Spectra and transport in the RTA (and beyond)

Based on: arXiv:2403.17769 with Matej Bajec and Sašo Grozdanov arXiv:2501.00099 with Sašo Grozdanov

Alexander Soloviev

Hydro workshop Firenze. April 23, 2025

Funded by the European Union

Overview Motivation RTA kinetic theory Analytic correlators and their transport properties Beyond the RTA

Motivation

Thermal correlators of conserved operators carry important transport information

Strong coupling correlators extensively computed: Reissner-Nördstrom black holes Son, Starinets 2006, Myers, Starinets, Thomson 2007, Davison, Kaplis 2011..., Einstein-Maxwell-dilaton Davison, Goutéraux 2014, finite coupling: Kaplis, Grozdanov, Starinets 2016,

. . .

Adapted from Kurkela, Wiedemann, Wu 2019

Core questions

- What is the analytic structure of correlators from the Bolzmann Equation due to external electric field/ temperature gradient:
- ... in 3+1 dimensions? QGP, cosmology
- ... in 2+1 dimensions? Condensed matter
- ... in the presence of impurities?

Method: Relaxation Time Approximation (RTA)

Results: Analytic expression for correlators, thermoelectric transport coefficients

Heinz, Shen 2015

ESA and Planck collaboration

Xie, Chou, Foster 2015

Kinetic Theory at a glance

- Key object: f(t, x, p), one particle distribution function
- Evolution is given by Boltzmann equation:

$$\left[p^{\mu}\partial_{\mu} + F^{\mu}\right]$$

free streaming

• In practice, very complicated: $C[f] = C_{1 \rightarrow 2} + C_{2 \rightarrow 2} + \dots$

RTA kinetic theory

Replace collision kernel with deviation from equilibrium

• Work with a massless gas $p^2 = 0$

Moments of f

- Integrating over momenta \rightarrow macroscopic quantities
- Number density

$$n(t, x) =$$

• Current and EMT are higher moments:

$$J^{\mu} = \int \frac{d^d p}{(2\pi)^d} \frac{p^{\mu}}{p^0} f$$

$$\int \frac{d^d p}{(2\pi)^d} f(t, x, p)$$

$$T^{\mu\nu} = \int \frac{d^d p}{(2\pi)^d} \frac{p^{\mu}p^{\nu}}{p^0} f$$

Conservation equations in the RTA

 $p^{\mu}\partial_{\mu}f = -$

• Integrate over momenta

$$\int \frac{d^d p}{(2\pi)^d} \frac{1}{p^0} p^{\mu} \partial_{\mu} f = \partial_{\mu} J^{\mu} = \int \frac{d^d p}{(2\pi)^d} \frac{1}{p^0} \frac{p^{\mu} u_{\mu}}{\tau_R} \left(f - f^{\text{eq}} \right)$$

• Conservation of currents/emt \Rightarrow RTA matching conditions

$$\int \frac{d^d p}{(2\pi)^d p^0} (f - f^{eq}) =$$

$$\frac{p^{\mu}u_{\mu}}{\tau_R} \left(f - f^{\text{eq}} \right)$$

$$J^{\mu} = \int \frac{d^d p}{(2\pi)^d} \frac{\mu}{\mu}$$

$$\int \frac{d^d p}{(2\pi)^d} \frac{p^{\mu}}{p^0} (f - f^{eq}) = 0$$

Linear response in the RTA

- Sources: gauge field, δA_{μ} , and metric perturbation, $\delta g_{\mu\nu}$
- Sources induce a change in equilibrium values:
 - $T(t, x^{i}) = T_0 + \delta T(t, x^{i})$
 - $\mu(t, x^i) = \mu_0 + \delta \mu(t, x^i)$
 - $u^{\mu}(t, x^{i}) = (1, 0, 0, 0) + \delta u^{\mu}(t, x^{i})$
- Leading to a change in the distribution function: $f^{\mathrm{eq}}(t, \mathbf{x}, \mathbf{p}) =$ $f(t, \mathbf{x}, \mathbf{p}) =$

$$= f_0(\mathbf{p}) + \delta f^{eq}(t, \mathbf{x}, \mathbf{p}),$$
$$= f_0(\mathbf{p}) + \delta f(t, \mathbf{x}, \mathbf{p}).$$

