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Before we start

My conventions/assumptions:

e Signature: (—, +, +, +);
*Unitsic=h=kg =1,

* The metric g,,,, is a fixed background;



What 1s this talk about?



As you surely know...

There are some universal thermodynamic inequalities.
*Cp=2Cy >0
e c2 > 0;

(see also talk by Andrei Starinets)

They are usually derived for homogeneous fluids in a box, with scalar
conserved charges (e.g. baryon number).

Landau-Lifshitz, Volume 5 (Statistical Physics: Part 1), section 21



What if:
a) The conserved charges are not scalars (e.g. spin);

b) The fluid is rotating or accelerating;

c) The spacetime is curved;

d) The fluid is inhomogeneous due to, e.g., electromagnetic fields;
e) The substance of interest is an elastic medium;

f) The phase of matter is "exotic" (e.g. superfluid, supersolid,...);

Then, we expect many more inequalities to emerge.
Are we able to find them all?



Statement of the problem

We need a universal procedure for finding inequalities such that:

1) No inequality is missed;

2) No inequality is exaggerated;

3) ltis clear where each inequality comes from (i.e. what happens if we break it);
4) Calculations can be carried out in one afternoon;

5) Itis fun!

Here, we provide such a procedure.



General Procedure



The rules of the game

We are given a macroscopic description of matter. This amounts to 2 things:
1. Alist of macroscopic fields: ¥ = {T, u%, A% ... };

2. Some expressions for the macroscopic fluxes:

THY = THY|WP] (stress energy tensor, assumed symmetric here)
st = sH[¥] (entropy current)

]ﬁ = ]ﬁ |P] (possibly other currents)

Main rule of the game: Local first and second laws of thermodynamics are obeyed, namely
V,TH = 0 (first law)

V,s* =0 (second law)

Goal of the game: Determine thermodynamic inequalities for {T*V|¥], s”[‘l'],]ﬁ W]}



Global first law (see Masoud's talk)

Let K* be a Killing vector field.

Then, the vector field J* = —TH*YK,, is a conserved
current.

vJ* =-v,(T"K,)
= —(V,T")K, — T*V,K,, =0

Apply Gauss’ Theorem:
U= | Jtdx, = f Jhdx,
21 )Yy

U does not depend on the Cauchy surface.

Note that, depending on the choice of K, the
Noether charge U could be the energy, the linear
momentum, the angular momentum...




Global second law

The local second law reads Vﬂs“ >0

Apply Gauss’ Theorem assuming that X, is the
causal future of X4. Then

Slzf
2q

S increases in (causal) time.

S”dzu < f S”dZ'M =39,
27




Maximum Entropy Principle

Fix an isolated finite system.
Choose a timelike coordinate t.
This defines a foliation X(t). Then

S > 0 (ordinary second law)

Q; = 0 (conservation of all Noether charges)

Max. Entropy Principle: An isolated system evolves
towards a late-time state that maximizes S for fixed
values of all charges Q. Such state is Lyapunov-
stable, and should be identified with the state of
global thermodynamic equilibrium of the system.

X

1




Minimum Grand-Potential Principle

Bring the system in contact with a bath.
Ideal bath: SB(QF) = const — al Q7
with al= const.

Then:

Q==
0<$S+SB=S5S—alQP =S5+ al @

Min. GP Principle: A system in contact with an ideal
bath evolves towards a late-time state that
maximizes ® = § + aiQ, for arbitrary variations.
Such state is Lyapunov-stable, and should be
identified with the state of global thermodynamic
equilibrium of the system.




The “grand-potential functional”

O[¥Y; al] = S[¥] + al Q[P f(s” + a*]”)dz
Note that Killing vector
aljt = al]; + a?(—KyTY) = alJ; + ﬁgT”

/ AN

Quantum numbers: Spacetime symmetries:

Baryon number, Energy, momentum,

electric charge... angular momentum

®|¥; ad, BY] = L (s* + ad]l; + BLT,)dZ,
1

We need to maximize it! X



The procedure (have fun with it!)

Consider a one-parameter family of states W(A), where 4 =0
is the (still unknown) equilibrium state.

Write the function ®(4) = dJ[‘P(/l); a‘f,[)’}{]

We must impose (for all choices of X)

e Stationarity: ®(0) = 0 (identifies the equilibrium)
« Maximum: ®(0) < 0 (produces the inequalities)
Then, the equilibrium state is Lyapunov-stable!

A useful result: Under quite general assumptions,

1..
——®(0) =: | Etdx, >
5 ®(0) fz dz, > 0

holds for all W(€) and for all X if and only if E* is timelike

Equilibrium

future-directed for all {‘P(O), lI’(O)}.

