Maximum-entropy “hydrodynamics”

T e ———— : — —— e ——— IS - — ——e——— e = S = —— S

NC STATE

Chandrodoy Chattopadhyay

North Carolina State University

Foundations and applications of relativistic hydrodynamics

Arcetri, Firenze, April 16

Collaborators: Jean-Paul Blaizot (CEA, Saclay), Derek
Fverett (OSU), Ulrich Heinz (OSU), Sunil Jaiswal (OSU),
homas Schaefer (NCSU)




<

Motivation
0<1<0.5fm/c 0.5<1<6 fm/c 6<1t<10 fm/c

<0

‘. o o'.
:’l' "'.'n
.b" re
R
i

r 1_
(3

. Hydro: Description of (T#*, N*) using macroscopic variables (T, u*, u) and their

Fig. by Steffen A. Bass

gradients; accompanied by transport coefficients (1, , 6).

Should be distinguished from Israel-Stewart type hydro (ISH) [Muller 67, Israel, Stewart '76]
where dissipative fluxes are promoted to dynamical degrees of freedom.

- |SH have been remarkably successful in describing intermediate stages of heavy-ion collisions.
[Heinz et al, Romatschke et al, Dusling & Teaney, Song et al, and several others]

. |SH derived from kinetic theory works even when a fluid is not close to equilibrium.

[Heller et al, Romatschke, Strickland, Denicol, Noronha, Blaizot and others.]

- However, applicability is sensitive to truncation scheme of moment equations. How to
choose an appropriate truncation scheme?




IS-type hyd]_’() f]_’Om k]_]_’]_et]_CS De Groots, Van Leeuwen, Van Weert

Consider a system of weakly interacting classical particles; description via kinetic
theory using single particle distribution function f(x, p).

Evolution of f(x, p) governed by the Boltzmann equation,

p*o,f = C[f] Collision kernel denotes interactions

Conserved currents (T**, N*) appearing in hydro are moments of f(x, p). For example,

TH = J pt p* f(x,p) = eut u* — (P+11) A¥+ 7"

” L
projector A*Y = »H* — utu”

Notation: J = Jd3p/[(27t)3Ep]

P

For afluid in local equilibrium f — f,, = exp(—u - p/T + p/T), then " - T7" , N* — NI’

Off-equilibrium parts of conserved currents stem from of Ef—feq



IS_type hyd]_'O from klnetlcs Denicol, Koide, Rischke PRL (2010)

Denicol, Niemi, Molnar, Rischke PRD (2012)

Conservation egs: %T”” = (). Evolution equations for (T, u*) coupled to (11, 7/*)

1
. The bulk and shear stresses are 11 = —EA,WJ p'p'of o= [ pHp¥ 5f
P p

. Apply coming time-derivative u”&M on both sides of above def. and use the Boltzmann equation
pro,f = Clf]

to get (exact) evolution equations for the shear and bulk stresses.

Notation: A W) = AZ;A“ﬂ; double-symmetric, traceless projector orthogonal to u*

Uv __ U AU U AL _ v
A = (AL AL+ ABAL)I2 = A A3



[S-type hydro from kinetics

- Consider a massive Boltzmann gas. Also take a simplistic collisional kernel given by the
relaxation-time approximation (RTA)  anderson & Witting ‘74

u-p s the time-scale t tablish L
CIf] ~ <f_feq> Tp IS thne |m.e. SC?OI@ or establisnmen
TR of local equilibrium.

One then obtains a relaxation-type evolution of I  Denicol, Niemi, Molnar, Rischke PRD (2012)

. I1 B w m? . m? p m?
H | — —a16’+6(21_[6’+a371' GMU‘I‘TIO(_z)GﬂU‘I‘TVMIO(_l)‘I‘? p(_z)é’

Standard definitions: I = u”dﬂl_[ (time-derivative), Vﬂ = Afjda (spatial-derivative),

0 = 8ﬂu” (expansion-rate), o = A’;; VeuP (velocity stress tensor )



[S-type hydro from kinetics

- However the equation

2 2 m2

.11 w m- m
H+—=—(x16’+0{21—[@+0{3ﬂ' Gﬂy_l_T’D O +_V +_p(_2)9

,O'M
TR (—2) H¥ 3 HI"(—1) 0

is not closed due to couplings to p-tensors.

. The p-tensors are higher-order (“non-hydro”) moments of f(x, p). For example,

_2 ”
Py = AZ[ (ue -19)_1 p 1, o) = L (u-p) " p¥pVf
P

. Similar feature exists for shear stress evolution. Needs truncation, i.e., to express of in terms

of components of TH.



