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Plan of this talk

• The early-time puzzle in ultrarelativistic heavy ion collisions

• Pre-equilibrium attractors in Bjorken flow 

• Mueller-Israel-Stewart theory

• Kinetic theory [Aniceto, MS, Noronha 2401.06750]

• Incorporating transverse dynamics [An, MS 2312.17237]

https://arxiv.org/abs/2401.06750
https://arxiv.org/abs/2312.17237


The early-time puzzle



The early-time puzzle

• The success of MIS-like models far from equilibrium is puzzling, 
since MIS is not QCD

• This suggests the emergence of some universality far from the 
hydrodynamic domain – a pre-hydrodynamic attractor

• The origin of this attractor is likely due to a confluence of factors

• boost invariance (dynamics)

• dominance of the longitudinal expansion (kinematics)



Energy-momentum in Bjorken flow

(Tμ
ν ) = diag(−ℰ(τ), 𝒫L(τ), 𝒫T(τ), 𝒫T(τ))

Busza et al. 1802.04801

t = τ sinh y
z = τ cosh y



For conformal theories

The energy-momentum tensor can thus be parameterised in terms 
of the energy density and the pressure anisotropy:

This is a measure of distance from equilibrium.

We will also use the dimensionless evolution parameter

Conformal Bjorken flow

𝒜 ≡
𝒫T − 𝒫L

𝒫

w ≡ τT ∼ τ/τR, ℰ(τ) ∼ T(τ)4

ℰ = 𝒫L + 2𝒫T ≡ 3𝒫



The conservation equation reads 

Solutions depend on one integration constant.

The remaining initial data is contained in the pressure anisotropy.  

Often the pressure anisotropy follows an attractor: a universal curve 
which coincides with the prediction of hydrodynamics at late times, 
but which “attracts" generic solutions already at early time.

Attractors describe a partial "loss of memory” of initial states.

Attractors in Bjorken flow

d log T
d log w

=
𝒜 − 6
𝒜 + 12



Bjorken flow in MIS



We consider the simplest variant of conformal MIS:

Equation of state and transport coefficients:

N=4 SYM values of the constants:

MIS theory

u ⋅ ∇ℰ = − (ℰ + p)∇ ⋅ u + uν ∇μπμν,

(ℰ + p)u ⋅ ∇uμ = − Δμν ∇νp − Δμν ∇λπνλ,

ΔμαΔνβu ⋅ ∇παβ = − (1 +
4
3

τπ∇ ⋅ u) πμν − 2ησμν,

ℰ =
1
3

p = CeT4, η =
4
3

CeCηT3, τπ = CτT−1

Ce = 8π2/15, Cη = 1/4π, Cτ = (2 − ln 2)/2π



The Bjorken attractor in conformal MIS
by numerical integration

Cτ (1 +
𝒜
12 ) 𝒜′ +

Cτ

3w
𝒜2 =

3
2 (

8Cη

w
− 𝒜)

Navier-Stokes
An attractor connects

the early, far-from-equilibrium
domain to the hydrodynamic 

region at late times

The pressure anisotropy satisfies 
this first order ODE, where

Cη ≡ η/s, Cτ ≡ τRT

Solutions starting off the attractor
reach its vicinity even if the pressure 

anisotropy is large so the system 
is still far from equilibrium. 

There is a rapid reduction of 
complexity initially, followed by

a period of more moderate 
loss of memory 



The Bjorken attractor in conformal MIS
the late-time asymptotic view

Navier-Stokes

At asymptotically late times
there is no memory 

of the initial conditions

𝒜 =
8Cη

w
⏟

Navier−Stokes

+
16CηCτ

3w2

2nd order

+ … = ∑
n>0

a(0)
n

wn

gradient expansion

The expansion coefficients do not 
depend on initial conditions



The Bjorken attractor in conformal MIS
the transseries view

𝒜 =
8Cη

w
⏟

Navier−Stokes

+
16CηCτ

3w2

2nd order

+ … = ∑
n>0

a(0)
n

wn

gradient expansion

+ (σ w
Cη
Cτ e− 3

2Cτ
w)∑

n≥0

a(1)
n

wn

1st transseries sector

+ …

Different initial conditions are captured 
by exponentially-suppressed corrections 
to the asymptotic gradient series through 

the transseries parameter. 

