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Before we start

My conventions/assumptions:

• Signature: −, +, +, + ;

• Units: 𝒄 = ℏ = 𝒌𝑩 = 𝟏;

• The metric 𝒈𝝁𝝂 is a fixed background;



What is this talk about?



As you surely know…

There are some universal thermodynamic inequalities.

• 𝒄𝒑 ≥ 𝒄𝒗 > 𝟎;

• 𝒄𝒔
𝟐 > 𝟎;

• …

(see also talk by Andrei Starinets)

They are usually derived for homogeneous fluids in a box, with scalar 
conserved charges (e.g. baryon number).
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… but

What if:

a) The conserved charges are not scalars (e.g. spin);

b) The fluid is rotating or accelerating;

c) The spacetime is curved;

d) The fluid is inhomogeneous due to, e.g., electromagnetic fields;

e) The substance of interest is an elastic medium;

f) The phase of matter is "exotic" (e.g. superfluid, supersolid,…);

Then, we expect many more inequalities to emerge.

Are we able to find them all?



Statement of  the problem

We need a universal procedure for finding inequalities such that:

1) No inequality is missed;

2) No inequality is exaggerated;

3) It is clear where each inequality comes from (i.e. what happens if we break it);

4) Calculations can be carried out in one afternoon;

5) It is fun!

Here, we provide such a procedure.



General Procedure



The rules of  the game
We are given a macroscopic description of matter. This amounts to 2 things:

1. A list of macroscopic fields: 𝚿 = 𝑻, 𝒖𝜶, 𝑨𝜶 … ;

2. Some expressions for the macroscopic fluxes: 

 𝑻𝝁𝝂 = 𝑻𝝁𝝂 𝚿   (stress energy tensor, assumed symmetric here)

 𝒔𝝁 = 𝒔𝝁 𝚿  (entropy current)

 𝑱𝑨
𝝁

= 𝑱𝑨
𝝁

𝚿         (possibly other currents)

Main rule of the game: Local first and second laws of thermodynamics are obeyed, namely

 𝛁𝝁𝑻𝝁𝝂 = 𝟎  (first law)

 𝛁𝝁𝒔𝝁 ≥ 𝟎 (second law)

Goal of the game: Determine thermodynamic inequalities for {𝑻𝝁𝝂 𝚿 , 𝒔𝝁 𝚿 , 𝑱𝑨
𝝁

𝚿 } 



Global first law (see Masoud's talk)
Let 𝑲𝝁 be a Killing vector field.

Then, the vector field 𝑱𝝁 = −𝑻𝝁𝝂𝑲𝝂 is a conserved 
current.

 𝛁𝝁𝑱𝝁 = −𝛁𝝁 𝑻𝝁𝝂𝑲𝝂

           = − 𝛁𝝁𝑻𝝁𝝂 𝑲𝝂 − 𝑻𝝁𝝂𝛁(𝝁𝑲𝝂) = 𝟎

Apply Gauss’ Theorem:

𝑼 = න
𝚺𝟏

𝑱𝝁 𝒅𝚺𝝁 = න
𝚺𝟐

𝑱𝝁 𝒅𝜮𝝁

𝑼 does not depend on the Cauchy surface. 

Note that, depending on the choice of 𝑲𝝁, the 
Noether charge 𝑼 could be the energy, the linear 
momentum, the angular momentum…

𝒕

𝒙𝟏

𝒙𝟐

𝚺𝟏 

𝚺𝟐 



Global second law

The local second law reads 𝛁𝝁𝒔𝝁 ≥ 𝟎

Apply Gauss’ Theorem assuming that 𝚺𝟐 is the 
causal future of 𝚺𝟏. Then

𝑺𝟏 = න
𝚺𝟏

𝒔𝝁 𝒅𝚺𝝁 ≤ න
𝚺𝟐

𝒔𝝁 𝒅𝜮𝝁 = 𝑺𝟐

𝑺 increases in (causal) time.