Standard truncations I: Grad

|Grad, Mueller, Israel & Stewart]

Method of Grad, Israel and Stewart: Expand f(x, p) in powers of the particle momenta p*

of(x, p)
Jeq

= ¢Wx,p)ma+b,p"+c,p'p”+ - (Now truncate at second order)

INn the absence of conserved charge currents,

¢(x,p) = A + ¢ (u -p) pH 4+ € (u -p)2 + c<ﬂy>p<”p”>

Determine these 10 coefficients using components of energy-momentum tensor

UU [T . pp*
I —J prp feq<1+€b) — ¢= (”Mv-l'_HAMV)
P

Dusling, Teaney "08



Standard truncations II: Chapman-Enskog

. of motivated by Chapman-Enskog like expansion of a simplified collision kernel

1y l/tpé 5f~ Tp //‘af _ ﬁQ[ 0 L ﬁpﬂpydﬂv
P ,uf__ T f — ~ u-pp uJeq R - p R - p

(Expansion in velocity gradients)

+ Using this of relate bulk and shear stresses to the strains: Il = — 7,850  7#* = 21,6, 0"

. Re-express of in terms of the stresses using first-order results

=~ (3¢ (o 4

I p o
u-p 2B, u-p

Bhalerao, A. Jaiswal et al '14
A. Jaiswal, Ryblewski, Strickland ‘14



Standard truncations III: Romatschke-Strickland
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Attempts to handle large momentum space anisotropies by expanding f(x, p) around a
locally anisotropic distribution

f=Jrs+Of  where

LRF

rRs = €Xp

\/p%+ (1 + &)p?

Ags

Romatschke & Strickland ‘03

Gives rise to anisotropic hydrodynamics (aHydro), viscous aHydro and its variants.

Strickland, Florkowski, Ryblewski, Heinz,
Martinez, McNelis and several others...



Why a new truncation scheme?

Grad assum

Both become negative (
oreaks down in certain T

es of to be quadratic

in momenta (ad-hoc). Chapman-Enskog of should not
be valid far from equilibrium (grac

ient-expansion).

unphysical) at large momenta. Resulting macroscopic framework
ow profiles.

- The aHydro ansatz does not become negative and can handle large shear deformations
at early stages of HIC.

But: its form is ad-hoc. Not possible to describe large bulk viscous pressures.

May not be possible to model arbitrary flow profiles.

« Weaimforat
far from equili

‘uncation scheme that (i) leads to a framework which may work both near and
orium (ii) does not invoke uncontrolled assumptions about microscopic physics.
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The ‘least-biased’ distribution . Jaynes, Phys. Rev. 106, 620 (1957)

.- We want to re-construct of solely using quantities appearing in T#*, ie., (e, u”, x**, I1)

his is, in principle, impossible. However, what is our best guess?

. The least biased distribution that uses all of, and only the information provided by T# is the
one that maximizes the non-equilibrium entropy

s|f] = — [dP (u -p) (f logf—f) subject to constraints that f(x,p) satisfies,

% 31’ p

1
J (”‘P)2f= » ——J Py P f=P+11, J pWp?) f = g

11



The basic idea

Consider a system in a macrostate specified by (£, V, N). The system can be in a variety
of microstates consistent with the macrostate.

One may, in general, assign any probability distribution to these microstates.

But the probability distribution where all such microstates are assumed equi-probable is
the “least-biased” one.

Such a distribution maximizes the Shannon entropy S = — Zpl- Inp,

l

12



The maximume-entropy distribution

Introduce Lagrange multipliers,

U1 == | (u-p)s(logf~1)

P

+ A [e—J (u-p)zf] + A [P+H+J p<ﬂ>p<”>f]+ Yap [ﬂ“ﬁ—J p<“pﬂ>f]
P

P P

os|f]

Functional derivative w.rt. f: =0

of
| | C.C., Heinz, Schaefer, PRC 108 (2023), 034907,
The maximum entropy solUtion:  parett €.C.. Heinz, PRC (2021), 064902

H I a y( a
JME = €Xp [—A (u 'P) T P<a>P< ) — P< Pm] i
- p “-p |

In the absence of non-eq. fluxes, ##** = I1 = 0, we recover the Boltzmmann distribution.

13



The near equilibrium limit of f; .