Linear response in the RTA

The Boltzmann equation reads

$$\left(-i\omega + i\mathbf{k}\cdot\mathbf{v}\right)\delta f - \frac{f_0}{T_0}\left(\mathbf{v}\cdot\mathbf{E} - \Gamma^0_{\alpha\beta}p^0v^\alpha v^\beta\right) = -\frac{\delta f - \delta f^{\mathrm{eq}}}{\tau_R}$$

Solution is given by

$$\delta f = \frac{\frac{f_0}{T_0} \tau_R \mathbf{E} \cdot \mathbf{v} - \frac{f_0}{T_0} \tau_R \Gamma_{\alpha\beta}^0 p^0 v^\alpha v^\beta + \delta f_{eq}}{1 + \tau_R (-i\omega + i\mathbf{k} \cdot \mathbf{v})}$$

- Integration over moments gives δJ^{μ} and $\delta T^{\mu\nu}$
- Use matching conditions to solve self-consistently for $\delta T, \delta \mu, \delta u^{\mu}$
- Compute correlators via variational approach

$$J^{\mu} = J_0^{\mu} - G_{JJ}^{\mu,\nu} \delta A_{\nu} - \frac{1}{2} G_{JT}^{\mu,\alpha\beta} \delta g_{\alpha\beta} + \dots,$$

$$T^{\mu\nu} = T_0^{\mu\nu} - \frac{1}{2} G_{TT}^{\mu\nu,\alpha\beta} \delta g_{\alpha\beta} - G_{TJ}^{\mu\nu,\alpha} \delta A_{\alpha} + \dots,$$

Momentum relaxation

- Consider a gas of particles with dilute impurities
- Extra scattering in collision term due to impurities

$$C[f] = \frac{p^{\mu}u_{\mu}}{\tau_R} \left(f - f_{eq} \right) - \frac{p^{\alpha}u_{\alpha}}{T} u_{\mu}\Gamma^{\mu}_{\nu}p^{\nu}f$$

where $\Gamma^{\mu}_{\nu} = \text{diag}(0, \Gamma_{\perp}, \Gamma_{\parallel})$

Leads to momentum relaxation in conservation equation

(Can also have energy/number/etc. relaxation, see Amoretti et al. 2014)

$$\nabla_{\mu}T^{\mu\nu} = \begin{cases} 0, & \nu \\ -\Gamma T^{0i}, & \nu \end{cases}$$
$$\nabla_{\mu}J^{\mu} = 0, \end{cases}$$

Results: 3+1 d

- Black points denote poles
- Squiggle is a logarithmic $T \neq 0$ branch cut

$$\omega = \pm k - rac{i}{\tau_R}$$

$$T, \Gamma_{\parallel} \neq$$

$$T, \Gamma_{\perp} \neq$$

- Red arrows denote quasihydro modes
- Channels arise from SO(2) symmetry around momentum vector

	$ $ $\langle J$	$\langle JJ \rangle$		$\langle TT \rangle$	$\langle TJ \rangle$		
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1
$T \neq 0$			•	•••••••••••••••••••••••••••••••••••••••			
$T, \Gamma_{\parallel} eq 0$	~~~~~			•			
$T, \Gamma_{\perp} \neq 0$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•				
$T, \mu \neq 0$			•	•••••••••••••••••••••••••••••••••••••••		•	
$T,\mu,\Gamma_{\parallel}\neq 0$		•		•			
$T, \mu, \Gamma_{\perp} \neq 0$			•			•	~~~~~~

First computed by Romatschke 2015 $T, \Gamma_{\parallel} \neq 0$ for the massless case