𝒕

𝒙𝟏

𝒙𝟐

𝚺𝟏 

𝚺𝟐 



Maximum Entropy Principle
Fix an isolated finite system.

Choose a timelike coordinate 𝒕.

This defines a foliation 𝚺 𝒕 . Then

ሶ𝑺 ≥ 𝟎 (ordinary second law)

ሶ𝑸𝑰 = 𝟎 (conservation of all Noether charges)

Max. Entropy Principle: An isolated system evolves 
towards a late-time state that maximizes 𝑺 for fixed 
values of all charges 𝑸𝑰. Such state is Lyapunov-
stable, and should be identified with the state of 
global thermodynamic equilibrium of the system.

𝒕

𝒙𝟏

𝒙𝟐



Minimum Grand-Potential Principle
Bring the system in contact with a bath.

Ideal bath: 𝑺𝑩 𝑸𝑰
𝑩 ≈ 𝒄𝒐𝒏𝒔𝒕 − 𝜶⋆

𝑰 𝑸𝑰
𝑩

with 𝜶⋆
𝑰 = 𝒄𝒐𝒏𝒔𝒕.

Then:
ሶ𝑸𝑰 = − ሶ𝑸𝑰

𝑩 

 𝟎 ≤ ሶ𝑺 + ሶ𝑺𝑩 = ሶ𝑺 −  𝜶⋆
𝑰 ሶ𝑸𝑰

𝑩 = ሶ𝑺 +  𝜶⋆
𝑰 ሶ𝑸𝑰

Min. GP Principle: A system in contact with an ideal 
bath evolves towards a late-time state that 
maximizes 𝚽 = 𝑺 + 𝜶⋆

𝑰 𝑸𝑰 for arbitrary variations. 
Such state is Lyapunov-stable, and should be 
identified with the state of global thermodynamic 
equilibrium of the system.

𝒕

𝒙𝟏

𝒙𝟐



The “grand-potential functional”

𝚽 𝚿; 𝜶⋆
𝑰 = 𝑺 𝚿 + 𝜶⋆

𝑰 𝑸𝑰 𝚿 = න
𝚺

𝒔𝝁 + 𝜶⋆
𝑰 𝑱𝑰

𝝁
𝒅𝚺𝝁

Note that 

𝜶⋆
𝑰 𝑱𝑰

𝝁
= 𝜶⋆

𝑨𝑱𝑨
𝝁

+ 𝜶⋆
𝒂 −𝑲𝒂

𝝂𝑻𝝂
𝝁

= 𝜶⋆
𝑨𝑱𝑨

𝝁
+ 𝜷⋆

𝝂𝑻𝝂
𝝁

 

𝚽 𝚿; 𝜶⋆
𝑨, 𝜷⋆

𝝂 = න
𝚺

𝒔𝝁 + 𝜶⋆
𝑨𝑱𝑨

𝝁
+ 𝜷⋆

𝝂𝑻𝝂
𝝁

𝒅𝚺𝝁

We need to maximize it! 

𝒕

𝒙𝟏

𝒙𝟐

𝚺
Quantum numbers: 
Baryon number, 
electric charge…

Spacetime symmetries: 
Energy, momentum, 
angular momentum

Killing vector



The procedure (have fun with it!)

Consider a one-parameter family of states 𝚿 𝝀 , where 𝝀 = 𝟎 
is the (still unknown) equilibrium state.

Write the function 𝚽 𝝀 = 𝚽 𝚿 𝝀 ; 𝜶⋆
𝑨, 𝜷⋆

𝝂

We must impose (for all choices of 𝚺)
• Stationarity: ሶ𝚽 𝟎 = 𝟎 (identifies the equilibrium)
• Maximum: ሷ𝚽 𝟎 ≤ 𝟎 (produces the inequalities)
Then, the equilibrium state is Lyapunov-stable!