Expand f,, around equilibrium:

PP W] p' p¥

fME% eq |:1 o (C/I/IH_I_C;W}/'MV) (l/tp) +/1H - p

» Plug of - in definition for shear and bulk stresses,

|
p P

and invert. ofy,x to linear order in non-equilibrium stresses is:

n p pﬂpyﬂ””]

p
OME = Jeq [ <36S2 (u.p>2 p<’“‘>p<ﬂ>> u-p 2P, u-p

Y

Matches exactly with the Chapman-Enskog like expansion of RTA Boltzmann eqg.!



Features of Max-Ent distribution

n the fluid rest-frame ~ fyg = €XP

Plays role similar to
an inverse
temperature

M - -

|sotrop

- ANISOtropic deviation
c from equilibrium

deviation from
equilibrium

Positive-definite for all momenta

Non-linear dependence on shear and bulk stresses

Reduces to the Chapman-Enskog of in the limit of small viscous stresses.

Max-Ent like idea pursued before: in non-relativis

theories by Calzetta, Cantarutti, Pera

tic context by Levermore ‘96, “dissipative-like”

ta-Ramos ”

9, 23
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Non-linear inversion for Lagrange multipliers

. The multipliers must be matched to T#*. The full (non-linear) problem requires an
inversion of 7 parameters (A, Ay, 7;;); numerically intractable.

.«  Simplification: To match shear stress tensor:

. . A V.S
n! =AY [dekpl exp (—AEP = p2> exp ( frel P )
E, E,

1 _ l-
One can show 7t=F—§Itr(F) F=ZC}7

. The shear tensor and y commutes, |z, y] = 0; simultaneously diagonalizable.

16



Simplifying non-linear inversion

. 1¥is symmetric; has real eigenvalues and admits orthogonal eigenvectors. Can be
diagonalized by spatial rotation.

Diagonalize shear tensor: £ — 7y, = R' nR. This diagonalizes y.

. 3 outof 5independent degrees of freedom in the matrix y are fixed using eigenvectors of x

Only two-dimensional root finding required to obtained y,, = diag (7’1» Y2, — (71 + }/2)) in

terms of eigenvalues of &

17



The Max-Ent framework

C.C., Heinz, Schaefer, PRC 108 (2023), 034907

. The Max-Ent framework: To evolve components of T#* = eu* u* — (P + 11) A* + #**

e=—(e+ P+1D Vﬂu” 4+ TH V(ﬂ%) (energy density evolution)

(e + P+ T ¥ = VAP + -.. (velocity evolution)
v 4 (shear evolution)
FH) 4 =2y VWY — — gtV yte.. — 2 pHvp Vs o
Tp 3 4 (=2) Similar eq. for bulk pressure

- To compute the higher moments, P;fmﬁ = J (“ 'P)_ pte-phl f
p

A Yia
Rep\dcefanE = exp [—A (l/l p) + 11 p<a>p(a> _ (ap)
U 'p U .p

plaph)

18



Tests of the Maximum-Entropy framework

. Test 1: Energy momentum evolution in Bjorken Flow for far-off-
equilibrium initializations




Early-time dynamics of QGP: Bjorken flow

t<0 t=0

Technicalities: Boost-invariance manifest in expanding
coordinates 7=4/r*—z%, n = tanh~!(z/7)

I=const.
Z=-1

The energy momentum tensor is diagonal:

00 o The net transverse and

» (e) P, 0 0 longitudinal pressures:
—l0 0 P, 0 s
0 0 0 P 2

>0

z/t=const.

z=l

20



Early-time dynamics of QGP: Bjorken flow

t<0 t=0

t>0
Z Z Z
Technicalities: Boost-invariance manifest in expanding
coordinates —1/f2— ;2 5 = tanh~!(z/)
1 S t ‘ z/t=const.
Fluid expansion rate: — 7=t z=t
T
de 1 Energy density drops because
= = —— (e+P—n) of expansion, work done by
¢ g oressure
dm | 47 Lo Shear relaxes to its

TR r 7T — ] . . . |
dt 37 Navier-Stokes limit o1



Bjorken flow: Max-Ent evolution equations

<
. Using kinetic equation for distribution function: g _ 9 - : (f_fe>
ot 1T Op~ Tp !

Derive evolution equations of energy density and effective pressures

de 1 1 4

dt T< L) PEI% Z

dP P,—-P d dP P.—P o L1

arL _ L : L’ i T Miadtd ﬂT:—PT+5JEp§p%f
dt Tp T dt Tp T p =P

Use (e, P;, P7) to construct f;, and compute (&, & 1) to close system of equations.