“Information current”




Concrete examples



Example 1: Rinetic theory

Recall what we need: CD[‘P; a‘f,ﬁl’] = fz(s“ + ai ﬁ + ﬁl’Tﬁ)dZu
Take ¥ = f(x*,pY), and

sh = f PA[—FIn(f) — (1 — f)In(1 - f)]
J¢t = | p*f

p

" = | p*p*f
p

O[f; a,, B] = L —fIn(f) — (1 — HIn(1 - f) + a.f + Bp,f] p"dz,
Xp



Example 1: Rinetic theory

Consider a one-parameter family of states f(A4) (with A = 0 equilibrium state).

®(1) = ] —fIn(f) = (1= HIn(1 = f) + a.f + B'p.f] p"dz,

IXPp

d(2) = f [In(f1-1) + a. + p¥p, |f p*dZ,

IXPp
o ] s 2
d(A) = pr[ln(f 1-1) +a, + BYp, |[f P"dE, — prfu s phdx,



Example 1: Rinetic theory

Recall what we need to do: ®(0) = 0 (find equilibrium), ®(0) < 0 (stability)

d(0) = In(f1-1)+a, +Bp, |[fP"dZ, = 0
IXp

Gives Fermi-Dirac:

1
f - e‘(“ﬁ'ﬁl’pv) +1
And we learn that Tolman law Klein law
ut u o 1 U 1
- = P, = Killing vector, T = O = constant



Example 1: Rinetic theory

p"dX,

fZ
Jpidz, - Lxml s

Recall what we need to extract:

P L
—> &(0) __LE”dZ,, —  Ef= prf(l—f)

As expected, the information current is timelike future directed.

The Fermi-Dirac distribution is Lyapunov stable.



Example 2: Ideal fluids

Recall what we need: CIJ[‘P; a‘f,ﬁ}’] = fz(s" + af]ﬁ + [)’l’Tf,‘)dZ”
Take ¥ = {s,n, u*}, and

]I" = nut
T = (¢ + P)u*u’ + Pg"¥

Withe = &(s,n),de =Tds + udn, e + P =Ts + un

d[s,n,ut; a,, BY] = f (1 + TBYu,)su* + (a, + pBYu,)nu* + PBY|dZ,
)

T oeas,



Example 2: Ideal fluids

Consider a one-parameter family of states W(4) (with A = 0 equilibrium state).

P () = (1 + TBYu,)s* + (a, + upYu,)J* + P
P*(D) = (1 + TBYw,)s* + (a, + pplu,)j* + P
+ (TBYu, + TBYw,)s* + (Blu, + upi,)J*
P*(D) = (1 + TBYw,)$* + (a, + pplu,)j* + P
+ 2(TBYu, + TV, )$* + 2(upYu, + pBYi,)j*
+ (TBYu, + 2TBYu, + TBYiL,)s* + (jiflu, + 2BV, + uplii,)J*



Example 2: Ideal fluids

Let's identify the equilibrium state using ®(0) = 0.
¢*(0) = (1 + TBYw,)s" + (a, + ufiu,)J* + PBY
+ (TBYu, + TRV, )sut + (iflu, + uBli, ) nut = 0

Again, we find that

Ut
- = p' = Killing vector,

= a, = constant

(keep in mind that u*u,, = 0, which is the derivative of u#u, = —1)

H H



Example 2: Ideal fluids

The information current is E* = — ¢*(0)/2.

$*(0) = (1 + TR u,)s* + (a, + pBYu,)j* + P
+ 2(TBYu, + TRV, )s* + 2(iBYu, + up¥i,)j*
+ (TBYu, + 2TBYw, + TPYiL,)s* + (iiBYu, + 2aBYw, + uBrit,)J*



Example 2: Ideal fluids

The information current is E* = — ¢*(0)/2.
PH(0) = QE—Fplarsleitor—t—pflar 4 + P,

+ 2(TBYu, +Fp%n, )$* + 2(ifYu, + ph¥en)j*
+ (TBYu, + 2¥p¥e, + TPYiL, )s* + (jiflu, + 2pfiey + pplic,)J"

Tp"(0) = — 2Ts* — 2jj* — (sT + Tsuu, + nji + pnit’w, — P)ut

(I used the identity u’u,, = —u"u,, which is the derivative of u*u, = 0)

u



Example 2: Ideal fluids

After some cleaning, we obtain

. ut .
TE* = |Ts + pn + (e + P)u'1, | - + Pu*

Requiring E* to be timelike future-directed for all W produces all inequalities.

Ex1:Setn=uY = 0and T = 1. This gives

u
TE* = (63) == Dyl e— nc, = 0 (stability to isochoric heating)
T/ 2 2T

Ex 2: Setn = T = 0 and u¥1t, = 1. This gives

u
TE* = (¢ + P) u? meesssssm) ¢+ P > 0 (stability to accelerations)
The null energy condition is a universal thermodynamic inequality for fluids in equilibrium. If
ink?