 $T, \Gamma_{\perp} \neq$

 $T, \mu \neq 0$

 $T, \mu, \Gamma_{\parallel} \neq$

Some massive results from 3 days ago: $\frac{T, \mu, \Gamma_{\perp} \neq T}{T, \mu, \Gamma_{\perp} \neq T}$

Hataei, Heydari, Taghinavaz 2504.14591

	$\langle J$	$\langle J \rangle$		$\langle TT \rangle$		$ $ $\langle T$	$ J\rangle$
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1
			•	•			
0							
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
)	•••	•••••••••••••••••••••••••••••••••••••••	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4 0		•		•			
∉ 0		•	•			•	

$$G_J^{0,0}(\omega,k) = -\chi \frac{1 + (i\omega - \frac{1}{\tau_D})\frac{1}{2ik}\ln\left(\frac{\omega - k + \frac{i}{\tau_D}}{\omega + k + \frac{i}{\tau_D}}\right)}{1 - \frac{1}{2ik\tau_D}\ln\left(\frac{\omega - k + \frac{i}{\tau_D}}{\omega + k + \frac{i}{\tau_D}}\right)} \qquad T \neq 0$$

Diffusion pole:

$$\omega = -i\frac{\tau_R}{3}k^2 + \dots$$

 $T, \mu, \Gamma_{\parallel} \neq$

Romatschke 2015

 $T, \mu, \Gamma_{\perp} \neq$

	$ $ $\langle J$	$J\rangle$	$\begin{array}{c c} & \langle TT \rangle \\ \hline spin 0 & spin 1 & spin 2 & spin \end{array}$		$ $ $\langle T$	$J\rangle$	
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1
T eq 0							
$T, \Gamma_{\parallel} \neq 0$		~~~~~~		•			
$T, \Gamma_{\perp} \neq 0$		~~~~~~	•••				
$T, \mu \neq 0$			•			•	
$T, \mu, \Gamma_{\parallel} eq 0$							
$T, \mu, \Gamma_{\perp} \neq 0$			•			•	

RTA branch cut Physical meaning

- Picture a massless gas, no interactions
- Perturbations in z-direction induce overdense regions every $2\pi/k$
- Signal from will arrive with frequency $\omega = k \cos \theta$, which corresponds to a pole
- Integrating over all directions, collection of poles assemble to logarithmic branch cut
- Similar structure seen in hard thermal loops, weak coupling QFTs and plasma physics where the branch cut is associated with Landau-damping

$$G_{T}^{00,00}(\omega,k) = -3(\epsilon_{0} + P_{0}) \left[1 + \frac{T \neq 0}{T + k^{2} \tau_{R} \frac{2k\tau_{R} + i(1 - i\tau_{R}\omega)L}{2k\tau_{R}(k^{2}\tau_{R} + 3i\omega) + i(k^{2}\tau_{R} + 3\omega(i + \tau_{R}\omega))L} \right]$$

$$T, \Gamma_{\parallel} \neq 0$$

$$L = \ln\left(\frac{\omega - k + \frac{i}{\tau_R}}{\omega + k + \frac{i}{\tau_R}}\right) \qquad \qquad \underline{T, \Gamma_{\perp} \neq 1}$$

Sound modes:

 $\omega(k) = \pm \frac{1}{\sqrt{3}}k - \frac{2i}{15}\tau_R k^2 + \mathcal{O}(k^3)$ $T, \mu, \Gamma_{\perp} \neq T$

Romatschke 2015

	$\langle J$	$J\rangle$		$\langle TT \rangle$		$ $ $\langle T$	$J\rangle$
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1
$T \neq 0$							
$T, \Gamma_{\parallel} eq 0$	~~~~~~	~~~~~~		•			
$T, \Gamma_{\perp} \neq 0$			•				
$T, \mu \neq 0$			•			•	
$T, \mu, \Gamma_{\parallel} eq 0$				•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$T, \mu, \Gamma_{\perp} \neq 0$			•			•	

$$G_T^{12,12}(\omega,k) = \frac{3i\omega\tau_R(\epsilon_0 + P_0)}{16} \left[\frac{10}{3}\frac{1 - i\tau_R\omega}{k^2\tau_R^2}\right]$$