: . , =) 2/2_ 2
Same complexity as solving hydro equations. £ — exp (—AE,, N AN & St )

E, E,

22



Contormal dynamics: Max-Ent

Massless particlese = 3P, 11 = 0

7t/(4P)

o = 3(n/s)/T

conformal

----- RTA Boltzmann _
— — - Navier-Stokes —

dashed: Max-Ent

0.1

1 10

Good agreement between Max-Ent and exact
solution of RTA Boltzmann even far-off-equilibrium

Lagrange multipliers of Max-Ent
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Non-conformal second-order hydro

S. Jaiswal, C.C., et al, PRC 105, 024911 (2022)

| ' 14__|| ||\‘ | T T T T7T1T] I I |||||:
1.2 — \\ solid: RTA ——- NS —
I _ \\ black dashed: CE hydro E
. 08F
I i il -
02k dashed: CE-hydro - al 0.6 _
L solid: RTA Boltzmann | 04 F
-0.25 H ' 07 :
Aok — -0.2°1
! - 0.1 1 10
S oL ~ T,
1 + Standard hydro is not in good agreement with kinetic
0.1 - theory at large Knudsen numbers.

10

24

- Does not describe early time universality accurately



Max-Ent framework

solid: RTA Boltzmann —
dashed: Max-Ent _

10

a¥

~
—

A

- Max-Entis in good agreement with kinetic theory at
arge Knudsen numbers.

- Accurately describes early time universality accurately

C.C., Heinz, Schaefer, PRC 108 (2023), 034907

1.4}
12F
1}
0.8F
0.6
0.4
0.2 f
0F
0.2k

solid: RTA ——- NS —

black dashed: Max-Ent

0.1

10
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Evolution of Lagrange multipliers

. |In far-off-equilibrium

regimes, A
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Large negative bulk viscous pressure and A < 0

=7
P
. The total isotropic pressure in kinetics: £ +11 = EJ' — f

. 11 ~ — P can be attained by populating low momentum states with large number of

particles, f ~ A 8(|p | )/p?

. Atlow momenta f,z & exp(—A m). Enhancement of occupation of low

momentum modes facilitated by A < 0.

27



Tests of the Maximum-Entropy framework

. Test 2: Energy momentum evolution in Gubser flow

28



Gubser ﬂ_ow S.S. Gubser, PRD 82 085027 (2010)  S.S. Gubser and A. Yarom, Nucl. Phys. B (2010)

Bjorken flow assumed that the fluid expands only in the longitudinal direction, 0, = l 0, =0
.

Gubser fluid expands both in longitudinal as well transverse directions. Longitudinal

expansion rate 7; = 1/7,.

dTl
At late times, transverse expansion dominates: 0, /60, ~4: — = ——— — T ~ /3

dt 3 1

2

Knudsen number Kn « 75/7 ~ 7% grows, medium does not thermalize.

temperature T [GeV]

The flow: v¢ = z/t, u? =0, u” #+ 0. Re-scale metric ds* — ds* = ds*/t?,
followed by coordinate transformation

2.2 2.2 2qr
P:—sinh_1 l—gm +q7 9=—tan_1< 1 )

Here i = (1,6) and Weyl re-scaled quantities are used: e(z, r) = é(p)/t*

1.50
1.35
1.20
1.05
0.90
0.75
0.60
0.45

29



Evolution equations: Gubser flow

- The energy-momentum tensor has 2 independent components (e, IA’T). Their evolution
are given by:

de A

— = — 2tanhp (e +PT)

dp

dP 1 /4 A 2
= —— (P P)—2tanhp &,

dp TR

N 4
. . . . - P D :
. Similar to Bjorken case, the equations are not closed as: ¢t = 2P, — — J <Pp) ( - ) /

Here P, = \/ﬁg + p3/sin® @ and pP = \/ pg/coshp + p;

As before, truncate using f — fi,z

A A7)
fur =exp | —Ap” ! 7o P,
p? \ coshp? 7

30



Standard second-order hydro

0.2

7t/(4f>)
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- Rapid transverse expansion in Gubser flow at late times prevents system from

thermalizing. Fluid approaches transverse free-streaming IA’T — 0

-  Standard hydro breaks down. Transverse and longitudinal pressures become negative.



