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Adapted from Kurkela, Wiedemann, Wu 2019

Motivation
Thermal correlators of conserved operators carry important transport information

Strong coupling 
correlators extensively 
computed: Reissner-
Nördstrom black holes Son, 
Starinets 2006, Myers, 
Starinets, Thomson 2007, 
Davison, Kaplis 2011…, 
Einstein-Maxwell-dilaton 
Davison, Goutéraux 2014, 
finite coupling: Kaplis, 
Grozdanov, Starinets 2016, 
…

How does weak 
coupling 
compare?
Romatschke 2015, 
Kurkela, Wiedemann 
2017



Core questions
• What is the analytic structure of correlators from the 

Bolzmann Equation due to external electric field/
temperature gradient:


• … in 3+1 dimensions? QGP, cosmology 


• … in 2+1 dimensions? Condensed matter


• … in the presence of impurities?


Method: Relaxation Time Approximation (RTA) 

Results: Analytic expression for correlators, 
thermoelectric transport coefficients
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Kinetic Theory at a glance

• Key object: , one particle distribution function 


• Evolution is given by Boltzmann equation:





• In practice, very complicated: 

f(t, x, p)

[pμ∂μ + Fμ ∇pμ] f

free streaming

= C[ f ]
⏟

collisions

C[ f ] = C1→2 + C2→2 + …

5



• Replace collision kernel with deviation from equilibrium





• Work with a massless gas 


[pμ∂μ + Fμ∂pμ] f =
pμuμ

τR
(f − f eq)

p2 = 0

RTA kinetic theory
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Bhatnagar, Gross, Krook 1954

Anderson, Witting 1974

Relaxation time Maxwell-Boltzmann  e
p ⋅ u(t, x) + μ(t, x)

T(t, x)

Electric field 


Gravity 

Fμνpν

−Γμ
αβpαpβ



Moments of f
• Integrating over momenta  macroscopic quantities


• Number density


 


• Current and EMT are higher moments:


               


→

n(t, x) = ∫
ddp

(2π)d
f(t, x, p)

Jμ = ∫
ddp

(2π)d

pμ

p0
f Tμν = ∫

ddp
(2π)d

pμpν

p0
f

7



Conservation equations in the RTA
 


• Integrate over momenta





• Conservation of currents/emt         RTA matching conditions


                          

pμ∂μ f =
pμuμ

τR
(f − f eq)

∫
ddp

(2π)d

1
p0

pμ∂μ f = ∂μJμ = ∫
ddp

(2π)d

1
p0

pμuμ

τR
(f − f eq)

⇒

∫
ddp

(2π)d p0
( f − f eq) = 0 ∫

ddp
(2π)d

pμ

p0
( f − f eq) = 0
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Jμ = ∫
ddp

(2π)d

pμ

p0
f



Linear response in the RTA 
• Sources: gauge field, , and metric perturbation, 


• Sources induce a change in equilibrium values:











• Leading to a change in the distribution function:

δAμ δgμν

T(t, xi) = T0 + δT(t, xi)

μ(t, xi) = μ0 + δμ(t, xi)

uμ(t, xi) = (1,0,0,0) + δuμ(t, xi)
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Linear response in the RTA 
• The Boltzmann equation reads


• Solution is given by 


• Integration over moments gives  and 


• Use matching conditions to solve self-consistently for 


• Compute correlators via variational approach 

δJμ δTμν

δT, δμ, δuμ



Momentum relaxation
• Consider a gas of particles with dilute impurities


• Extra scattering in collision term due to impurities





where 


• Leads to momentum relaxation in conservation equation

(Can also have energy/number/etc. relaxation, see Amoretti et al. 2014)

C[ f ] =
pμuμ

τR
(f − feq) −

pαuα

T
uμΓμ

νpν f

Γμ
ν = diag(0,Γ⊥, Γ∥)
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Results: 3+1 d



Analytic structure in 3+1 dimensions
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• Black points denote poles


• Squiggle is a logarithmic 
branch cut





• Red arrows denote 
quasihydro modes


• Channels arise from 
 symmetry around 

momentum vector 

ω = ± k −
i

τR

SO(2)
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Analytic structure in 3+1 dimensions

First computed by Romatschke 2015 
for the massless case 

Some massive results from 3 days ago: 


Hataei, Heydari, Taghinavaz 2504.14591



15

Analytic structure in 3+1 dimensions

Diffusion pole:

ω = − i
τR

3
k2 + …

Romatschke 2015




Physical meaning

• Picture a massless gas, no interactions


• Perturbations in z-direction induce 
overdense regions every 


• Signal from will arrive with frequency 
, which corresponds to a pole 


• Integrating over all directions, collection of 
poles assemble to logarithmic branch cut


• Similar structure seen in hard thermal 
loops, weak coupling QFTs and plasma 
physics where the branch cut is 
associated with Landau-damping

2π/k

ω = k cos θ

RTA branch cut
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Kurkela, Wiedemann 2017
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Analytic structure in 3+1 dimensions

Sound modes:

Romatschke 2015
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Analytic structure in 3+1 dimensions

Shear viscosity


 
η
s

=
1
s

lim
ω→0

1
ω

ImG12,12 =
τRT0

5

Romatschke 2015
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Analytic structure in 3+1 dimensions
Quasihydro crossover, as seen in 
numerous holographic models


Collision occurs at k* =
3

2
Γ∥

Davison, Gouteraux 2014
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TT correlator with momentum dissipation

Collision occurs at k* =
3

2
Γ∥

G00,00
TT = − 3(ε0 + P0)(1 +

k2τR(2kτR + L(τRω + i))
−6ikτRω(Γ∥τR − 1) + 3Lω(Γ∥τR − 1)(1 − iτRω) + 2k3τ2

R + ik2LτR )
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Analytic structure in 3+1 dimensions

Finite density and temperature


Factorization of analytic structure!


Sound + diffusion 



Finite  and T μ
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Results: 2+1 d
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Analytic structure in 2+1 dimensions
• Black points denote poles


• Squiggle is a square root 
branch cut


• Two types of collisions!


• Red: collision at 


• Blue: collision at 


• Channels due to  
symmetry associated with 
parity transformations

k ∼ Γ∥

k = 1/τR

ℤ2

ω = ± k −
i

τR



Analytic structure in 2+1 dimensions

• JJ correlator in the even channel 
have additional poles


• Usual diffusion pole:


• Gapped mode:

25

ω = − i
τR

2
k2 + …

ω =
−i ± k2τ2

R − 1

τR

ω = −
2i
τR

+
i
2

τRk2 + …



JJ correlator in 2+1
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ω =
−i ± k2τ2

R − 1

τR

G0,0
JJ = χ

(R + iωτR − 1)
R − 1

(−3k4τ4
R + k2τ2

R(3R + ωτR(3ωτR + 4i) − 3) + 2ωτR(ωτR + i)(R + iωτR − 1))
3R (k2τ2

R(R − 1) + 2i(R − 1)ωτR − 2ω2τ2
R)
R = k2τ2

R − (ωτR + i)2
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Witczak-Krempa, Sachdev 2013JJ correlator in holography

Strong coupling - yet similar collision!



28

Analytic structure in 2+1 dimensions

Finite temperature, density 
and momentum relaxation

Channel with two collisions!

Blue at k = 1/τR

Red at k* = Γ∥/ 2



Thermoelectric JJ correlator with momentum dissipation
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ω =
−iΓ∥ ± 2k2 − Γ2

∥

2
+ … ω =

−i ± k2τ2
R − 1

τR

R = k2τ2
R − (ωτR + i)2
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Thermoelectric JJ correlator with momentum dissipation

ω =
−iΓ∥ ± 2k2 − Γ2

∥

2
+ … ω =

−i ± k2τ2
R − 1

τR

R = k2τ2
R − (ωτR + i)2



Thermoelectric coefficients



Thermoelectric effect

32

Seebeck effect: temperature gradient  electric field


Peltier effect: electric gradient  temperature gradients

⇒

⇒
Seebeck 1821

Thermopile from Leopoldo Nobili 


Rooms XV/XVI museo Galileo

Peltier 1834

Apply computed correlators to determine thermoelectric coefficients⇒



Thermoelectric coefficients
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Compute via Kubo formula, e.g.