 $T \neq 0$

$$+ \frac{2(1 - i\tau_R\omega)^3}{k^4\tau_R^4} + i\frac{\left((1 - i\tau_R\omega)^2 + k^2\tau_R^2\right)^2}{k^5\tau_R^5}L\right] \xrightarrow{T,\Gamma_{\parallel}\neq 0}$$

$$L = \ln \left(\frac{\omega - k + \frac{i}{\tau_R}}{\omega + k + \frac{i}{\tau_R}} \right) \qquad \frac{T, \Gamma_{\perp} \neq 0}{T, \mu \neq 0}$$

Shear viscosity

$$\frac{\eta}{s} = \frac{1}{s} \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G^{12,12} = \frac{\tau_R T_0}{5} \qquad \frac{T, \mu, \Gamma_{\parallel} \neq 0}{5}$$

Romatschke 2015

	$ $ $\langle J$	$\langle J \rangle$		$\langle TT \rangle$		$\langle T \rangle$	$J\rangle$
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1
			•				
0	~~~~~~						
0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~		
0	•••	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~~	•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4 0		•		• •	~~~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
∉ 0		•	•			•	

Quasihydro crossover, as seen in numerous holographic models

	$\langle J$	$J\rangle$		$\begin{array}{c c} \langle TT \rangle \\ \hline spin 1 & spin 2 & spin \\ \hline \end{array}$		$ $ $\langle T$	$\langle TJ \rangle$	
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1	
$T \neq 0$	• •		• •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
', $\Gamma_{\parallel} eq 0$				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~			
$\Gamma, \Gamma_{\perp} eq 0$	~~~~	~~~~~~	• •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
$\Gamma, \mu eq 0$		~~~~~	• •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•		
$\mu, \Gamma_{\parallel} eq 0$		•					~~~~~	
$\mu, \Gamma_{\perp} eq 0$			• •	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		•		

TT correlator with momentum dissipation

$$G_{TT}^{00,00} = -3(\varepsilon_0 + P_0) \left(1 + \frac{k^2 \tau_R (2k\tau_R + L(\tau_R \omega + i))}{-6ik\tau_R \omega(\Gamma_{\parallel} \tau_R - 1) + 3L\omega(\Gamma_{\parallel} \tau_R - 1)(1 - i\tau_R \omega) + 2k^3 \tau_R^2 + ik^2 R^2} \right)$$

Finite density and temperature $T, \Gamma_{\parallel} \neq 0$ Factorization of analytic structure! $T, \Gamma_{\perp} \neq 0$ Sound + diffusion

 $T, \mu, \Gamma_{\parallel} \neq$

 $T, \mu, \Gamma_{\perp} \neq$

	$ $ $\langle J$	$ J\rangle$		$\langle TT \rangle$		$ $ $\langle T$	$J\rangle$
	spin 0	spin 1	spin 0	spin 1	spin 2	spin 0	spin 1
$T \neq 0$	• • •		•	•			
$T, \Gamma_{\parallel} \neq 0$				•	~~~~~~		
$T, \Gamma_{\perp} \neq 0$			•	•	~~~~~~		
$T, \mu \neq 0$			•	•••••••••••••••••••••••••••••••••••••••		•	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$T, \mu, \Gamma_{\parallel} \neq 0$				•			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
$T, \mu, \Gamma_{\perp} eq 0$			•	•		•	~~~~~~

Finite T and μ

$$\begin{aligned} G_{JJ}^{0,0} &= \frac{\chi \left(2k\tau_R + (\omega\tau_R + i)L\right)}{4 \left(L - 2ik\tau_R\right)} \\ &\times \left(i + \frac{3k^2\tau_R^2 \left(2ik\tau_R - ik^2\tau_R^2\right)}{2k^3\tau_R^3 + ik^2\tau_R^2L + 6i\omega k\tau_R^2 + 3ik^2\tau_R^2}\right) \end{aligned}$$