A useful result: Under quite general assumptions,

−
𝟏

𝟐
ሷ𝚽 𝟎 =: න

𝚺

𝑬𝝁𝒅𝚺𝝁 ≥ 𝟎

holds for all 𝚿 𝝐  and for all 𝚺 if and only if 𝑬𝝁 is timelike 
future-directed for all 𝚿 𝟎 , ሶ𝚿 𝟎 .

𝚽

𝚿

Equilibrium

“Information current”



Concrete examples



Example 1: Kinetic theory

Recall what we need:         𝚽 𝚿; 𝜶⋆
𝑨, 𝜷⋆

𝝂 = ׬
𝚺

𝒔𝝁 + 𝜶⋆
𝑨𝑱𝑨

𝝁
+ 𝜷⋆

𝝂𝑻𝝂
𝝁

𝒅𝚺𝝁

Take 𝚿 = 𝒇 𝒙𝝁, 𝒑𝝂 , and 

𝒔𝝁 = න
𝒑

𝒑𝝁[−𝒇 𝐥𝐧 𝒇 − 𝟏 − 𝒇 𝐥𝐧 𝟏 − 𝒇 ] 

𝑱𝝁 = න
𝒑

𝒑𝝁𝒇 

𝑻𝝁𝝂 = න
𝒑

𝒑𝝁𝒑𝝂𝒇 

𝚽 𝒇; 𝜶⋆, 𝜷⋆
𝝂 = න

𝚺×𝒑

−𝒇 𝐥𝐧 𝒇 − 𝟏 − 𝒇 𝐥𝐧 𝟏 − 𝒇 + 𝜶⋆𝒇 + 𝜷⋆
𝝂𝒑𝝂𝒇 𝒑𝝁𝒅𝚺𝝁



Example 1: Kinetic theory

Consider a one-parameter family of states 𝒇(𝝀) (with 𝝀 = 𝟎 equilibrium state).

𝚽(𝝀) = න
𝚺×𝒑

−𝒇 𝐥𝐧 𝒇 − 𝟏 − 𝒇 𝐥𝐧 𝟏 − 𝒇 + 𝜶⋆𝒇 + 𝜷⋆
𝝂𝒑𝝂𝒇 𝒑𝝁𝒅𝚺𝝁

ሶ𝚽(𝝀) = න
𝚺×𝒑

𝐥𝐧 𝒇−𝟏 − 𝟏 + 𝜶⋆ + 𝜷⋆
𝝂𝒑𝝂 ሶ𝒇 𝒑𝝁𝒅𝚺𝝁

ሷ𝚽(𝝀) = න
𝚺×𝒑

𝐥𝐧 𝒇−𝟏 − 𝟏 + 𝜶⋆ + 𝜷⋆
𝝂𝒑𝝂 ሷ𝒇 𝒑𝝁𝒅𝚺𝝁 − න

𝚺×𝒑

ሶ𝒇𝟐

𝒇 𝟏 − 𝒇
𝒑𝝁𝒅𝚺𝝁

 



Example 1: Kinetic theory
Recall what we need to do: ሶ𝚽 𝟎 = 𝟎 (find equilibrium), ሷ𝚽 𝟎 ≤ 𝟎 (stability)

ሶ𝚽 𝟎 = න
𝚺×𝒑

𝐥𝐧 𝒇−𝟏 − 𝟏 + 𝜶⋆ + 𝜷⋆
𝝂𝒑𝝂 ሶ𝒇 𝒑𝝁𝒅𝚺𝝁 = 0

Gives Fermi-Dirac:

𝒇 =
𝟏

𝒆− 𝜶⋆+𝜷⋆
𝝂𝒑𝝂 + 𝟏

And we learn that

𝒖𝝁

𝑻
= 𝜷⋆

𝝁
= 𝐊𝐢𝐥𝐥𝐢𝐧𝐠 𝐯𝐞𝐜𝐭𝐨𝐫,  

𝝁

𝑻
= 𝜶⋆ = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭

Tolman law Klein law



Example 1: Kinetic theory

ሷ𝚽(𝟎) = න
𝚺×𝒑

𝐥𝐧 𝒇−𝟏 − 𝟏 + 𝜶⋆ + 𝜷⋆
𝝂𝒑𝝂 ሷ𝒇 𝒑𝝁𝒅𝚺𝝁 − න

𝚺×𝒑

ሶ𝒇𝟐

𝒇 𝟏 − 𝒇
𝒑𝝁𝒅𝚺𝝁

 

Recall what we need to extract:

−
𝟏

𝟐
ሷ𝚽 𝟎 =: න

𝚺

𝑬𝝁𝒅𝚺𝝁  𝑬𝝁 =
𝟏

𝟐
න

𝒑

ሶ𝒇𝟐𝒑𝝁

𝒇 𝟏 − 𝒇

As expected, the information current is timelike future directed.

The Fermi-Dirac distribution is Lyapunov stable.



Example 2: Ideal fluids

Recall what we need:         𝚽 𝚿; 𝜶⋆
𝑨, 𝜷⋆

𝝂 = 𝚺׬
𝒔𝝁 + 𝜶⋆

𝑨𝑱𝑨
𝝁

+ 𝜷⋆
𝝂𝑻𝝂

𝝁
𝒅𝚺𝝁

Take 𝚿 = 𝒔, 𝒏, 𝒖𝝁 , and 

𝒔𝝁 = 𝒔𝒖𝝁 
𝑱𝝁 = 𝒏𝒖𝝁 
𝑻𝝁𝝂 = 𝜺 + 𝑷 𝒖𝝁𝒖𝝂 + 𝑷𝒈𝝁𝝂 

With 𝜺 = 𝜺 𝒔, 𝒏 , 𝒅𝜺 = 𝑻𝒅𝒔 + 𝝁𝒅𝒏, 𝜺 + 𝑷 = 𝑻𝒔 + 𝝁𝒏

𝚽 𝒔, 𝒏, 𝒖𝝁; 𝜶⋆, 𝜷⋆
𝝂 = න

𝚺

𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 𝒔𝒖𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂 𝒏𝒖𝝁 + 𝑷𝜷⋆
𝝁

𝒅𝚺𝝁

 = න
𝚺

𝝓𝝁𝒅𝚺𝝁



Example 2: Ideal fluids

Consider a one-parameter family of states 𝚿(𝝀) (with 𝝀 = 𝟎 equilibrium state).

𝝓𝝁 𝝀 = 𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 𝒔𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂 𝑱𝝁 + 𝑷𝜷⋆
𝝁

ሶ𝝓𝝁 𝝀 = 𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 ሶ𝒔𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂
ሶ𝑱𝝁 + ሶ𝑷𝜷⋆

𝝁

                + ሶ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 𝒔𝝁 + ሶ𝝁𝜷⋆
𝝂𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሶ𝒖𝝂 𝑱𝝁

ሷ𝝓𝝁 𝝀 = 𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 ሷ𝒔𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂
ሷ𝑱𝝁 + ሷ𝑷𝜷⋆

𝝁

               + 𝟐 ሶ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 ሶ𝒔𝝁 + 𝟐 ሶ𝝁𝜷⋆
𝝂𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሶ𝒖𝝂
ሶ𝑱𝝁

      + ሷ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝟐 ሶ𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 + 𝑻𝜷⋆
𝝂 ሷ𝒖𝝂 𝒔𝝁 + ሷ𝝁𝜷⋆

𝝂𝒖𝝂 + 𝟐 ሶ𝝁𝜷⋆
𝝂 ሶ𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሷ𝒖𝝂 𝑱𝝁

 



Example 2: Ideal fluids

Let's identify the equilibrium state using ሶ𝚽 𝟎 = 𝟎.