Third-order hydro

_ - 10°F i
- __ __ % green. RTA Boltzmann ’ /E
_ ] 1 - . red: CE-hydro (3rd order) L
o - 10"\ -
<% I | — E E
<§ : 1 <& of .
i 210" -
021 1 |7 4 n/s = 10 <A § g
| A =3 : E
B .I. s 4751]/8:1 10_1 - E
-04 |, % §
B | | | | | | | | | | | | | | | | | | Tﬁ_ 10'3 i | | | | | | | | —_
P P

. Third-order CE yields incorrect asymptotic value of 7%/(413) ~ — 0.4

. For initializations 7%/(416) < — 0.4, third-order CE equations become numerically unstable.



Max-Ent framework

— 4mm/s =10

/s =3
dnn/s =1

<

A X-
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tive pressures remal
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(

bes
DOS

C.C., Heinz, Schaefer, PRC 108 (2023), 034907

10>

green: RTA Boltzmann
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\
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the far-off-equilibrium regimes satistactorily.
itive.
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Tests of the Maximum-Entropy framework

. Test 3: Energy momentum evolution in a finite slab

In heavy-ion collisions, the matter expands ~ boost-invariantly along the beam direction.

N contrast, In t

ransverse p

oroblem to unc

erstand is t

ane the matter is ~ at rest in

Itia
ne relativistic expansion of a f

NI

ly with finite extent. The simplest

te slab into vacuum.

In preparation (Blaizot, C.C., Jaiswal, Schaefer)

34



Finite slab using hydro and free-streaming

- Consider a slab of matter that is finite along x. Take two extreme limits: non-interacting

particles 7, = o0 and ideal hydro 7, — 0.

tt
0

T /T

0.8

0.6

0.4

0.2

| L | 11 L | R L | L |
— — 1
_ free-streaming —— initial |-
2 fm
B 4fm | 0.8
— 6 fm |7
| 8fm || 06
0.4
0.2
ST A I 4 % 2 0
-12 -8 -4 0 4 8 12
X (fm)

X (fm)

[T T T ] T 11 T T [ T 11 I I B I I
_ 1deal hydro —— initial |-
| — 2fm | |
— 4 1fm

— — 6fm |7 N
- —— 8fm | “HO
o | ﬁp‘

| | | | N B | | | |
-12 -8 -4 0 4 8 12

. |n both cases, a rarefaction wave travels inward: propagation speed = ¢ for free-

streaming, and ¢, = 1/\/5 for ideal hydro. Shock front absent in free-streaming
Kinetics.
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Finite slab: kinetic theory

- Now solve kinetics at finite 7p:

0.8

tt
0

0.6

YT

0.4

0.2

kinetic theory —
| — nitial |4
B —— 2fm |
To = 1 fm —— 4fm
. —_— 6fm |7
B (solid) S fm |
T, = 10 fm y §
 (dashed) .~/¥ NN o
| ’ ,,/ // \\\\\\\\\ ]
,/ ,/ / \ \\
B / / /I \ N A ]
/ /4 \ \
| | | | Ll | | | |
-12 -8 0 8 12
X (fm)

of  _of  u-v
= ——2 (1= 1,,)
ot 0x TR
_||||||||||| 11 1 1 |_
\
|||||||||||||||||||||||||
0 2 4 6 3 10 12

X (fm)

- Kinetics smoothly interpolates between two extremes: No surprises.




Max-Ent framework for finite slab

- Now use the max-ent approach: We have
conservation equations . . .
L The evolution of T* involves higher
0T +0T™ =0  01%+0.T% =0 order moments. Use kinetics.

. |f particles are massless, and we are only interested in 7" evolution, solve energy-weighted

moments

oF

Kurkela, Wiedemann, Wu (2018)

ot

. Evolution of T* isthus 0.7 + 0, A& = Clj*gx A= J

4
u-v
» Use maximum entropy distribution: Fyp = — [ ]
T

= U-v d . 47,2
v, - VE= - <F_F ) I [_pp3f(t9xap) F, = Sz

272 “q 4
(-,

P

1228y,
Ny Vp Vp
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Max-Ent framework in finite slab

Angular distribution of energy density
iN fluid rest frame

tt
0

™T

(T T T [T T T [ T T T [T T T [T T T[T T 7T] |T|_1f| éolid:lMEl |
I - kinetic theory — 1_ I = R™ Dashed: kinetics =
— —  Initial |+ — -
—— 41fm B _
0.8 = T, =1fm i - ]

0.6 — —

0.4 | - - -
0.2 I -
] | 11 1 11 | ] 0.01 = =
12 -8 0 Q 12 - | | | | | | | -

X (fm) -1 0.5 0.5 1

Max-Ent captures average properties of exact microscopic distribution.
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Max-Ent framework in finite slab