22

Results: 2+1 d

- Black points denote poles \bullet
- Squiggle is a square root branch cut

$$\omega = \pm k - \frac{i}{\tau_R}$$

- Two types of collisions!
- Red: collision at $k \sim \Gamma_{\parallel}$
- Blue: collision at $k = 1/\tau_R$
- Channels due to \mathbb{Z}_2 symmetry associated with parity transformations

 $T, \mu, \Gamma_{\perp} \neq 0$

• JJ correlator in the even channel have additional poles

$$\omega = \frac{-i \pm \sqrt{k^2 \tau_R^2 - 1}}{\tau_R}$$

• Usual diffusion pole:

$$\omega = -i\frac{\tau_R}{2}k^2 + \dots$$
 T, μ

Gapped mode:

$$\omega = -\frac{2i}{\tau_R} + \frac{i}{2}\tau_R k^2 + \dots$$

 $T, \mu, \Gamma_{\parallel} \neq 0$

 $T, \mu, \Gamma_{\perp} \neq 0$

JJ correlator in 2+1

$$G_{JJ}^{0,0} = \chi \frac{(R + i\omega\tau_R - 1)}{R - 1} \frac{\left(-3k^4\tau_R^4 + k^2\tau_R^2(3R + \omega\tau_R(3\omega\tau_R + 4i) - 3) + 2\omega\tau_R(\omega\tau_R + i)(R + i\omega\tau_R - 1)\right)}{3R\left(k^2\tau_R^2(R - 1) + 2i(R - 1)\omega\tau_R - 2\omega^2\tau_R^2\right)} R = \sqrt{k^2\tau_R^2 - (\omega\tau_R - 1)}$$

JJ correlator in holography

FIG. 3. Poles (crosses) and zeros (circles) in the lower-half complex frequency plane of C_{tt} = $-\chi^2 q^2/\Pi^T(w,q)$, the R-charge density correlation function of the $\mathcal{N}=8$ supersymmetric Yang-Mills CFT. The positions of the poles and zeros are interchanged for $C_{yy} = \Pi^T$.

Strong coupling - yet similar collision!

Finite temperature, density and momentum relaxation

Channel with two collisions!

Red at $k_* = \Gamma_{\parallel}/\sqrt{2}$ Blue at $k = 1/\tau_R$ $T, \mu \neq 0$

 $T, \mu, \Gamma_{\parallel} \neq 0$

 $T, \mu, \Gamma_{\perp} \neq 0$

Thermoelectric JJ correlator with momentum dissipation

$$G_{JJ}^{0,0} = \frac{\chi(R + i\tau_R\omega - 1)}{R - 1} \frac{1}{3R} \times \left(k^2 \tau_R^2 (\tau_R \omega (2i\Gamma_{\parallel} \tau_R + \omega))\right)$$

$$-2\omega\tau_R\tilde{\Gamma}_{\parallel}(\tau_R\omega+i)($$

Thermoelectric coefficients

Thermoelectric effect

Seebeck effect: temperature gradient \Rightarrow electric field

Peltier effect: electric gradient \Rightarrow temperature gradients

 \Rightarrow Apply computed correlators to determine thermoelectric coefficients

Seebeck 1821

Peltier 1834

Thermopile from Leopoldo Nobili

Rooms XV/XVI museo Galileo

Thermoelectric coefficients

Electric and thermal transport coeffic

Heat current:
$$\delta Q^i = \delta T^{0i} - \mu_0 \delta J^i$$

Compute via Kubo formula, e.g.