ሶ𝝓𝝁 𝟎 = 𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 ሶ𝒔𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂
ሶ𝑱𝝁 + ሶ𝑷𝜷⋆

𝝁

                + ሶ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 𝒔𝒖𝝁 + ሶ𝝁𝜷⋆
𝝂𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሶ𝒖𝝂 𝒏𝒖𝝁 = 𝟎

Again, we find that

𝒖𝝁

𝑻
= 𝜷⋆

𝝁
= 𝐊𝐢𝐥𝐥𝐢𝐧𝐠 𝐯𝐞𝐜𝐭𝐨𝐫,  

𝝁

𝑻
= 𝜶⋆ = 𝐜𝐨𝐧𝐬𝐭𝐚𝐧𝐭

(keep in mind that 𝒖𝝁 ሶ𝒖𝝁 = 𝟎, which is the derivative of 𝒖𝝁𝒖𝝁 = −𝟏)



Example 2: Ideal fluids

The information current is 𝑬𝝁 = − ሷ𝝓𝝁 𝟎 /𝟐.

ሷ𝝓𝝁 𝟎 = 𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 ሷ𝒔𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂
ሷ𝑱𝝁 + ሷ𝑷𝜷⋆

𝝁

               + 𝟐 ሶ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 ሶ𝒔𝝁 + 𝟐 ሶ𝝁𝜷⋆
𝝂𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሶ𝒖𝝂
ሶ𝑱𝝁

      + ሷ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝟐 ሶ𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 + 𝑻𝜷⋆
𝝂 ሷ𝒖𝝂 𝒔𝝁 + ሷ𝝁𝜷⋆

𝝂𝒖𝝂 + 𝟐 ሶ𝝁𝜷⋆
𝝂 ሶ𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሷ𝒖𝝂 𝑱𝝁



Example 2: Ideal fluids

The information current is 𝑬𝝁 = − ሷ𝝓𝝁 𝟎 /𝟐.

ሷ𝝓𝝁 𝟎 = 𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 ሷ𝒔𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂
ሷ𝑱𝝁 + ሷ𝑷𝜷⋆

𝝁

               + 𝟐 ሶ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 ሶ𝒔𝝁 + 𝟐 ሶ𝝁𝜷⋆
𝝂𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሶ𝒖𝝂
ሶ𝑱𝝁

      + ሷ𝑻𝜷⋆
𝝂𝒖𝝂 + 𝟐 ሶ𝑻𝜷⋆

𝝂 ሶ𝒖𝝂 + 𝑻𝜷⋆
𝝂 ሷ𝒖𝝂 𝒔𝝁 + ሷ𝝁𝜷⋆

𝝂𝒖𝝂 + 𝟐 ሶ𝝁𝜷⋆
𝝂 ሶ𝒖𝝂 + 𝝁𝜷⋆

𝝂 ሷ𝒖𝝂 𝑱𝝁

𝑻 ሷ𝝓𝝁 𝟎 = − 𝟐 ሶ𝑻 ሶ𝒔𝝁 − 𝟐 ሶ𝝁 ሶ𝑱𝝁 − 𝒔 ሷ𝑻 + 𝑻𝒔 ሶ𝒖𝝂 ሶ𝒖𝝂 + 𝒏 ሷ𝝁 + 𝝁𝒏 ሶ𝒖𝝂 ሶ𝒖𝝂 − ሷ𝑷 𝒖𝝁

(I used the identity 𝒖𝝂 ሷ𝒖𝝂 = − ሶ𝒖𝝂 ሶ𝒖𝝂, which is the derivative of 𝒖𝝁 ሶ𝒖𝝁 = 𝟎)
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After some cleaning, we obtain

𝑻𝑬𝝁 = ሶ𝑻 ሶ𝒔 + ሶ𝝁 ሶ𝒏 + 𝜺 + 𝑷 ሶ𝒖𝝂 ሶ𝒖𝝂

𝒖𝝁

𝟐
+ ሶ𝑷 ሶ𝒖𝝁

Requiring 𝑬𝝁 to be timelike future-directed for all ሶ𝚿 produces all inequalities.

