambda_c \eta$	$\sqrt{\frac{1}{2}}$	$-\sqrt{\frac{2}{3}}$	0	0	0	0	$-\sqrt{3}$	$\sqrt{\frac{3}{2}}$	$-\sqrt{2}$	0	0	0	$-\sqrt{3}$	0	0	$-\sqrt{6}$
$\Lambda_c \eta'$	1	$\sqrt{\frac{1}{3}}$	0	0	0	0	0	$\sqrt{3}$	1	0	0	0	0	0	0	0
$\Sigma_c \pi$	$\sqrt{\frac{3}{2}}$. 0	0	0	-4	$-\sqrt{3}$	0	$-\sqrt{\frac{1}{2}}$	0	0	0	$-\sqrt{\frac{64}{3}}$	-2	$-\sqrt{3}$	$\sqrt{\frac{32}{3}}$	$\sqrt{2}$
$\Xi_c'K$	0	$\sqrt{\frac{3}{2}}$	0	0	$-\sqrt{3}$	$^{-2}$	0	0	$-\sqrt{\frac{1}{2}}$	$^{-1}$	$-\sqrt{2}$	-2	$-\sqrt{\frac{16}{3}}$	0	$\sqrt{2}$	$\sqrt{\frac{8}{3}}$
$\Xi_c K$	0	$\sqrt{\frac{1}{2}}$	$-\sqrt{3}$	0	0	0	-2	0	$\sqrt{\frac{3}{2}}$	0	0	$-\sqrt{3}$	0	0	$-\sqrt{6}$	0
ND^*	$-\sqrt{27}$	-3	$\sqrt{\frac{3}{2}}$	$\sqrt{3}$	$-\sqrt{\frac{1}{2}}$	0	0	$^{-9}$	$-\sqrt{27}$	$-\sqrt{\frac{3}{2}}$	0	$\sqrt{\frac{25}{6}}$	0	0	$\sqrt{\frac{4}{3}}$	0
ΛD_s^*	-3	$-\sqrt{3}$	$-\sqrt{2}$	1	0	$-\sqrt{\frac{1}{2}}$	$\sqrt{\frac{3}{2}}$	$-\sqrt{27}$	-3	0	1	. 0	$\sqrt{\frac{25}{6}}$	$-\sqrt{\frac{1}{2}}$	0	$\sqrt{\frac{4}{3}}$
$\Lambda_c \omega$	$\sqrt{\frac{9}{2}}$	0	0	0	0	-1	0	$-\sqrt{\frac{3}{2}}$	0	0	0	$^{-4}$	$-\sqrt{\frac{4}{3}}$	-1	$\sqrt{8}$	$ \sqrt{\frac{4}{3}} $ $ \sqrt{\frac{2}{3}} $ $ -\sqrt{\frac{4}{3}} $ $ -\sqrt{\frac{2}{3}} $
$\Lambda_c \phi$	0	$-\sqrt{3}$	0	0	0	$-\sqrt{2}$	0	0	1	0	0	0	$\sqrt{\frac{8}{3}}$	$-\sqrt{2}$	0	$-\sqrt{\frac{4}{3}}$
$\Sigma_c \rho$	$-\sqrt{\frac{1}{2}}$	0	0	0	$-\sqrt{\frac{64}{3}}$	$^{-2}$	$-\sqrt{3}$	$\sqrt{\frac{25}{6}}$	0	-4	0	$-\frac{20}{3}$	$-\sqrt{\frac{49}{3}}$	$^{-2}$	$-\sqrt{\frac{8}{9}} -\sqrt{\frac{2}{3}}$	$-\sqrt{\frac{2}{3}}$
$\Xi_c' K^*$	0	$-\sqrt{\frac{1}{2}}$	$-\sqrt{3}$	0	-2	$-\sqrt{\frac{16}{3}}$	0	. 0	$\sqrt{\frac{25}{6}} - \sqrt{\frac{1}{2}}$	$-\sqrt{\frac{4}{3}}$	$\sqrt{\frac{8}{3}}$	$-\sqrt{\frac{49}{3}}$	-2	$-\sqrt{\frac{16}{3}}$	$-\sqrt{\frac{2}{3}}$	0
$\Xi_c K^*$	0	$\sqrt{\frac{3}{2}}$	0	0	$-\sqrt{3}$	0	0	0	$-\sqrt{\frac{1}{2}}$	-1	$-\sqrt{2}$	-2	$-\sqrt{\frac{16}{3}}$	-2	$\sqrt{2}$	$\sqrt{\frac{8}{3}}$
$\Sigma_c^* \rho$	2	, o	0	0	$\sqrt{\frac{32}{3}}$	$\sqrt{2}$	$-\sqrt{6}$	$\sqrt{\frac{4}{3}}$	0	$\sqrt{8}$	0	$-\sqrt{\frac{8}{9}}$	$-\sqrt{\frac{2}{3}}$	$\sqrt{2}$	$-\frac{22}{3}$	$-\sqrt{\frac{\frac{8}{3}}{\frac{64}{3}}}$
$\Xi_c^*K^*$	0	2	$-\sqrt{6}$	0	$\sqrt{2}$	$\sqrt{\frac{8}{3}}$	0	0	$\sqrt{\frac{4}{3}}$	$\sqrt{\frac{2}{3}}$	$-\sqrt{\frac{4}{3}}$	$-\sqrt{\frac{8}{9}} -\sqrt{\frac{2}{3}}$	0	$\sqrt{\frac{8}{3}}$	$-\sqrt{\frac{64}{3}}$	-2
and D a matrix in the coupled channel space. f.i., $I =$																
0	. J =	_ 1	12 6	· _	0		1. 7			٨	m /	m/	$\nabla =$	Ξ'		\mathbf{V}
0	, J -	- 1/		,	0, C		1. 1	VD,	ΛD_{g}	$_{s}, n_{o}$	e^{η}, I	$ _{c''} $,	$\Box_c \pi$	$, =_{c}$	$\alpha, =$	c^{II} ,