Hartnoll, Kovtun, Müller, Sachdev 2007 

Heat current:  δQi = δT0i − μ0δJi

Electric and thermal transport coefficients ( δJi

δQi) = (
σij T0αij

T0α̃ij T0κ̄ij) (
Ej

−∂jδT/T0)

σij(ω) = −
1
iω

lim
k→0 (Gij

JJ(ω, k) − Gij
JJ(0,k))
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Thermoelectric coefficients

Find , where  is the number density and





• All other coefficients related by the Ward identities


                 


• Satisfies the Onsager relations 

σ = σQ −
1
iω

n0

ε0 + P0
n0

σQ = τR
eμ0/T0

12
Td−1

0

πd−1

(μ0σ + T0α)iω = − n0 (κ̄ + μ0α)iω = − s0

α = α̃

 … entropy density


  … number density

s0

n0

Hartnoll, Kovtun, Müller, Sachdev 2007 
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Thermoelectric coefficients

Find , where





• All other coefficients related by the Ward identities


          


• Satisfies the Onsager relations 

σ = σQ −
1

iω−Γ
n0

ε0 + P0

σQ = τR
eμ0/T0

12
Td−1

0

πd−1

(μ0σ + T0α)(iω−Γ) = − n0 (κ̄ + μ0α)(iω−Γ) = − s0

α = α̃

With momentum breaking

 … entropy density


  … number density

s0

n0

Hartnoll, Kovtun, Müller, Sachdev 2007 



Outlook: beyond the RTA
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Outlook
• A century on, kinetic theory is a key workhorse in QGP physics (e.g. 

KøMPøST, Cooper-Frye formula in freeze-out), plasma physics and other 
weak coupling settings


• However, starting point is already a truncation from the full Born-Bogoliubov-
Kirkwood-Green-Yvon (BBGKY) hierarchy


• Of course, this is done for simplifying reasons and yields impressive results


• However, what if we keep f2, f3, …?

Grozdanov, AS 2024

• Can we maybe say something 
about long-range correlations? 

QM2025 - Bielcikova



BBGKY hierarchy
• N-particle distribution function 


• Evolution is given by Liouville equation


• N-particle Hamiltonian is e.g.





• Exact, but not practical!

HN =
N

∑
i=1

p2
i

2m
+ V(ri) + ∑

i<j

U(ri − rj)
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fN = fN(t, x1, …, xN, p1, …, pN)

ℒN fN = ∂t fN + {HN, f} = 0 {A, B} =
∂A
∂xi

∂B
∂pi

−
∂B
∂xi

∂A
∂pi



BBGKY hierarchy
• Introducing reduced distribution function


• Recast Liouville equation as tower of equations


• Still exact! Still unmanageable! Time to truncate…
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fn−1 ∼ ∫ d3xnd3pn fn

∂t fn − {fn, Hn} =
n

∑
i=1

∫ d3rn+1d3pn+1
∂U
∂ ⃗r

⋅
∂fn+1

∂ ⃗p
∂t fn − {fn, Hn} = C[ fn+1]



BBGKY hierarchy truncation

• Typical truncation at first level - stosszahlansatz/molecular chaos





• Key assumption: uncorrelated particles prior to collision


 or the RTA: 


• What is effect of higher levels? Systems with 

C[ f2] ≈ C[ f1 f1]

C[ f1 f1] = C1→2 + C2→2 + … C[ f1 f1] = −
f1 − f eq

1

τR

τR > τC > …
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∂t fn − {fn, Hn} = C[ fn+1]



Beyond the RTA
, 


• Decompose into uncorrelated and correlated parts


 


• Approximate with RTA-like term, use long range potential


,


, …


• Analytic access to computed correlators, tower of 
branch cuts…

ℒ1 f1 = C[ f2] ℒ2 f2 = C[ f3], …

f2 = f1 f1 + g12

ℒ1 f1 = −
f1 − f (eq)

1

τR
+ C[g12]

ℒ2g12 = −
g12 − g(eq)

12

τC
+ C[ f3]
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Grozdanov, AS 2024

Sound channel - G00,00



Summary



Summary

• Have complete analytical set of correlators for 


• Direct access to dispersion relations, transport coefficients


• Future directions: going beyond the RTA, scale dependent  a la Kurkela-
Wiedemann 2017, including magnetic fields, massive particles, multiple 
species, long time tails …

T, μ, Γ ≠ 0

τR(p)
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Backup



Relating sources of response to perturbations

• How do we get from  to ?


• Under diffeos


• Choose 


• Leads to


• Finally, the thermoelectric matrix reads 

(δgμν, δAμ) (δEμ, δT)
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⇒



Energy-energy correlator
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