Ex 1: Set ሶ𝒏 = ሶ𝒖𝝂 = 𝟎 and ሶ𝑻 = 𝟏. This gives

𝑻𝑬𝝁 =
𝝏𝒔

𝝏𝑻 𝒏

𝒖𝝁

𝟐
=

𝒏𝒄𝒗

𝟐𝑻
𝒖𝝁                              𝒏𝒄𝒗 ≥ 𝟎    (stability to isochoric heating)

Ex 2: Set ሶ𝒏 = ሶ𝑻 = 𝟎 and ሶ𝒖𝝂 ሶ𝒖𝝂 = 𝟏. This gives

𝑻𝑬𝝁 = 𝜺 + 𝑷
𝒖𝝁

𝟐
                                            𝜺 + 𝑷 ≥ 𝟎    (stability to accelerations)

The null energy condition is a universal thermodynamic inequality for fluids in equilibrium. If 

you break it, shear waves grow (recall the dispersion relation 𝝎𝐬𝐡𝐞𝐚𝒓 = −
𝒊𝜼𝒌𝟐

𝜺+𝑷
).
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To get necessary and sufficient condition, we change variables (define 𝖘 = 𝒔/𝒏)

𝑻𝑬𝝁 =
𝒏𝑻

𝒄𝒑
ሶ𝖘𝟐 +

ሶ𝑷𝟐

𝜺 + 𝑷 𝒄𝒔
𝟐

+ 𝜺 + 𝑷 ሶ𝒖𝝂 ሶ𝒖𝝂

𝒖𝝁

𝟐
+ ሶ𝑷 ሶ𝒖𝝁

And we work in a local reference frame such that 𝒖𝝁 = (𝟏, 𝟎, 𝟎, 𝟎) and ሶ𝒖𝝁 = 𝟎, ሶ𝒖, 𝟎, 𝟎 . 
Then, I only need to set ℇ = 𝟐𝑻 𝑬𝟎 − 𝑬𝟏 ≥ 𝟎, which gives

ℇ = ( ሶ𝖘, ሶ𝑷, ሶ𝒖)

𝒏𝑻/𝒄𝒑 𝟎 𝟎

𝟎 𝜺 + 𝑷 −𝟏𝒄𝒔
−𝟐 −𝟏

𝟎 −𝟏 𝜺 + 𝑷

ሶ𝖘
ሶ𝑷
ሶ𝒖

We get 𝒏𝒄𝒑 ≥ 𝟎, 𝜺 + 𝑷 ≥ 𝟎, and 𝒄𝒔
𝟐 ≥ 𝟎 (stability to compression), plus…

𝐝𝐞𝐭 𝜺 + 𝑷 −𝟏𝒄𝒔
−𝟐 −𝟏

−𝟏 𝜺 + 𝑷
= 𝒄𝒔

−𝟐 − 𝟏 ≥ 𝟎                                 𝒄𝒔
𝟐 ≤ 𝟏
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−𝟏 𝜺 + 𝑷
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−𝟐 − 𝟏 ≥ 𝟎                                 𝒄𝒔
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Example 2: Ideal fluids

The condition 𝒄𝒔
𝟐 ≤ 𝟏 is often identified with "causality", but they are not the same.