 $ND^*, \Lambda D^*, \Lambda_c \omega, \Lambda_c \phi, \Sigma_c \rho, \Xi'_c K^*, \Xi_c K^*, \Sigma^*_c \rho, \Xi^*_c K^*.$

$SU(6)_{lsf} \times HQSS$ Extension of the WT Lagrangian

 $DN - D^*N$ might play an important role \Leftarrow necessary to accommodate spin symmetry in the charm sector.

+ symmetry breaking: masses and decay constants

To guaranty that the SU(8) amplitudes will reduce to those deduced from the SU(3) WT Lagrangian ($63 \Rightarrow$ adjoint representation)

 $\mathcal{L}_{\mathrm{WT}}^{\mathrm{SU(8)}} = \left((M^{\dagger} \otimes M)_{\mathbf{63}_{a}} \otimes (B^{\dagger} \otimes B)_{\mathbf{63}} \right)_{\mathbf{1}}$

 $_{\rm VT}^{\rm U(3)} = \left((M^{\dagger} \otimes M)_{8_a} \otimes (B^{\dagger} \otimes B)_8 \right)_1 \, \mathcal{L}_{\rm WT}^{\rm SU(6)} = \left((M^{\dagger} \otimes M)_{35_a} \otimes (B^{\dagger} \otimes B)_{35} \right)_1$

which is the natural and unique SU(8) extension of the usual SU(3) WT Lagrangian. The reduction of this lagrangian to the SU(6) sector reproduces $\mathcal{L}_{WT}^{SU(6)}$. Tree level amplitudes in a *JISC* sector,

 $V_{ab}^{JISC}(\sqrt{s}) = D_{ab}^{JISC} \frac{\sqrt{s} - M}{4 f^2}$

M the common mass of the baryons of the SU(8) 120.

Dynamics of $\Lambda_c(2595)$:

PHYSICAL REVIEW D 85, 114032 (2012)