Hartnoll, Kovtun, Müller, Sachdev 2007

cients
$$\begin{pmatrix} \delta J^{i} \\ \delta Q^{i} \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T_{0} \alpha^{ij} \\ T_{0} \tilde{\alpha}^{ij} & T_{0} \bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E_{j} \\ -\partial_{j} \delta T/T_{0} \end{pmatrix}$$

$$\sigma^{ij}(\omega) = -\frac{1}{i\omega} \lim_{k \to 0} \left(G_{JJ}^{ij}(\omega, k) - G_{JJ}^{ij}(0, k) \right)$$

Thermoelectric coefficients

Find
$$\sigma = \sigma_Q - \frac{1}{i\omega} \frac{n_0}{\varepsilon_0 + P_0}$$
, where n_0 is the nu

$$\sigma_Q = \tau_R \frac{e^{\mu_0/T_0}}{12} \frac{T_0^{d-1}}{\pi^{d-1}}$$

All other coefficients related by the Ward identities

$$(\mu_0 \sigma + T_0 \alpha)i\omega = -n_0$$

• Satisfies the Onsager relations $\alpha = \tilde{\alpha}$

Hartnoll, Kovtun, Müller, Sachdev 2007
$$\begin{pmatrix} \delta J^i \\ \delta Q^i \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T_0 \alpha^{ij} \\ T_0 \tilde{\alpha}^{ij} & T_0 \bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E_j \\ -\frac{1}{T_0} \nabla_j \delta T \end{pmatrix}$$

umber density and

 s_0 ... entropy density

 n_0 ... number density

$$(\bar{\kappa} + \mu_0 \alpha)i\omega = -s_0$$

Thermoelectric coefficients With momentum breaking Find $\sigma = \sigma_Q - \frac{1}{i\omega - \Gamma} \frac{n_0}{\varepsilon_0 + P_0}$, where $\sigma_Q = \tau_R \frac{e^{\mu_0/T_0} T_0^{d-1}}{12 \pi^{d-1}}$

All other coefficients related by the Ward identities

$$(\mu_0 \sigma + T_0 \alpha)(i\omega - \Gamma) = -n_0$$

• Satisfies the Onsager relations $\alpha = \tilde{\alpha}$

Hartnoll, Kovtun, Müller, Sachdev 2007

$$\begin{pmatrix} \delta J^i \\ \delta Q^i \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T_0 \alpha^{ij} \\ T_0 \tilde{\alpha}^{ij} & T_0 \bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E \\ -\frac{1}{T_0} \bar{\kappa}^{ij} \end{pmatrix}$$

 s_0 ... entropy density

 n_0 ... number density

$$(\bar{\kappa} + \mu_0 \alpha)(i\omega - \Gamma) = -s_0$$

Outlook: beyond the RTA

Outlook

- A century on, kinetic theory is a key workhorse in QGP physics (e.g. KøMPøST, Cooper-Frye formula in freeze-out), plasma physics and other weak coupling settings
- Kirkwood-Green-Yvon (BBGKY) hierarchy
- Of course, this is done for simplifying rea
- However, what if we keep f_2, f_3, \ldots ?
- Can we maybe say something about long-range correlations?

However, starting point is already a truncation from the full Born-Bogoliubov-

Ultra-long range correlations in small systems

0.0

BBGKY hierarchy

- N-particle distribution function $f_N = f_N(t, x_1, \dots, x_N, p_1, \dots, p_N)$
- Evolution is given by Liouville equation

$$\mathscr{L}_N f_N = \partial_t f_N + \{ I \}$$

• N-particle Hamiltonian is e.g.

$$H_{N} = \sum_{i=1}^{N} \frac{p_{i}^{2}}{2m} + V(r_{i})$$

• Exact, but not practical!

 $\{A, B\} = \frac{\partial A}{\partial x^{i}} \frac{\partial B}{\partial p_{i}} - \frac{\partial B}{\partial x^{i}} \frac{\partial A}{\partial p_{i}}$ $H_N, f\} = 0$

 $r_i) + \sum_{i < j} U(r_i - r_j)$

BBGKY hierarchy

Introducing reduced distribution function

$$f_{n-1} \sim \int d^3 x_n d^3 p_n f_n$$

Recast Liouville equation as tower of equations

$$\partial_t f_n - \{f_n \partial_t H_n\} + \{f_n P_n\} d^3 r_n G_n f_n P_n + 1 \frac{\partial U}{\partial \vec{r}} \cdot \frac{\partial f_{n+1}}{\partial \vec{p}}$$

• Still exact! Still unmanageable! Time to truncate...