Counter-example by Bludman and Ruderman (1968):

𝝏𝒕
𝟐 − 𝝏𝒙

𝟐 𝟐
𝑷 + 𝝏𝒕

𝟐 − 𝒄𝒔
𝟐𝝏𝒙

𝟐 𝑷 = 𝟎 (with 𝒄𝒔
𝟐 > 𝟏)

Perfectly causal phase of matter, yet unstable:

𝟐𝝎𝟐 = 𝟏 + 𝟐𝒌𝟐 ± 𝟏 + 𝟒𝒌𝟐(𝟏 − 𝒄𝒔
𝟐)



Example 3: Viscous fluids / Elastic media
Recall what we need:         𝚽 𝚿; 𝜶⋆

𝑨, 𝜷⋆
𝝂 = 𝚺׬

𝒔𝝁 + 𝜶⋆
𝑨𝑱𝑨

𝝁
+ 𝜷⋆

𝝂𝑻𝝂
𝝁

𝒅𝚺𝝁

Take 𝚿 = 𝒔, 𝒏, 𝒖𝝁 , and 

𝒔𝝁 = 𝒔 −
𝟏

𝟒𝑮𝑻
𝚷𝜶𝜷𝚷𝜶𝜷 𝒖𝝁 

𝑱𝝁 = 𝒏𝒖𝝁 
𝑻𝝁𝝂 = 𝜺 + 𝑷 𝒖𝝁𝒖𝝂 + 𝑷𝒈𝝁𝝂 + 𝚷𝝁𝝂

With 𝜺 = 𝜺 𝒔, 𝒏 , 𝒅𝜺 = 𝑻𝒅𝒔 + 𝝁𝒅𝒏, 𝜺 + 𝑷 = 𝑻𝒔 + 𝝁𝒏, 𝑮 = 𝑮 𝒔, 𝒏  (shear modulus)

𝚽 𝚿; 𝜶⋆, 𝜷⋆
𝝂 = න

𝚺

𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 𝒔𝒖𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂 𝒏𝒖𝝁 + 𝑷𝜷⋆
𝝁

−
𝚷𝜶𝜷𝚷𝜶𝜷

𝟒𝑮𝑻
+ 𝚷𝝂

𝝁
𝜷⋆

𝝂 𝒅𝚺𝝁

 = න
𝚺

𝝓𝝁𝒅𝚺𝝁 Landau-Lifshitz, Volume 7 (Theory of Elasticity), section 4



Example 3: Viscous fluids / Elastic media

𝚽 = න
𝚺

𝟏 + 𝑻𝜷⋆
𝝂𝒖𝝂 𝖘𝒏𝒖𝝁 + 𝜶⋆ + 𝝁𝜷⋆

𝝂𝒖𝝂 𝒏𝒖𝝁 −
𝚷𝜶𝜷𝚷𝜶𝜷

𝟒𝑮𝑻
+ 𝑷𝜷⋆

𝝁
+ 𝚷𝝂

𝝁
𝜷⋆

𝝂 𝒅𝚺𝝁

Stationarity ( ሶ𝚽 𝟎 = 𝟎 ):

𝒖𝝁

𝑻
= 𝜷⋆

𝝁
,  

𝝁

𝑻
= 𝜶⋆,  𝚷𝝁𝝂 = 𝟎

Information current:

𝑻𝑬𝝁 =
𝒏𝑻

𝒄𝒑
ሶ𝖘𝟐 +

ሶ𝑷𝟐

𝜺 + 𝑷 𝒄𝒔
𝟐

+ 𝜺 + 𝑷 ሶ𝒖𝝂 ሶ𝒖𝝂 +
𝟏

𝟐𝑮
ሶ𝚷𝜶𝜷 ሶ𝚷𝜶𝜷

𝒖𝝁

𝟐
+ ሶ𝑷 ሶ𝒖𝝁 + ሶ𝚷𝝁𝝂 ሶ𝒖𝝂

Equilibrium is 
non-deformed



Example 3: Viscous fluids / Elastic media

Recall: 𝑬𝝁 must be timelike future-directed for all ሶ𝚿 = ሶ𝑷, ሶ𝖘, ሶ𝒖𝜶, ሶ𝚷𝜶𝜷 

𝑻𝑬𝝁 =
𝒏𝑻

𝒄𝒑
ሶ𝖘𝟐 +

ሶ𝑷𝟐

𝜺 + 𝑷 𝒄𝒔
𝟐

+ 𝜺 + 𝑷 ሶ𝒖𝝂 ሶ𝒖𝝂 +
𝟏

𝟐𝑮
ሶ𝚷𝜶𝜷 ሶ𝚷𝜶𝜷

𝒖𝝁

𝟐
+ ሶ𝑷 ሶ𝒖𝝁 + ሶ𝚷𝝁𝝂 ሶ𝒖𝝂

We get the following inequalities (assuming 𝒏, 𝑻 > 𝟎)