The scale of the exponential damping 
is set by the relaxation time, which is 

the non-hydrodynamic mode frequency.

Navier-Stokes



• Expansion-dominated early-time stage

• Pre-hydrodynamic stage (non-hydrodynamic mode decay)

• Asymptotic (hydrodynamic) stage

The Bjorken attractor in conformal MIS
three stages

Navier-Stokes

The pre-hydrodynamic stage 
depends on both the model parameters

 and the initial state

The expansion-dominated stage
depends weakly on model parameters

which points to its kinematic origin

The asymptotic stage
is independent of initial conditions



Divergence of the gradient expansion 

• The gradient expansion 

• describes the asymptotic near-equilibrium limit

• has a vanishing radius of convergence

• contains all the information about the theory

• The transseries

• contains all the initial data 

• each sector can be obtained from the perturbative sector



Bjorken flow in BERTA



The Boltzmann Equation in the Relaxation Time Approximation:

There is an early-time attractor easily seen numerically and studied 
analytically by various means.

One approach is to use moments

It will be convenient to use the dimensionless moments 

The BERTA and moments
for Bjorken flow

( ∂
∂τ

−
pz

τ
∂

∂pz ) f(τ, p) =
feq(p/T ) − f(τ, p)

τR
, τR = γT (τ)−1

ℒn(τ) ≡ ∫
d3p

(2π)3
pP2n(cos ψ) f(τ, p), ∀n ≥ 0, cos ψ = pz /p0

ℳn ≡
ℒn

ℒ0
, n ≥ 1 ⟹ ℳ1 = −

1
3

𝒜



The BERTA can be expressed as a hierarchy of coupled ODEs.

Truncation at level N:

leads to a nonlinear ODE of order N-1.

• At level 2 one obtains an equation similar to conformal MIS: 

• At level 3:

Truncations of the moment hierarchy

ℳn = 0, n ≥ N

w(𝒜 + 12)𝒜′ + 4𝒜2 +
6
7

(21w + 10)𝒜 −
144
5

= 0

w2(𝒜+12)2𝒜′ ′ + w2(A + 12)𝒜′ 2 +
1
11

w(𝒜 + 12)(143𝒜 + 396w + 312)𝒜′ +

+
108
11 (33w2 + 52w + 8) 𝒜 + 16𝒜3 +

18
11

(99w + 40)𝒜2 −
864
385

(231w + 100) = 0



The ODE obtained at any level N 

• has a pre-hydrodynamic attractor 

• the stable fixed point at the origin approximates free streaming

• the gradient expansion correctly reproduces N terms 

• the series has a vanishing radius of convergence

Truncations of the moment hierarchy

𝒜 ∼
∞

∑
n=1

an

wn
=

8/5
w

+
32/105

w2
+ … ⟺ η/s = 1/5



Calculations of these series on an industrial scale is time consuming, 
but can be vastly improved using a generating function: 

• The generating function satisfies a PDE 

• The moment series can be found very efficiently at early/late times

The generating function technique

Gℳ (x, w) =
+∞

∑
n=0

xn ℳn (w)

Aniceto, Noronha, MS 2401.06750

https://arxiv.org/abs/2401.06750


The attractor can also be calculated as series in positive powers of w.

 This series is convergent, so it defines the attractor of BERTA 
directly, without going through ODEs obtained by truncations.

This early time series can be analytically continued to late times

This procedure reproduces the value of the shear viscosity of BERTA 
defined through the gradient expansion

The attractor of BERTA
the series at early times

Aniceto, Noronha, MS 2401.06750

𝒜 =
∞

∑
n=0

cnwn ⟹ Pade[𝒜](70,71) ∼
1.60004

w
+

0.27348
w2

+ …

𝒜 ∼
8Cη

w
+ … ⟺ η/s = 1/5

https://arxiv.org/abs/2401.06750


Transverse dynamics



Transverse dynamics as perturbations
a semi-analytic extension of the Bjorken model  

• The symmetries of Bjorken flow are so restrictive that it cannot  
capture much of the interesting physics

• Can one extend the Bjorken model to incorporate the dynamics in 
the transverse plane in a perturbative way?

• Initially the transverse flow is negligible: we will treat it as a 
perturbation, at the linear level

• Main questions:

• Is the attractor stable?

• Does this approximation capture flow at least qualitatively?

