Semi-Classical Spin Hydrodynamics: Current Status and the Road Ahead

Masoud Shokri in collaboration with Annamaria Chiarini, Julia Sammet, David Wagner, Dirk H. Rischke

GGI, Florence, 17 April, 2025

TECHNISCHE UNIVERSITÄT DARMSTADT

This formalism was developed in Frankfurt, mostly by **Nora Weickgenannt**, carried forward, brought to Florence and resummed by **David Wagner**, and put on a computer by **Sushant K. Singh**. Now, back in Frankfurt, it's being extended to include electromagnetic fields and curvature – pursued as the doctoral work by **Annamaria Chiarini**.

- Nora Weickgenannt et al. (2019) Kinetic theory for massive spin-1/2 particles from the Wigner-function formalism
- Nora Weickgenannt et al. (2022) Relativistic second-order dissipative spin hydrodynamics from the method of moments
- Nora Weickgenannt et al. (2022) Relativistic dissipative spin hydrodynamics from kinetic theory with a nonlocal collision term
- ► David Wagner et al. (2024) Damping of spin waves
- David Wagner (2024) Resummed spin hydrodynamics from quantum kinetic theory
- Annamaria Chiarini et al. (2024) Semi-Classical Spin Hydrodynamics in Flat and Curved Spacetime: Covariance, Linear Waves, and Bjorken Background
- Sapna, Sushant K. Singh, David Wagner (2025) Spin polarization of Lambda hyperons from dissipative spin hydrodynamics

Angular momentum and polarization

[Becattini et al, 2018]

Masoud Shokri

Covariant spin hydrodynamics in flat and curved spacetime

Equations of spin hydrodynamics

$$\partial_{\mu}T^{\mu\nu} = 0$$

Energy-momentum conservation

 $\partial_{\lambda}J^{\lambda\mu\nu} = 0$

Angular momentum conservation

This definition of orbital angular momentum is specific to Cartesian coordinates

$$J^{\lambda\mu\nu} = L^{\lambda\mu\nu} + \mathcal{S}^{\lambda\mu\nu}$$

Decomposition of angular momentum

$$L^{\lambda\mu\nu} = 2T^{\lambda[\nu}x^{\mu]}$$

Orbital angular momentum

God of covariance

Notations and conventions

$$\eta_{\mu\nu} = \text{diag}(1, -1, -1, -1)$$

Mostly minus metric sign

$$A^{[\mu\nu]} \equiv \frac{1}{2} (A^{\mu\nu} - A^{\nu\mu})$$

Antisyemmtrization

$$A^{[\mu\nu]} \equiv \frac{1}{2} (A^{\mu\nu} - A^{\nu\mu})$$

Symmetrization

Masoud Shokri

Spin Hydro

Recap: Killing vectors and conserved charges

 $\left(\right)$

Spacetime symmetries + a conserved symmetric energy-momentum tensor yield conserved charges

$$L^{\lambda r} \equiv -T^{\lambda \nu} K_{\nu}^{r} < \begin{cases} D_{\mu} K_{\nu}^{r} + D_{\nu} K_{\mu}^{r} = \\ \text{Killing vector field that generates rotations} \end{cases}$$

$$\nabla_{\lambda}L^{\lambda r} = -\frac{1}{2}T^{\lambda\nu}(\nabla_{\lambda}K_{\nu}^{r} + \nabla_{\nu}K_{\lambda}^{r}) = 0$$

Integrating over a Cauchy hyper-surface

$$L^r = \int_{\Sigma} \mathrm{d}\Sigma_{\mu} \, L^{\mu r}$$

The divergence theorem

$$\int_{\Sigma_2} \mathrm{d}\Sigma_{\mu} L^{\mu r} - \int_{\Sigma_1} \mathrm{d}\Sigma_{\mu} L^{\mu r} = \int \mathrm{d}V \,\nabla_{\mu} L^{\mu r}$$

