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what Ls hgolroolg WAaMmLES

Traditional view

Fluid behavior requires (some degree of) local equilibration
(='thermalization').

Usual picture:

- microscopic degrees of freedom relax quickly towards local
equilibrium

 long wavelength modes, associated to conservation laws,
relax on longer time scales

Modern perspective

Effective theory for long wavelength modes (gradient
expansions, etc)



Thermalization
(relaxation towards Local equilibrivm)

Two main issues

i) relative populations of different momentum modes

Main topic for the

ii) isotropy of momentum distribution e rest of this talk
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Longttuwdinal exXpa nston hinders Lsotropizatlow

The fast expansion of the matter along the 1
collision axis drives the momentum — f‘/
distribution to a very flat distribution P —
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Anisotropy (~ PL— Pr) relaxes slowly, like a 'collective’
variable associated to a conservation law



Simple Rinetic equation
(Bjorken flow)

e 1+1 dimensional expansion, in relaxation time approximation

f(pa T) - feQ(p7 T)

TR

9= 20, | f(p/T) =

expansion collisions

e Describes the transition from the collisionless regime (7 <« 73)

to the regime dominated by collisions, leading eventually to
hydrodynamics (r > 1)

®Can be solved straightforwardly by standard numerical techniques.
We shall follow a less direct, but more insightful (semi) analytic
approach.



SPeciaL moments of the momentum distribution

(PB, UL Yan , 2017, 18, 19)

Special moments p, = pcosb
__ 2 1
L, = /p Py, (cos8) f(p) Po(z) =1 P(z) = 5(32% - 1)
p (Legendre polynomial)
Why these moments ?
® There is too much information in the distribution function
e We want to focus on the angular degrees of freedom
The energy momentum tensor is described by first two moments
1 — [ f(p)p” Lo=¢ L1="Pp—Pr
p

We are looking for an effective theory for these two moments



Coupled equations for the moments
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(Free streaming)
(collisions)
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e The coefficients @,,b,,C, are pure numbers (ao=4/3 co=2/3)

e Interesting system of coupled linear equations, with nearest neighbour

couplings
e Exact solution provides exact values for the energy density and
pressures, but does not allow the complete reconstruction of the

distribution function

e The competition between expansion and collisions is made obvious.
Note the absence of collisional damping for the energy density.

Effective theory obtained by 'eliminating' moments L1



Two-moment truncation
(effective theory)
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e Contains second order viscous hydrodynamics a la "Israel-Stewart"

e Views hydrodynamics as a coupled mode problem

e Amenable to analytic solution, bringing insight into the notions of
attractors, general features of the gradient expansion, and its
resummations in terms of trans-series, etc. [not discussed here]

[for analytic solution see JPB and L. Yan, PLB 820:136478 (2021)]

e Captures most important features of more sophisticated approaches,
and can be made quantitatively accurate with a simple renormalization
of a second order transport coefficient (al) [see later].



Free streaming fixed points

One can transform the coupled linear equations into a single non linear

differential equation for the quantity T 0L P, — Py 1
go(7) = ( = ——(a + 90))
Lo OT Co
% _ Lo | _
T + gO + (ag + dl)go + ajag — coby — [C()Cl Lo] =0

Write this as
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L2 to its exact value, known
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¢ This fixed point structure is only moderately affected by higher moments

® This structure is approximately captured by Israel-Stewart hydrodynamics



including collistons

w—— = (80, W) w = 7/ TR
dw
B(g0) = —g5 — (ao + a1 + w) go — arap + coby — apw + [COCI ﬁ—f)]

This non linear equation is formally identical to that resulting from

Israel-Stewart formulation of second order viscous hydrodynamics
[Heller, Spalinski , 2015]

w<l(t<1R) one recovers the two free streaming fixed points

w>1(r>1p) go+ap=0, go=—-4/3 hydrodynamic fixed point

The attractor solution is the particular solution that starts from the stable

collisionless fixed point at small time and evolves "slowly" to the hydrodynamic
fixed point at late time.

All solutions converge, soon or later depending on the initial conditions,
towards the attractor (hence to hydrodynamics) at late time.



Attractor

Under the effect of collisions, the stable collisionless fixed point evolves
"slowly” into the hydrodynamic fixed point

B(go, T)

0.5

0.0

"Pseudo fixed
points" move

-0.5 "slowly" towards
[ -4/3 as time
increases
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The "attractor” is the solution 9o(') that joins the (stable) collisionless
fixed point at early time to the hydrodynamic fixed point at late time.



The transition from free streaming to hydrodynamices

( Attractor solution )

Early and late times are controlled by the free streaming and the hydrodynamic
fixed points, respectively
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The transition region occurs when the collision rate is
comparable to the expansion rate (! ' !Rr)



g(u)

Time dependent relaxation time

1!
IR ! !

| controls the "speed" of the transition
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L the context of Bjorken {low

" = (e + Pu"'u” — Pg"" + "

(viscous pressure)

Gradient expansion

MIS hydro
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Time dependent relaxation time (Ir! 1)
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Changing al (a second order transport coefficient) does not “improve”
hydrodynamics, but rather improves the location of the collisionless fixed point

Renormalization of al
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Renormalizing at cures unphysieal features of two-moment truncation
(and other tsrael-sStewart caleulations)
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Conclustons

The solution of a simple kinetic equation for Bjorken flow was analysed in
terms of special moments of the distribution function.

The simplest two moment-truncation yields an 'effective’ theory that captures
the main qualitative features of the dynamics, in particular the transition from

the collisionless regime to hydrodynamics. It encompasses all versions of second
order (Israel-Stewart) hydrodynamics

The collisionless regime is characterized by two fixed points, one stable, the
other unstable. The effect of the collisions is to move "slowly"” the stable free
streaming fixed point into the (universal) hydrodynamic fixed point.



Conclustons

The "attractor” emerges as the solution that joins the collisionless fixed point
at t=0 to the hydrodynamic fixed point at large time. The vicinities of the two
fixed points are easy to control (known ratios of moments in free streaming,
Navier-Stokes in hydrodynamics). Large deviations from the hydrodynamic fixed
point involves information about the collisionless fixed point.

Terminologies "hydrodynamic attractor”, “early time attractor” are somewhat
misleading. Vicinity of hydro fixed point is genuine hydro. Early time fixed point
exists in collisionless regime of kinetic theory, not in holographic descriptions.

Hydrodynamic behavior emerges when it is supposed to do so, i.e. within kinetic
theory when the collision rate is comparable to the expansion rate.

By 'improving' the transition region between the fixed points (i.e., adjusting the
collisionless fixed point), one does not ‘improve hydrodynamics'

The present analysis extends with ‘minor' modifications to the non-conformal case
(2208.02750)