𝒄𝒑 > 𝟎, 𝟎 < 𝒄𝒔
𝟐 ≤ 𝟏, 𝜺 + 𝑷 > 𝟎  (same as before)

𝑮 > 𝟎 (stability to isochoric deformations)

𝒄𝒕𝒓
𝟐 =

𝑮

𝜺+𝑷
≤ 𝟏 (causality of transversal elastic waves)

𝒄𝒍𝒈
𝟐 = 𝒄𝒔

𝟐 +
𝟒𝑮

𝟑(𝜺+𝑷)
≤ 𝟏 (causality of longitudinal elastic waves)

Cfr. Landau-Lifshitz, Volume 7 (Theory of Elasticity), section 22



Application to fluctuating hydrodynamics



A quick calculation

The grand-canonical density operator is

ෝ𝝆 =
𝒆𝜶⋆

𝑰 ෡𝑸𝑰

𝒁
Let ෡𝑷 𝚿  be the projector onto the space of microscopic states that realize the 
macroscopic state 𝚿. Then, the grandcanonical probability of being in 𝚿 is

℘ 𝚿 = 𝐓𝐫 ෡𝑷 𝜳 ෝ𝝆 =
𝐓𝐫 ෡𝑷 𝜳 𝒆𝜶⋆

𝑰 ෡𝑸𝑰

𝒁
 

 ≈
𝒆𝜶⋆

𝑰 𝑸𝑰 𝚿

𝒁
𝐓𝐫 ෡𝑷 𝜳 =

𝒆𝑺 𝚿 +𝜶⋆
𝑰 𝑸𝑰 𝚿

𝒁
=

𝒆𝚽 𝚿

𝒁



A quick calculation

Let 𝚿 be the equilibrium macrostate and 𝚿 + 𝝀𝜹𝚿 a non-equilibrium macrostate 
(with 𝝀 small). Then

℘ 𝚿 + 𝝀𝜹𝚿

℘ 𝚿
= 𝒆𝚽 𝜳+𝝀𝜹𝜳 −𝚽 𝚿 ≈  𝒆

𝟏
𝟐

ሷ𝚽 𝟎 𝝀𝟐
= 𝒆− 𝚺׬

𝑬𝝁 𝝀𝜹𝚿 𝒅𝚺𝝁

In conclusion, the probability distribution for fluctuations is

℘ ∝ 𝒆− 𝚺׬ 𝑬𝝁𝒅𝚺𝝁

𝚽 𝝀 − 𝚽 𝟎



Appendix



The first stability-causality theorem

Theor: Thermodynamic stability implies 
linear causality.

Proof: See the picture, and recall that

𝚽 𝚺𝟏 ≤ 𝚽(𝚺𝟐).

Expand to order 𝝐𝟐, and recall that 𝑬𝝁 is 
timelike future-directed:

0 𝚺𝟏׬ =
𝑬𝝁𝒅𝚺𝝁 ≥ 𝚺𝟐׬

𝑬𝝁𝒅𝚺𝝁 ≥ 𝟎.

Thus, 𝑬𝝁 = 𝟎  on 𝚺𝟐, and so is ሶ𝚿.

The propagation of linear signals is causal.

𝒕

𝒙𝚺𝟏: ሶ𝚿 = 𝟎   

𝚺𝟐 

ሶ𝚿
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