- Two pole structure: Narrow (wide) \Rightarrow small (large) coupling to the open channel $\Sigma_c \pi$. Similar to $\Lambda(1405)$.
- Narrow $\Lambda_c(2595)$: Reminiscent of a D^*N bound state Hofmann+Lutz, NPA763 (2005) 90 $\Rightarrow DN$ bound state,

$$V = -3\frac{\sqrt{s} - M_N}{4\left[f_\pi^2\right]}$$

HQSS \Rightarrow DN, D^*N coupled channels,

$$T^{J}(s) = \frac{1}{1 - V^{J}(s)G^{J}(s)}V^{J}(s),$$

dependence of renormalization scheme

$$\begin{split} G_i(s) &= i2M_i \int \frac{d^4q}{(2\pi)^4} \frac{1}{q^2 - m_i^2 + i\epsilon} \frac{1}{(P - q)^2 - M_i^2 + i\epsilon} \\ &= \overline{G}_i(s) + G_i(s_{i+}) \quad s_{i+} = (M_i + m_i)^2 \\ &\text{finite} \quad \text{UV divergent} \quad \text{different UV cutoffs for each meson-baryon channel} \\ \text{subtraction at a common scale } \mu \sim \sqrt{m_\pi^2 + M_{\Sigma_c}^2} : \quad G_i^\mu(s_{i+}) = -\overline{G}_i(\mu^2) \\ \text{J. Hofmann and M. Lutz, NPA763 (2005) 90} \quad \sqrt{m_\pi^2 + M_{\Sigma_c}^2} : \quad G_i^\mu(s_{i+}) = -\overline{G}_i(\mu^2) \\ \text{common UV cutoff} \quad G_i^\Lambda(s_{i+}) = \frac{1}{4\pi^2} \frac{M_i}{m_i + M_i} \left(m_i \ln \frac{m_i}{\Lambda + \sqrt{\Lambda^2 + m_i^2}} + M_i \ln \frac{M_i}{\Lambda + \sqrt{\Lambda^2 + M_i^2}} \right) \end{split}$$

Juan Nieves, IFIC (CSIC & UV)

matrix

the

0

of the determinant

Absolute value

 $J^{P} = 3/2^{-}$

subtraction at a common scale (no fit!)

✓ main features of $3/2^-$ pole do not depend much on the RS: M = 2660 - 2680 MeV and $\Gamma = 55 - 65$ MeV: **difficult to assign it to the narrow** $\Lambda_c(2625)$.

 ✓ spectrum in the 1/2[−] sector depends strongly on the adopted RS

common UV cutoff 650 MeV (no fit!)

 $J^{P} = 3/2^{-}$

1.9

6.2

and C	CQM prediction	s:	$ \boldsymbol{\ell}_{\lambda} = 1, \boldsymbol{\ell}_{\rho} $	= 0, S=0, I=0 (sym)	λ –mode excitations
SĮ	$\underbrace{\frac{1/2^{+}}{S_{Q}^{P}}}_{PHYSICAL REVIEV}$	$\bigotimes \left(\underbrace{1}_{i_{ldof}}^{-} \right) = \Lambda$ w D 92, 114029 (20) ryons in the qu	ark model	¹ 2 ⁻ 2625) <i>q q q q q q q q q q</i>	
1. YOSH	ida, ^{1,*} E. Hiyama, ^{2,1,3} A. H $\overline{\Lambda_c}$		and K. Sadato	ρ-mode	λ-MODE
J^P	Theory (MeV)	Experiment (MeV)		Λ_c	
$\frac{1}{2}^{+}$	2285 2857	2285	J^P	Theory (MeV)	Experiment (MeV)
$\frac{3}{2}^{+}$	3123 2920 3175		$\frac{3}{2}^{-}$	2630 2917 bare CC	2628 M state should be
$\frac{5}{2}^{+}$	3191 2922 3202 3230	2881	$\frac{5}{2}$	$ \begin{array}{c} 2956 \\ 2960 \\ 3444 \\ 2401 \end{array} $ explicit the dyn the Λ_c	ly taken into account in amics, in particular for 2625) resonance: for
$\frac{1}{2}$	2628 2890 2933	2595		rapidly	nergies it produces a changing energy lent interaction

Lowest lying $\left(\frac{1}{2}\right)^{-}$ and $\left(\frac{3}{2}\right)^{-} \Lambda_{Q}$ resonances: from the strange to the bottom sectors

 $\Sigma_{c}(2455)$

 $\Sigma_{c}(2520)$

 $egin{aligned} &\Lambda_c^+ = udc \ , \ \Sigma_c^{++} = uuc \ , \ \Sigma_c^+ = udc \ , \ \Sigma_c^0 = ddc \ , \ &\Xi_c^+ = usc \ , \ \Xi_c^0 = dsc \ , \ \Omega_c^0 = ssc \end{aligned}$