In preparation (Blaizot, C.C., Jaiswal, Schaefer)

I | I I 1 1 | I 11 1 | I 1 1 | | I 1T 1 | | I 11 1 | I I 1 1 | I
11— _
 solid: Max-Ent _
0.8 — —
- i dashed: )
o O
Hb 0.6 kinetic theory
= - (1, =1 fm) -
0.4 |~ —— initial o
- ——- 2fm -
——- 4fm
0.2 - 6fm
0 Ll

12 8 4 0 4 12
X (fm)

Max-Ent describes energy density evolution reasonably well (compared to kinetics).



Freeze-out in heavy-ion collisions

Everett, C.C., Heinz PRC ‘21

Hydrodynamics ceases to be valid when the Knudsen number Kn ~ 0 - u/T = 1.
Need a change in language: convert hydrodynamic fields to particles

dN,
E
P d?, D

= JdE,,, p" f(x, p)

Information available at freeze-out from the
oreceding hydro evolution: (e, ut, 11, YZ"W). They

provide constraints on moments of f(x, p)

G

. Viscous corrections in of present significant sources of uncertainty in

extraction of (n, {). Also, breaks down at large momenta: f(x, p) < 0.

Use the maximume-entropy distribution.
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Summary

Israel-Stewart like hydrodynamic theories can capture certain features of kinetic theory
even when the system is not close to local equilibrium.

Presented the derivation of a far-off-equilibrium macroscopic theory using a maximum:-
entropy distribution

. This scheme does not introduce ad-hoc assumptions about flow being modeled;
uses information contained in conserved currents only.

. Max-Ent accurately describes kinetic theory evolution of T#* in both far and near-
equilibrium regimes of Bjorken and Gubser flows. It models nicely the expansion of
a finite slab of matter.

- The description of T** within this approach for more general flow profiles remain
to be explored.

Thank you!
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Backup: Max-Ent for freeze-out

Ef(E)
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Backup: Inclusion of chemical potential
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Backup: entropy

» The canonical entropy S = — ) . pj In(p;) for a continuous

distribution:
d3N x d3Np

where,

= eXP(_ﬂHN(Xla"' s XNy, P1, " 7PN))
p(X1,+ XN, P1y e+, PN) = Z(T,V.N)

» Due to weak interaction,

iy 0 SN P Vi

where n is number density. Thus,

vy
£y

g [ & p H(p) exp(~BH(p)) ~ In(Z(T. V. N)
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Backup

» For large N, In(Z(T,V,N)) ~ N. Thus,

S—v / P (BH(p) fuq + fug)

and the entropy density:

s = — / d’p fog (In(foq) — 1) .

» Out of equilibrium, replace fo, — f. Relativistic version,

5:—/dP (u-p) f (In(f)—1).
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Backup: Gubser symmetries [R. Loganayagam (2008)]

» Equations of hydro are Lorentz covariant: admits rotationally
and boost-invariant solutions.

» Hydro equations also have conformal invariance: should admit

conformally invariant solutions.

2¢

» Under a conformal transformation g, — g, = € “?gu,

» Weyl covariant derivative D, T*" — e_W(bﬁ“ THY if
T _y gwo v

» Using definition of D one can show
D, T =d, TH" + A" T}
where A# = o* — (6/3)u*

» Hydro equations are conformal if T/ = m? [dPf=0.
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Backup: Gubser symmetries S:S. Gubser, PRD 82 085027 (2010)

>

Instead of translational invariance (whose generators are &; = %),
Gubser uses invariance under the group SO(3), whose generators

are 0/0¢, 0/0n, and
0 i, O 0

i wy :
2x' X oon X X“@xi_’ (i =1,2)

1/q ~ transverse size
These generators are easy to understand in dS3 X R

o ds?

ds® = — dp® — cosh? p (d92 + sin? qubz) — dn?,

-2
where they correspond to rotations in (6, ¢):

1 _ g2:2 2 2 ’
P:—sinh_l( qT+qr>,9:tan_1( 2C27" 22)7
29T 1+ qgcmc — qg°r

The only time-like four vector invariant under these transformations
&, d)=0is o* = (1,0,0,0).
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Kinetic theory bounds

[1/P

-0.5

' Second-order

[I=-P

[1/P

-0.5

Standard hydro breaks bounds on positive effective pressures. Max-Ent preserves them.