An, MS 2312.07703



Transverse dynamics as perturbations
a semi-analytic extension of the Bjorken model  

• Linearise around a Bjorken background:

• Normalised modes:

• Fourier modes

• Linearised equations: a set of 6 coupled ODEs for each k

T(τ, x) = T(τ) + δT(τ, x)
uμ(τ, x) = uμ + δuμ(τ, x)
πij(τ, x) = πij(τ) + δπij(τ, x)

̂ϕ(τ, x) = ∫
d2k

(2π)2
eik⋅x ̂ϕ(τ, k)

An, MS 2312.07703

δ ̂T(τ, x) =
δT(τ, x)

T(τ)
, δ ̂πij(τ, x) =

δπij(τ, x)
CeT(τ)4



Transverse dynamics as perturbations
stability of perturbations around the attractor (numerics)
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δ ̂T =
4

∑
i=1

σi (Λτ)βie−iωiτ−Ai(Λτ)2/3(1 + …)

Transverse dynamics as perturbations
stability of perturbations around the attractor (late time asymptotics)

A1 = A2 =
α2

Cτc2
∞

, A3 =
3

2Cτ
, A4 =

1
2Cτc2

∞
, A5 = A6 =

3
4Cτ

,

ω1 = − ω2 = c∞k [1 +
2α2

3c2
∞ (2Cτ(1 − α2) −

(1 + α2)Λ2

C2
τ c4

∞k2 )(Λτ)−2/3], ω3 = ω4 = 0

c∞ ≡
1
3 (1 + 4

Cη

Cτ ) , α ≡
Cη

Cτ

Different initial conditions 
are reflected by the amplitudes
which determine the physics 

at freeze-out time
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Transverse dynamics as perturbations
stability of perturbations around the attractor (late time asymptotics)
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δ ̂T =
4

∑
i=1

σi (Λτ)βie−iωiτ−Ai(Λτ)2/3(1 + …)

β1 = β2 =
1

54c4
∞ (1 + 8α2 + 64α4 + 32α6 +

4α2Λ2

C3
τ c4

∞k2 ),

β3 = −
2
3

(1 − α2),

β4 =
2α2

27c4
∞ (1 − 16α2 −

2Λ2

C3
τ c4

∞k2 )

Large wave vector modes are 
damped more strongly 

than small wavelength modes

The exponential corrections 
depend on parameters of the

non-hydrodynamic sector 



Transverse dynamics as perturbations
flow observables

• Flow is usually quantified in terms of coefficients in the expansion 

• These coefficients are can be expressed in terms of transverse 
averages of the perturbations (in real space), e.g.  

• Flow originates entirely from the exponentially-suppressed 
corrections which are still not negligible at freeze-out

v0( ̂p⊥) =
m⊥τf

(2π)3
Σ⊥ [F0 + F1⟨δ ̂T⟩⊥ + F11⟨δ ̂Tδ ̂T⟩⊥ +

1
2

̂p2
⊥ (F3⟨δ ̂πii⟩⊥ + F13⟨δ ̂πiiδ ̂T⟩⊥ + F22⟨δuiδui⟩⊥)],

v2( ̂p⊥) =
̂p2
⊥ (F3⟨δ ̂π11 − δ ̂π22⟩⊥ + F13⟨(δ ̂π11 − δ ̂π22)δ ̂T⟩⊥ + F22⟨δu2

1 − δu2
2⟩⊥)

4(F0 + F1⟨δ ̂T⟩⊥ + F11⟨δ ̂Tδ ̂T⟩⊥) + 2 ̂p2
⊥ (F3⟨δ ̂πii⟩⊥ + F13⟨δ ̂πiiδ ̂T⟩⊥ + F22⟨δuiδui⟩⊥)

,

dN(p⊥, ϕ)
p⊥dp⊥dϕdy

= v0(p⊥)(1 +
∞

∑
n=1

2vn(p⊥)cos(nϕ))



Transverse dynamics as perturbations
flow observables

• Sadly, the Fourier transform is inverted numerically

• Elliptic flow is captured at a qualitative level

• There is some sensitivity the value of the relaxation time 



Summary

• Early-time attractors provide a window of opportunity for 
hydrodynamic models

• Asymptotic methods serve as an essential toolkit allowing for 
some analytic studies

• Physics at freeze-out is captured by exponentially-suppressed  
corrections to the Bjorken attractor