$arLambda_c^+$	$1/2^+$	****
$arLambda_c(2595)^+$	$1/2^{-}$	***
$arLambda_c(2625)^+$	$3/2^-$	***
$arLambda_c(2765)^+$ or $arLambda_c(2765)$		•
$arLambda_c(2860)^+$	$3/2^{+}$	***
$arLambda_c(2880)^+$	$5/2^{+}$	***
$\Lambda_c(2940)^+$	$3/2^{-}$	***
	0/2 	

particle data group

 $1/2^{+}$

 $3/2^{+}$

$A_b^o = udb$, $\Xi_b^o = usb$, $\Xi_b^o = dsb$, $\Omega_b^o = ssb$		
$arLambda_b^0$	$1/2^{+}$	•••
$\Lambda_b(5912)^0$	$1/2^{-}$	•••
$arLambda_b (5920)^0$	$3/2^{-}$	•••
$\Lambda_b(6070)^0$	1/2+	•••
$\Lambda_b(6146)^0$	$3/2^+$	••••
$arLambda_b (6152)^0$	$5/2^+$	•••
Σ_b	$1/2^{+}$	••••
Σ_b^*	$3/2^+$	

 $ec{\Lambda_b^0} = udb$, $ec{\Xi_b^0} = usb$, $ec{\Xi_b^-} = dsb$, $ec{\Omega_b^-} = ssb$

BOTTOM BARYONS (B = -1)

HQSFS: odd parity excited states

chiral molecules

$$\underbrace{\Sigma_c^{(*)}\pi}_{ldof:\ 1^+\otimes\ 0^-=1^-} \Rightarrow J^P = 1/2^-, 3/2^-$$

NLO SU(3) ChPT: J.-X. Lu, Y. Zhou, H.-X. Chen, J.-J. Xie, and L.-S. Geng, PRD92 (2015) 014036 obtains the $\Lambda_c(2625) \left[J^P = \frac{3}{2}^{-1}\right]$ using a moderately large UV cutoff ~ 2.1 GeV

✓ CQM degrees of freedom ✓ <u>Analogy</u> $\Lambda(1520)$, $\Lambda(1405)$ $\Sigma^{(*)} \leftrightarrow \Sigma_c^{(*)}$, $\overline{K}^{(*)} \leftrightarrow D^{(*)}$ L. Tolos, J. Schaner-Bielich, and A. Mishra, PRC70 (2004) 025203 ; J. Hofmann and M. Lutz, NPA763 (2005) 90; 766 (2006) 7 ; T. Mizutani and A. Ramos, PRC74 (2006) 065201 existence of some relevant degrees of freedom (CQM states and/or $ND^{(*)}$ components) that are not properly accounted for ?

F.-K. Guo, U.-G. Meissner, and B.-S. Zou, Commun. Theor. Phys. 65 (2016) 593 M. Albaladejo, JN, E. Oset, Z.-F. Sun, and X. Liu, PLB757 (2016) 515

HQSFS: odd parity excited states hadron molecules

key issue: $ND^{(*)} \rightarrow ND^{(*)}$, $\Sigma_c^{(*)}\pi$ coupled-channels interaction consistent with /<u>HQSS</u> and its breaking pattern. In addition renormalization of BSE amplitudes & short distance (UV) physics

 Σ_c and Σ_c^* or D and D^* are related by a charm quark spin rotation, which commutes with H_{QCD} , up to Λ_{QCD}/m_c corrections.

$$T^{J}(s) = \frac{1}{1 - V^{J}(s)G^{J}(s)}V^{J}(s), \qquad V_{\chi}^{J=1/2} \sim V_{\chi}^{J=3/2} \sim -4\frac{\sqrt{s} - M}{2f^{2}}$$

$$G_{i}(s) = i2M_{i} \int \frac{d^{4}q}{(2\pi)^{4}} \frac{1}{q^{2} - m_{i}^{2} + i\epsilon} \frac{1}{(P - q)^{2} - M_{i}^{2} + i\epsilon}$$

$$= \overline{G}_{i}(s) + G_{i}(s_{i+}) \qquad s_{i+} = (M_{i} + m_{i})^{2}$$
finite UV divergent different UV cutoffs for each meson-baryon channel subtraction at a common scale $\mu \sim \sqrt{m_{\pi}^{2} + M_{\Sigma_{c}}^{2}}$