The charge is conserved during the evolution

Nonsymmetric energymomentum tensor

 $\nabla_{\lambda}L^{\lambda r} = -\frac{1}{2}T^{[\lambda\nu]}(\nabla_{\lambda}K_{\nu}^{r} - \nabla_{\nu}K_{\lambda}^{r}) \neq 0$ $T^{[\mu\nu]} = \frac{1}{2} D_{\lambda} \mathcal{S}^{\lambda\mu\nu}$ The correct form of the conserved charge current is found **Spin dynamics** $J^{\mu r} \equiv -T^{\mu \nu} K^{r}_{\nu} + \frac{1}{2} \mathcal{S}^{\mu \alpha \beta} K^{r}_{[\alpha;\beta]}$ postulate $\nabla_{\alpha}\nabla_{\beta}K_{\gamma}=0$ $\mathcal{S}^{\lambda r} = \frac{1}{2} \mathcal{S}^{\lambda \mu \nu} D_{[\nu} K^r_{\mu]} \qquad L^{\lambda r} \equiv -T^{\lambda \nu} K^r_{\nu}$ $J^{\lambda r} = L^{\lambda r} + \mathcal{S}^{\lambda r}$ In flat spacetime **Decomposition of Orbital angular** Spin angular angular momentum

momentum

Sanity check: 6x4 = 24

Or you can read our Appendix A

7

momentum

Extension to curved spacetime

Agrees with the variational approach [F.W. Hehl (1976) and A.D. Gallegos et al. (2021)]

Pseudo-gauge transformations

$$T^{\mu\nu\prime} = T^{\mu\nu} + \nabla_{\lambda} Z^{\lambda\mu\nu} \qquad S^{\lambda\mu\nu\prime} = S^{\lambda\mu\nu} - \Phi^{\lambda\mu\nu} \qquad Z^{\lambda\mu\nu} \equiv \frac{1}{2} \left(\Phi^{\lambda\mu\nu} - \Phi^{\mu\lambda\nu} - \Phi^{\nu\lambda\mu} \right)$$

$$I^{\mu r \prime} = J^{\mu r} - D_{\lambda} A^{\mu\lambda r} \qquad A^{\mu\lambda r} = Z^{\lambda\mu\nu} K_{\nu}^{r}$$

$$\int d\Sigma_{\mu} \nabla_{\mu} A^{\mu\lambda r} = \int dS_{\mu\lambda} A^{\mu\lambda r}$$

$$\nabla_{\mu} \nabla_{\lambda} Z^{\lambda\mu\nu} = -\frac{1}{2} R^{\nu}{}_{\lambda\alpha\beta} Z^{\alpha\beta\lambda}$$

$$Without these modifications the EOM do not transform properly!$$

$$\nabla_{\mu}T^{\mu\nu\prime} = -\frac{1}{2}R^{\nu}_{\alpha\beta\gamma}\mathcal{S}^{\alpha\beta\gamma\prime} \quad T^{[\mu\nu]\prime} = -\frac{1}{2}\nabla_{\lambda}\mathcal{S}^{\lambda\mu\nu\prime}$$

Masoud Shokri

GGI 2025 | 17.04.2025

9

The EOM are covariant

On Equilibrium

Thermal Killing vector

$$\beta^{\star} = \lambda_I^{\star} K^I \qquad \lambda_I^{\star} = \frac{\partial S}{\partial Q^I} \Big|_{\text{GTE}} \qquad \beta^{\star} \cdot \beta^{\star} > 0$$

It should not be confused with the beta vector!

The thermal Killing vector determines the fluid velocity and temperature

$$u_{\mu} = \frac{\beta_{\mu}^{\star}}{\sqrt{\beta^{\star} \cdot \beta^{\star}}} \qquad T = \frac{1}{\sqrt{\beta^{\star} \cdot \beta^{\star}}}$$

Thermal vorticity in equilibrium

Although in GTE, it is equal to the beta vector.

$$\varpi_{\mu\nu}^{\star} \equiv -\nabla_{[\mu}\beta_{\nu]}^{\star}$$

GTE is dictated solely by the geometry of spacetime and the intensive parameters of the environment.