BBGKY hierarchy truncation

- $\partial_t f_n \{f_n, H_n\} = C[f_{n+1}]$
- Typical truncation at first level stosszahlansatz/molecular chaos $C[f_2] \approx C[f_1f_1]$
- Key assumption: uncorrelated particles prior to collision

$$C[f_1f_1] = C_{1\to 2} + C_{2\to 2} + \dots$$
 or t

- What is effect of higher levels? Systems with $\tau_R > \tau_C > \dots$
- the RTA: $C[f_1f_1] = -\frac{f_1 f_1^{eq}}{\tau_R}$

Beyond the RTA

$$\mathscr{L}_1 f_1 = C[f_2], \quad \mathscr{L}_2 f_2 = C[f_3], \dots$$

Decompose into uncorrelated and correlated parts lacksquare

$$f_2 = f_1 f_1 + g_{12}$$

• Approximate with RTA-like term, use long range potential

$$\begin{aligned} \mathscr{L}_{1}f_{1} &= -\frac{f_{1} - f_{1}^{(eq)}}{\tau_{R}} + C[g_{12}], \\ \mathscr{L}_{2}g_{12} &= -\frac{g_{12} - g_{12}^{(eq)}}{\tau_{C}} + C[f_{3}], \dots \end{aligned}$$

Analytic access to computed correlators, tower of branch cuts...

Grozdanov, AS 2024

Summary

- Have complete analytical set of correlators for $T, \mu, \Gamma \neq 0$
- Direct access to dispersion relations, transport coefficients
- species, long time tails ...

• Future directions: going beyond the RTA, scale dependent $\tau_R(p)$ a la Kurkela-Wiedemann 2017, including magnetic fields, massive particles, multiple

Relating sources of response to perturbations

- How do we get from $(\delta g_{\mu\nu}, \delta A_{\mu})$ to $(\delta E_{\mu}, \delta T)$?
- Under diffeos $\delta g'_{\mu\nu} = \delta g_{\mu\nu} + \partial_{\mu}\xi_{\nu} + \partial_{\nu}\xi_{\mu}$. $A'_{\mu} = A_{\mu} + A_{\nu}\partial_{\mu}\xi^{\nu} + \xi^{\nu}\partial_{\nu}A_{\mu}$.
- Choose $\xi_{\mu} = -\frac{1}{i\bar{\omega}}\frac{\delta T}{T_0^3}\delta^{\bar{t}}_{\mu},$
- Leads to $\delta g'_{tt} = 0$, $\delta g'_{tj} = -\frac{1}{i\omega} \frac{\partial_j \delta T}{T_0}$, $\delta A'_j = \frac{E_j}{i\omega} \mu_0 \frac{1}{i\omega} \frac{\partial_j \delta T}{T_0}$.
- Finally, the thermoelectric matrix reads

$$\begin{pmatrix} \delta J^i \\ \delta Q^i \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & T_0 \alpha^{ij} \\ T_0 \tilde{\alpha}^{ij} & T_0 \bar{\kappa}^{ij} \end{pmatrix} \begin{pmatrix} E_j \\ -\frac{1}{T_0} \nabla_j \delta T \end{pmatrix} \qquad = \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{$$

 $\Rightarrow \quad \begin{pmatrix} \delta J^i \\ \delta Q^i \end{pmatrix} = \begin{pmatrix} \sigma^{ij} & \alpha^{ij}T_0 \\ \tilde{\alpha}^{ij}T_0 & \bar{\kappa}^{ij}T_0 \end{pmatrix} \begin{pmatrix} i\omega\delta A'_j + i\omega\mu_0\delta g'_{tj} \\ i\omega\delta g'_{tj} \end{pmatrix}$

Energy-energy correlator

The stress-energy tensor correlators are given in the longitudinal (sound, or spin-0) channel by