$$G_{i}^{\mu}(s_{i+}) = -\overline{G}_{i}(\mu^{2})$$
common UV cutoff $A^{\Lambda}(s_{i+}) = \frac{1}{4\pi^{2}} \frac{M_{i}}{m_{i} + M_{i}} \left(m_{i} \ln \frac{m_{i}}{\Lambda + \sqrt{\Lambda^{2} + m_{i}^{2}}} + M_{i} \ln \frac{M_{i}}{\Lambda + \sqrt{\Lambda^{2} + M_{i}^{2}}}\right)$
renormalization scheme consistent with HQS
J.-X. Lu et al., PRD92 (2015) 014036

$$V_{ex}^{J=1/2} \sim V_{ex}^{J=3/2} = 2M_{CQM} \frac{d_Q^2}{s - M_{CQM}^2}$$

<u>LEC</u> d_Q^2 (up to $\Lambda_{\rm QCD}/m_Q$ corrections):

- HQSS: independent of heavy quark spin (J=1/2 or J=3/2)
- HQFS: independent of heavy quark flavor (bottom or charm)

$$\underbrace{\frac{1/2^{+}}{S_{Q}^{P}}}_{S_{Q}^{P}} \otimes \underbrace{1^{-}}_{j_{ldof}^{P}} = \underbrace{\frac{1/2^{-}}{\Lambda_{b}(5912)}}_{\Lambda_{b}(5912)}, \underbrace{\frac{3/2^{-}}{\Lambda_{b}(5920)}}_{\Lambda_{c}(2595)}$$

$$\chi^{2}(|d_{Q}|,\Lambda) = \left[\frac{M_{\Lambda_{b}(5912)} - M_{R-BSE}^{J^{P}=1/2^{-}}(|d_{Q}|,\Lambda)}{\sigma(\Sigma_{b})}\right]^{2} + \left[\frac{M_{\Lambda_{b}(5920)} - M_{R-BSE}^{J^{P}=3/2^{-}}(|d_{Q}|,\Lambda)}{\sigma(\Sigma_{b}^{*})}\right]^{2}$$

we determine $|d_Q|$ for different UV cutoffs Λ from the pole position of the $\Lambda_b(5912) [J^P = (1/2)^-]$ and $\Lambda_b(5920) [J^P = (3/2)^-]$

	$\Lambda_b(5912)$				$\Lambda_b(5920)$					
		$\Sigma_b \pi \ J^P = \frac{1}{2}^-$				$\Sigma_b^* \pi J^P = \frac{3}{2}^-$				
$\Lambda \; [{ m GeV}]$	χ^2	$ d_Q $	$M \; [{ m MeV}]$	$ g_{\Sigma_b\pi} $	$\bar{P}_{\Sigma_b\pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]	$M \; [{\rm MeV}]$	$ g_{\Sigma_b^*\pi} $	$P_{\Sigma_b^*\pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]
0.4	0.02	1.79 ± 0.11	5912.4 ± 2.0	1.67 ± 0.06	0.35 ± 0.02	18 ± 5	5919.8 ± 1.6	1.66 ± 0.07	0.31 ± 0.03	37 ± 5
0.65	0.32	1.06 ± 0.06	5913.1 ± 2.0	1.34 ± 0.04	0.23 ± 0.01	13 ± 4	5919.1 ± 1.7	1.26 ± 0.05	0.18 ± 0.01	19 ± 3
0.9	0.16	0.75 ± 0.04	5912.9 ± 1.7	1.23 ± 0.03	0.19 ± 0.01	10 ± 3	5919.5 ± 1.6	1.11 ± 0.04	0.14 ± 0.01	16 ± 3
1.15	0.00	0.55 ± 0.04	5912.1 ± 2.0	1.21 ± 0.02	0.18 ± 0.01	9 ± 3	5920.2 ± 1.9	1.04 ± 0.03	0.12 ± 0.01	15 ± 3
1.85 ± 0.04	12	0	5905.5 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	2.5 ± 1.2	5924.9 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	39 ± 8