).

you break it, shear waves grow (recall the dispersion relation Wgpear = — P



Example 2: Ideal fluids

To get necessary and sufficient condition, we change variables (define s = s/n)

nT P?
cp (e + P)c?

And we work in a local reference frame such that u* = (1,0,0,0) and u* = (0,1, 0, 0).
Then, | only need to set € = ZT(E0 — El) => 0, which gives

ut .
+ (e + P)il"it,,] > + Put

nT/c, 0 0 §
E=GPUW| 0 (e+P) ;2 -1 <P>
0 -1 e+ Pl \u

We getnc, =2 0,e+ P = 0, and c% > 0 (stability to compression), plus...



€= (5P

det [(e + P) 1c¢;?

e+ P

PZ

nT/c,

0
0

Example 2: Ideal fluids

To get necessary and sufficient condition, we change variables (define s = s/n)

ut
+ (e + P)il"it,,] > + Put

And we work in a local reference frame such that u* = (1,0,0,0) and u* = (0,1, 0, 0).
Then, | only need to set € = ZT(E0 — El) => 0, which gives

0

(e + P)"1c;?

-1

We getnc, =2 0,e+ P = 0, and c% > 0 (stability to compression), plus

=cs_2—120 >

E+ P

CESI‘




Example 2: Ideal fluids

The condition ¢% < 1 is often identified with "causality", but they are not the same.

Counter-example by Bludman and Ruderman (1968):
2
(02 —9%2)" P+ (97 —c202)P =0 (withc? > 1)

Perfectly causal phase of matter, yet unstable:

2w?* = 1+ 2k> i\/l + 4k2(1 — ¢?)



Example 3: Viscous fluids / Elastic media

Recall what we need: CD[‘P; af,ﬁ"] f(s + adt y ﬁ"T”)dZ
Take W = {s,n, u"}, and

st = (s - —l'l“[”l'laB) ut

]ﬂ = nut
T = (¢ + P)u*u’ + Pg*v + 11"

With e = g(s,n),de = Tds + udn, e+ P = Ts + un, G = G(s,n) (shear modulus)

[meA1

O[¥; a,, f] = (1 + TR u,)su + (a, + puf¥u,)nu* + PR — L ntgy|ds
4GT v H
- f Pz, . o
5 Landau-Lifshitz, Volume 7 (Theory of Elasticity), section 4



Example 3: Viscous fluids / Elastic media

N1,
b = j (14 TRYu,)snu* + (a, + uBiu,)nut — ACT + PBL + 11, BY dx,
z
Stationarity (®(0) = 0 ): Equilibrium is
non-deformed
W g £ a ] Latd 1— 0
T — * ) T - *) —

Information current:

rer = |2 sz 4 P + (e + P)u’u, + L tiestt, | 4 pan 4 fiwvi
— S & uu — — u u
c, (g + P)c? v 2G ) v




Example 3: Viscous fluids / Elastic media

Recall: E* must be timelike future-directed for all P = {P, U, [P }
TE! = n—TéZ + i + (e + P)u'u +i1'1“ﬁl'1 u’ + Put + 1™ u
Cp (e + P)c? vV 26 “Fl 2 v
We get the following inequalities (assumingn, T > 0)
c, >0, 0< c:<1,&+ P >0 (same as before)

G > 0 (stability to isochoric deformations)

G . :
cZ. = —— < 1 (causality of transversal elastic waves)
tr &+P
clz =c% + ¢ <1 (causality of longitudinal elastic waves)
g S 7 3(e+P) —

Cfr. Landau-Lifshitz, Volume 7 (Theory of Elasticity), section 22



Application to fluctuating hydrodynamics



A quick calculation

The grand-canonical density operator is

p=—
Let P[W] be the projector onto the space of microscopic states that realize the
macroscopic state W. Then, the grandcanonical probability of being in W is

~ Tr (T)[ql]e“i@)
p[P] = Tr(P[¥]p) = ~
e Q¥ eSPl+alQ[¥] L @[Y]
~ Tr(P[®]) = =
7 Tr(P[¥]) 7 7




A quick calculation

Let W be the equilibrium macrostate and ¥ + A6W a non-equilibrium macrostate
(with A small). Then

D(1) I D (0)

PP + 16|
2k d

1 ..
— e’¢[q!+/16ql]—q>[lp]‘ ~ o2®02% _ e~ J5 E*[A6¥]dz,

In conclusion, the probability distribution for fluctuations is




Appendix



The first stability-causality theorem

Theor: Thermodynamic stability implies
linear causality.

Proof: See the picture, and recall that
D(Xg) < DP(X,).

Expand to order €%, and recall that E* is
timelike future-directed:

0=J; E*dE, = [; E*dZ, = 0.

Thus, E* = 0 on X5, and so is ¥. 1
The propagation of linear signals is causal. Wy
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