 $rac{G_T^{00,00}}{3(arepsilon_0+P_0)}$

where

$$\begin{aligned} A &= 4k^{3}\tau_{R}^{2} + k^{2}L\tau_{R}(\tau_{R}\omega + 2i) + 6ik\tau_{R}\omega + 3iL\omega(\tau_{R}\omega + i), \end{aligned} \tag{A5} \\ B &= iLL_{2}(\tau_{R} - \tau_{C})(\tau_{C}\omega + i)\left(\tau_{R}^{2}\omega\left(k^{2}\tau_{C}^{2} + 3(\tau_{C}\omega + i)^{2}\right) + i\tau_{R}\left(k^{2}\tau_{C}^{2} + 3\tau_{C}^{2}\omega^{2} + 6i\tau_{C}\omega - 6\right) + 3i\tau_{C}\right) \\ &- 2kL\tau_{C}\left(\tau_{R}^{3}\omega\left(2ik^{2}\tau_{C}^{2} - 3i(\tau_{C}\omega + i)^{2}\right) + \tau_{R}^{2}\left(k^{2}\tau_{C}^{2}(-5 - i\tau_{C}\omega) + 3i\left(2\tau_{C}^{3}\omega^{3} + 5i\tau_{C}^{2}\omega^{2} + \tau_{C}\omega + 2i\right)\right) \right) \\ &+ \tau_{R}\tau_{C}\left(4k^{2}\tau_{C}^{2} + 3\tau_{C}^{2}\omega^{2} - 18i\tau_{C}\omega + 9\right) + 3\tau_{C}^{2}(-1 + 3i\tau_{C}\omega)\right) \\ &+ 2kL_{2}\tau_{R}(1 - i\tau_{C}\omega)\left(-2\tau_{R}^{2}\left(k^{2}\tau_{C}^{2} + 3(\tau_{C}\omega + i)^{2}\right) + \tau_{R}\tau_{C}\left(k^{2}\tau_{C}^{2} + 3\tau_{C}^{2}\omega^{2} + 9i\tau_{C}\omega - 9\right) + 3\tau_{C}^{2}\right) \\ &- 4k^{2}\tau_{R}\tau_{C}(\tau_{R} - \tau_{C})\left(2\tau_{R}\left(2ik^{2}\tau_{C}^{2} - 3i(\tau_{C}\omega + i)^{2}\right) - 3\tau_{C}(3\tau_{C}\omega + i)\right), \end{aligned} \tag{A6} \\ C &= 4k^{3}\tau_{R}^{2} + 2ik^{2}L\tau_{R} + 12ik\tau_{R}\omega + 6iL\omega(\tau_{R}\omega + i), \end{aligned} \tag{A7} \\ D &= 2(\tau_{C}\omega + i)\left(2ikL\tau_{C}\left(\tau_{R}^{2}\left(k^{2}\tau_{C}^{2} + 3\tau_{C}^{2}\omega^{2} + 3i\tau_{C}\omega + 3\right) - 6\tau_{R}\tau_{C} + 3\tau_{C}^{2}\right) \\ &- 2ikL_{2}\tau_{R}\left(\tau_{R}^{2}\left(k^{2}\tau_{C}^{2} + 3(\tau_{C}\omega + i)^{2}\right) + 3\tau_{R}\tau_{C}(2 - i\tau_{C}\omega) - 3\tau_{C}^{2}\right) \\ &+ 12k^{2}\tau_{R}\tau_{C}(\tau_{R} - \tau_{C})\left(-i\tau_{R}\tau_{C}\omega + \tau_{R} - \tau_{C}\right) - 3LL_{2}(\tau_{R} - \tau_{C})^{2}\right) \\ &+ 4ik\tau_{C}^{3}(\tau_{R} - \tau_{C})\left(iL\left(k^{2}\tau_{R} + 3\omega(\tau_{R}\omega + i)\right) + 2k\tau_{R}\left(k^{2}\tau_{R} + 3i\omega\right)\right), \end{aligned} \tag{A8}$$

$$\frac{1}{D} = \frac{A + B\hat{\sigma}}{C + D\hat{\sigma}},\tag{A4}$$