2.0

			$\Lambda_b(5912)$			$\Lambda_b(5920)$					
				$\Sigma_b \pi J^P = \frac{1}{2}^-$				$\Sigma_b^* \pi \ J^P = \frac{3}{2}^-$			
$\Lambda ~[{ m GeV}]$	χ^2	$ d_Q $	$M \; [{ m MeV}]$	$ g_{\Sigma_b\pi} $	$P_{\Sigma_b \pi}$	$\Gamma^R_{\Lambda_b\pi\pi}$ [keV]	$M [{ m MeV}]$	$ g_{\Sigma_b^*\pi} $	$\bar{P}_{\Sigma_b^*\pi}$	$\Gamma^R_{\Lambda_b\pi\pi} \ [\rm keV]$	
0.4	0.02	1.79 ± 0.11	5912.4 ± 2.0	1.67 ± 0.06	0.35 ± 0.02	18 ± 5	5919.8 ± 1.6	1.66 ± 0.07	0.31 ± 0.03	37 ± 5	
0.65	0.32	1.06 ± 0.06	5913.1 ± 2.0	1.34 ± 0.04	0.23 ± 0.01	13 ± 4	5919.1 ± 1.7	1.26 ± 0.05	0.18 ± 0.01	19 ± 3	
0.9	0.16	0.75 ± 0.04	5912.9 ± 1.7	1.23 ± 0.03	0.19 ± 0.01	10 ± 3	5919.5 ± 1.6	1.11 ± 0.04	0.14 ± 0.01	16 ± 3	
1.15	0.00	0.55 ± 0.04	5912.1 ± 2.0	1.21 ± 0.02	0.18 ± 0.01	9 ± 3	5920.2 ± 1.9	1.04 ± 0.03	0.12 ± 0.01	15 ± 3	
1.85 ± 0.04	12	0	5905.5 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	2.5 ± 1.2	5924.9 ± 1.7	1.27 ± 0.02	0.19 ± 0.01	39 ± 8	

small 3-body decay widths (tens of keV)
$ d_{Q} = 1.79$ $ d_{Q} = 1.06$ $FRS \& T_{\Sigma_{b}\pi}(v)$ $h_{b}(6070)$	$SRS = x + iy) \int_{0}^{30}$	$d_Q = 0$
$ d_Q = 0.75$ $ d_Q = 0.55$	BOTTOM BARYONS (B = -1) Λ_b^0 = udb , Ξ_b^0 = usb , Ξ_b^- = dsb , Ω_b^- = ssb	6100 INSPIRE Q
	$\Lambda_b(6070)^0$ Quantum numbers are based on quark model expectation	$\Lambda_b(6070)$ M=6072 ± 3 MeV $\Gamma = 72 \pm 12$ MeV
	$m{\Lambda_b(6070)^0}$ mass $m{\Lambda_b(6070)^0}$ width	6072.3 ± 2.9 MeV У 72 ± 11 MeV У
	$egin{aligned} &\Lambda_b(6070)^0 ext{ Decay Modes} \ && Mode \ &\Gamma_1 & \Lambda_b^0 \pi^+\pi^- \end{aligned}$	$\begin{array}{c} & Scale \ Factor/ \ P(MeV/c) \\ Fraction \ (\Gamma_i \ / \ \Gamma) \ Conf. \ Level \\ seen \ 343 \ \checkmark \end{array}$
poles in the SRS $\Sigma_b \pi [J^P = 1/2^-]$	$\sum_{k=1}^{*} \pi$ [.]	$P = 3/2^{-}$]
$ \Lambda [\text{GeV}] d_Q M [\text{MeV}] \Gamma [\text{MeV}] g_{\Sigma_b \pi} \qquad \phi_{\Sigma_b \pi} $		$ g_{\Sigma_b^*\pi} \qquad \phi_{\Sigma_b^*\pi}$
0.4 1.79 ± 0.11 6053 ± 6 85.2 ± 0.4 $1.60 \pm 0.03 - 0.70 \pm 0.$.01 $6066 \pm 6 \ 90.0 \pm 0.5$	$1.65 \pm 0.03 - 0.67 \pm 0.01$
$0.65 1.06 \pm 0.06 6008 \pm 3 49.6 \pm 0.5 1.46 \pm 0.02 -0.53 \pm 0.$.01 6021 ± 3 52.9 ± 0.4	$1.54 \pm 0.02 \ -0.50 \pm 0.01$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		$1.35 \pm 0.01 - 0.38 \pm 0.01$
1.15 0.55 ± 0.04 5966 ± 3 9.5 ± 1.1 $0.97 \pm 0.01 - 0.30 \pm 0.$.01 5976 ± 3 7 ± 2	$1.15_{-0.02}^{+0.06} - 0.30_{-0.05}^{+0.01}$