Local thermodynamic equilibrium as a map

Point-by-point mapping of each point to a point in the set of all possible (global) equilibrium states of the same fluid Choose a u^{μ} x \mathcal{M} Matching condition $T^{\mu\nu}(x)u_{\mu}(x)u_{\nu}(x) = \epsilon(e)$ Hydro currents are found $\Sigma_{\rm EQ}$ from expanding around e $e = (\varepsilon, u)$

If the map is unique, then the fluid is in LTE

In the work of Israel-Stewart the set were 4 (or 5)-dimensional

In the work of Israel-Stewart the set were 4 (or 5)-dimensional

However the thermal vorticity provides us with 6 extra dimensions With nonzero thermal vorticity the equilibrium state is anisotropic We assume $\varpi \sim \mathcal{O}(\nabla)$ But will remind ourselves that thermal vorticity can exist in GTE

- Thermal vorticity serves as the intensive parameter for angular momentum—akin to the chemical potential to temperature ratio.
- Out of Equilibrium: spin potential $\Omega_{\mu\nu}$

Semi-classical spin hydrodynamics: the fun

Three assumptions of semiclassical spin hydro

Spin Hydrodynamics $D_{\mu}T^{\mu\nu} = 0$

 $D_{\lambda} \mathcal{S}^{\lambda\mu\nu} = 2T^{[\mu\nu]}$

Polarization

Assumption III. No first-order contribution and symmetric at zeroth order

These assumptions are extracted from quantum-kinetic theory based formalism:

N. Weickgenannt et al, 2022

Masoud Shokri

Spin Hydro

18

24 unknowns - 6 equations

$$\begin{split} \hbar D_{\lambda} S^{\lambda\mu\nu} &= 2T^{[\mu\nu]} \longrightarrow -\hbar^{2} \Gamma^{(\kappa)} u^{[\mu} \left(\kappa^{\nu]} + \varpi^{\nu]\alpha} u_{\alpha}\right) + \frac{1}{2} \hbar^{2} \Gamma^{(\omega)} \epsilon^{\mu\nu\rho\sigma} u_{\rho} \left(\omega_{\sigma} + \beta\Omega_{\sigma}\right) + \cdots \\ S^{\lambda\mu\nu} &= S_{0}^{\lambda\mu\nu} + \delta S^{\lambda\mu\nu} \\ \downarrow \\ Ideal-spin: \\ \mathbf{6} \text{ components of } \\ \Omega^{\mu\nu} \\ \downarrow \\ Intermation \\ \mathbf{1} \end{split}$$

$$S_0^{\lambda\mu\nu} = Au^{\lambda}\Omega^{\mu\nu} + Bu^{\lambda}u_{\alpha}\Omega^{\alpha[\mu}u^{\nu]} + Cu^{\lambda}\Omega^{\alpha[\mu}\Delta^{\nu]}{}_{\alpha} + Du_{\alpha}\Omega^{\alpha[\mu}\Delta^{\nu]\lambda} + E\Delta^{\lambda}{}_{\alpha}\Omega^{\alpha[\mu}u^{\nu]}$$

A, B, C, D, E are functions of temperature
$$B - C - D + T \frac{dE}{dT} = 0$$
 $A = \frac{\hbar T^2}{4m^2} \frac{1}{dT} (\varepsilon - 3P)$ $B = \frac{\hbar T^2}{4m^2} \frac{d\varepsilon}{dT}$ $C = D = E = -\frac{\hbar T^2}{4m^2} \frac{dP}{dT}$ Constrained By
assumption IIIQuantum-kinetic theory valuesMasoud ShokriSpin HydroFrankfurt I 03.02.25

Quite a mess but ...

Masoud Shokri

Masoud Shokri

Damping of spin waves

[D. Wagner, M.S, and D. H. Rischke Phys. Rev. Research 6, 043103]

Linear spin hydro

$$\omega_0^2 - i\hbar a\omega_0 - v_{\mathfrak{s}}^2 \vec{k}^2 - \hbar^2 b = 0$$

Masoud Shokri

Frankfurt | 03.02.25

Conformal Bjorken Flow

The relaxation times $\tau_{\mathcal{K}}$ and τ_{ω} as functions of z=m/T in units of the relaxation time of the shear-stress tensor τ_{π} . The solid lines denote the result for a scalar four-fermion interaction, while the dashed lines refer to (screened) one-gluon exchange.