- LHCb reported a broad excess of events in the $\Lambda_b \pi^+ \pi^-$ spectrum in region of 6040 6100 MeV.
- The spin and parity quantum-numbers of the $\Lambda_b(6070)$ were not established by LHCb.
- In the RPP, it is assumed to be the radial excitation $\Lambda_b(2S)$, which would have $J^P = (1/2)^+$
- We naturally find <u>for UV cutoffs around 500 MeV</u> two resonances $(J^P = (1/_2)^- \text{ and } J^P = (3/_2)^-)$ which should be observed in the $\Lambda_b \pi^+ \pi^-$ in the region of 6050 MeV

the vertical range shows masses \pm widths of our predicted resonances. The horizontal range does not have any meaning since the resonances have $(1/_2)^-$ and $(3/_2)^-$ spin-parities

		$\Sigma_b \pi \ [J^P = 1/2^-]$				$\Sigma_b^* \pi \ [J^P = 3/2^-]$			
$\Lambda~[{\rm GeV}]$	$ d_Q $	$M [{\rm MeV}]$	$\Gamma [{\rm MeV}]$	$ g_{\Sigma_b\pi} $	$\phi_{\Sigma_b\pi}$	$M [{\rm MeV}]$	$\Gamma \ [MeV]$	$ g_{\Sigma_b^*\pi} $	$\phi_{\Sigma_b^*\pi}$
0.4	1.79 ± 0.11	6053 ± 6	85.2 ± 0.4	1.60 ± 0.03	-0.70 ± 0.01	6066 ± 6	90.0 ± 0.5	1.65 ± 0.03	-0.67 ± 0.01
0.65	1.06 ± 0.06	6008 ± 3	49.6 ± 0.5	1.46 ± 0.02	-0.53 ± 0.01	6021 ± 3	52.9 ± 0.4	1.54 ± 0.02	-0.50 ± 0.01
0.9	0.75 ± 0.04	5300 ± 0	$\underline{24.5 \pm 0.7}$	1.20 ± 0.01	0.41 ± 0.01	5555 ± 2	25.0 ± 0.0	1.05 ± 0.01	0.00 ± 0.01
1.15	0.55 ± 0.04	5966 ± 3	9.5 ± 1.1	0.97 ± 0.01	-0.30 ± 0.01	5976 ± 3	7 ± 2	$1.15_{-0.02}^{+0.06}$	$-0.30^{+0.01}_{-0.05}$

- LHCb reported a broad excess of events in the $\Lambda_b \pi^+ \pi^-$ spectrum in region of 6040 6100 MeV.
- The spin and parity quantum-numbers of the $\Lambda_b(6070)$ were not established by LHCb.
- In the RPP, it is assumed to be the radial excitation $\Lambda_b(2S)$, which would have $J^P = (1/2)^+$
- We naturally find <u>for UV cutoffs around 500 MeV</u> two resonances $(J^P = (1/2)^- \text{ and } J^P = (3/2)^-)$ which should be observed in the $\Lambda_b \pi^+ \pi^-$ in the region of 6050 MeV
- Hence, we can fix the UV cutoffs and the strength d_Q of the coupling of the $\Sigma_c^{(2)}\pi$ pair to the CQM lowest-lying λ –mode excitation, which are now fully determined by the pole position of the $\Lambda_b(5912)$ and $\Lambda_b(5920)$ resonances
- Now using Heavy Quark Flavor Symmetry we can make predictions in the charm sector

charm sector

For each UV cutoff, the grey band shows the range of values for $|d_Q|$ obtained in the bottom sector, enhanced by HQFS breaking corrections

Reasonable simultaneous description of the $\Lambda_c(2595)$ and $\Lambda_c(2625)$ resonances considering chiral $\Sigma_c^{(*)}\pi$ pairs and their coupling to lowest-lying λ -mode CQM states fixed in the bottom sector from $\Lambda_b(5912)$, $\Lambda_b(5920)$ and $\Lambda_b(6070)$

Three body $\Lambda_c\pi\pi$ decay width and the $g_{\Lambda_c^*\Sigma_c^{(*)}\pi}$ coupling

poles in the SRS

$$\begin{split} \Sigma_c \pi ~ [J^P = 1/2^-] & \Sigma_c^* \pi ~ [J^P = 3/2^-] \\ \hline \Lambda ~ [\text{GeV}] ~ |d_Q| & M ~ [\text{MeV}] ~ \Gamma ~ [\text{MeV}] ~ |a_{\Sigma_c \pi}| & \phi_{\Sigma_c \pi} & M ~ [\text{MeV}] ~ \Gamma ~ [\text{MeV}] ~ |g_{\Sigma_c^* \pi}| & \phi_{\Sigma_c^* \pi} \\ \hline 0.4 ~ 1.79 \pm 0.11 & 2714 \pm 6 ~ 85.7 \pm 0.6 ~ 1.60 \pm 0.02 ~ -0.92 \pm 0.01 & 2754 \pm 6 ~ 107.7 \pm 0.3 & 1.80 \pm 0.03 ~ -0.77 \pm 0.01 \\ \hline 0.65 ~ 1.06 \pm 0.06 & 2674 \pm 4 ~ 45.2 \pm 1.1 ~ 1.33 \pm 0.01 ~ -0.75 \pm 0.01 & 2711 \pm 3 ~ 62.5 \pm 0.5 & 1.66 \pm 0.02 ~ -0.57 \pm 0.01 \end{split}$$

- The CLEO collaboration investigated the spectrum of charmed baryons which decay into $\Lambda_c \pi^+ \pi^-$ spectrum and found a evidence of a broad state ($\Gamma \approx 50$ MeV) which would have an invariant mass roughly 480 MeV above that of the Λ_c ground state baryon
- This is collected in the RPP as the $\Lambda_c(2765)$ or $\Sigma_c(2765)$ and it is explicitly stated that nothing at all is known about its quantum numbers, including whether it is a Λ_c , or a Σ_c , or whether the width might be due to <u>overlapping states</u>
- For UV cutoffs in the range 400-650 MeV, we obtain broad resonances around 2675-2755 MeV in both the $J^P = (1/2)^-$ and $J^P = (3/2)^-$ sectors, which will provide a natural explanation for the excess of events in the $\Lambda_c \pi^+ \pi^-$ spectrum reported by CLEO.
- These resonances will be heavy quark <u>flavor siblings</u> of those related to the $\Lambda_b(6070)$ in the bottom sector.

poles in the SRS

Fig. 3.8. Absolute value of the $T_{\Sigma^*\pi}$ -matrix (fermi units), both in the FRS (gray) and SRS (greenish hues) and for $(|d_Q| = 1.0, \Lambda = 400 \text{ MeV}$ (left) and $(|d_Q| = 0.65, \Lambda = 650 \text{ MeV}$ (right), as a function of complex $\sqrt{s} = x + iy$ in MeV. The FRS pole is placed at 1518 MeV in both cases, while the above threshold SRS ones are located at $(M, \Gamma) = (1590, 115) \text{ MeV}$ and $(M, \Gamma) = (1571, 60) \text{ MeV}$, resp.

$J^{P} = 1/2^{-}$ double pole $\Lambda(1405)$ $\overline{K}N \rightarrow \pi\Sigma$

Fig. 3.9. Absolute value of the $[J^P = 1/2^-] T_{N\overline{K}\to\Sigma\pi}$ matrix element (in fermi units) for both the FRS $[\text{Im}\sqrt{s} > 0]$ and the SRS $[\text{Im}\sqrt{s} < 0]$ as a function of the complex $\sqrt{s} = x + iy$ in MeV. The UV cutoff is $\Lambda = 400$ MeV, and CQM degrees of freedom are disconnected in the left plot, while they are coupled to the baryon-meson pairs in the right panel using $d'_s = 1$ and $c_s = 2$. We also display the scattering line (red solid curve) in both cases. As noted in Table 3.5, in the left panel, the higher $\Lambda(1405)$ pole is related to a virtual state which produces peaks in the FRS and SRS. In the right panel, the higher $\Lambda(1405)$ shows up as a narrow resonance (pole in the SRS) close, but below, the $N\overline{K}$ threshold.

Backup Slides