Spin degrees of freedom relax quickly in **high-energy collisions**, while these timescales for low-energy collisions might be even larger than the lifetime of the fireball!

The triumph

Spin Polarization of Λ hyperons from Dissipative Spin Hydrodynamics

Sapna,^{1, *} Sushant K. Singh,^{2, 3, †} and David Wagner^{2, 4, ‡}

¹Dept. of Applied Physics and Ballistics, F. M. University, Balasore, Odisha, India. ²Department of Physics & Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino, Florence, Italy ³ Variable Energy Cyclotron Centre, 1/AF, Bidhan Nagar, Kolkata 700064, India

⁴INFN Sezione di Firenze, Florence, Italy

(Dated: March 31, 2025)

 Λ (STAR)

3

 I_{SP}

2

 ϕ

1

0

0.5

0.0

-0.5

 $P^{z}(\%)$

Semi-classical spin hydrodynamics: the price

A simple example of thermodynamic stability

al

The environment performs work to shift the system slightly out of equilibrium

 $\delta W_{\min} = \delta E - T_E \delta S + P_E \delta V > 0$

A simple example of thermodynamic stability

A simple example of thermodynamic stability

Thermodynamic stability

Gibbs stability criterion

$$\Phi \equiv S - \lambda_I^* Q^I \leq \log Z_{GTE} \qquad \Phi = \int_{\Sigma} d\Sigma_{\mu} \phi^{\mu}$$

$$\phi^{\mu} = S^{\mu} - T^{\mu\nu} \beta_{\nu}^* + \frac{1}{2} S^{\mu\alpha\beta} \varpi_{\alpha\beta}^*$$
Slightly perturb the fields, keeping starred quantities constant
$$\psi \rightarrow \psi + \delta \psi \qquad \delta \psi = \frac{d\psi}{d\lambda} \delta \lambda \equiv \psi \delta \lambda$$
At first-order, the stationary points are found
$$\lambda$$

 $\dot{\phi}^{\mu}(0) = 0$

At second-order, the information-current is found

$$E^{\mu} = -\frac{1}{2}\ddot{\phi}^{\mu}(0)$$
 future-directed and non-spacelike

The electromagnetic part of the information current is stable and causal by construction and, therefore, the stability criteria found for Israel-Stewart-type theories of hydrodynamics automatically extend to similar formulations of magnetohydrodynamics.

[L. Gavassino, MS, (2023)]

The price of truncating at first-order

$$d\epsilon = Tds + O(\hbar^2)$$
 $dP = sdT + O(\hbar^2)$ $\epsilon + 1$

$$\epsilon + P = sT + \mathcal{O}(\hbar^2)$$

And truncate our

second-order

Outlook

How can we compare LTE and spin-hydro?

Adopted from QM 2025 poset of Annamaria Chiarini

Rigidly rotating cylinder as a benchmark

An orthonormal tetrad can be defined, built from the four-velocity, normalized acceleration, normalized kinematic vorticity, and a fourth vector orthogonal to all three.

Adopted from QM 2025 poset of Annamaria Chiarini

- Couplings between gauge fields and spin degrees of freedom, as well as anomalous transport effects
- Back-reaction from spin to the fluid
- Gravity-induced quantum effects
- Inherently anisotropic currents

- Covariant definitions for angular momentum currents
- Modifications of energy-momentum-conservation in curved spacetime
- Revised pseudo-gauge transformations in curved spacetime
- Spin and fluid modes decouple in the linear regime
- Information-current method: (1) at first order in ħ spin tensor does not modify fluid's stability conditions (2) the equilibrium currents are inherently anisotropic
- Spin potential damping in Bjorken flow is similar to damping of spin waves
- Spin potential relaxes quickly in high-energy collision and slowly in low-energy collisions