

-10

ry [fm]

LÉVY WALK IN HEAVY-ION COLLISIONS **IDEAS, FACTS, QUESTIONS (A BYOE TALK)**

MÁTÉ CSANÁD (ELTE EÖTVÖS LORÁND UNIVERSITY, BUDAPEST) HYDRO WORKSHOP, GALILEO GALILEI INSTITUTE, FIRENZE, APRIL 24, 2025

CONTENTS

Ideas

- Lévy walk, femtoscopy, simulations
- Facts
 - Measurements, comparisons
- Questions
 - How to understand all this?

CONTENTS

• Ideas

- Lévy walk, femtoscopy, simulations
- Facts
 - Measurements, comparisons
- Questions
 - How to understand all this?

LÉVY WALK IN NATURE

- Random variables with no finite 2nd moment
 → central limit theorem does not apply
- Generalized central limit theorem does
 → sum follows Lévy-stable distribution
- Found in chemical, biological, physical processes

Nature 451 (2008) 1098 Nature 453 (2008) 495 Nature 449 (2007) 1044 Nature 465 (2010) 1066 Nature 486 (2012) 545

https://www.nature.com/articles/s42003-021-02256-1

HBT OR FEMTOSCOPY IN HIGH ENERGY PHYSICS

- R. Hanbury Brown, R. Q. Twiss observing Sirius with radio telescopes
 - Intensity correlations vs detector distance \Rightarrow source size
 - Measure the sizes of apparently point-like sources!
- Goldhaber et al: applicable in high energy physics
- Understanding: Glauber, Fano, Baym, ...
 Phys. Rev. Lett. 10, 84; Rev. Mod. Phys. 78 1267, ...
 - Momentum correlation C(q) related to source S(r)
 - $C(q) \cong 1 + \left| \int S(r) e^{iqr} dr \right|^2$ (under some assumptions)
 - Can be expressed with distance distribution D(r):

 $C(q) \cong 1 + \int D(r)e^{iqr}dr$

- Neglected: pair reconstruction, final state interactions, multi-particle correlations, coherence, ...
- What is the source shape? Can be explored via femtoscopy

source function S(r) correlation funct. C(q)

LÉVY DISTRIBUTIONS IN HEAVY-ION PHYSICS

10-2

8 9 10

Source function from HR model, 0-20%, 0.20-0.36GeV

hep-ph/0702032

- Central limit theorem, diffusion, and thermodynamics lead to Gaussians
- Measurements suggest phenomena beyond Gaussian distribution
- Lévy-stable distribution (symmetric): $\mathcal{L}(\alpha, R; r) = \frac{1}{2\pi} \int d^3q e^{iqr} e^{-\frac{1}{2}|qR|^{\alpha}}$
 - From generalized central limit theorem
 - Power-law tail $\sim r^{-1-\alpha}$ if $\alpha < 2$
 - Special cases: $\alpha = 2$ Gaussian, $\alpha = 1$ Cauchy
- Shape of the correlation functions with Lévy source: $C_2(q) = 1 + \lambda \cdot e^{-|q_R|^{\alpha}}$ Csörgő, Hegyi, Zajc, <u>Eur.Phys.J. C36 (2004) 67-78</u>
- Parameters: strength λ , scale R, shape α
- Lévy source seen & exponent measured from SPS through RHIC to LHC NA61 [EPJC83(2023)919], PHENIX [PRC97(2018)064911 & PRC110(2024)064909], CMS [PRC109(2024)024914]

COMPARING DIFFERENT SOURCE SIZE MEASURES

WHY DO LÉVY SHAPES APPEAR, WHY IS IT IMPORTANT?

Apr 24, 2025

200 150 E

100

- A more comprehensive list of possible reasons:
 - Jet fragmentation (Csörgő, Hegyi, Novák, Zajc, Acta Phys.Polon. B36 (2005) 329-337) -
 - See also Caucal, Mehtar-Tani, JHEP 09 (2022) 023
 - Important in e^+e^- , see L3 Collaboration, Eur.Phys.J.C 71 (2011) 164
 - Critical phenomena (Csörgő, Hegyi, Novák, Zajc, AIP Conf.Proc. 828 (2006) no. 1, 525-532)
 - Role in the few GeV region? Affected by finite size effects?
 - Directional or event averaging (Cimerman et al., Phys.Part.Nucl. 51 (2020) 282)
 - Ruled out by event-by-event and 3D analyses
 - Lévy walk (BJP37(2007); PRB103(2021), Entropy24(2022); PLB847(2023); Comm.Phys.8(2025)55)
 - Only plausible explanation (so far!) at high energies and large systems
- Importance of utilizing Lévy sources, leaving α as parameter:
 - Measuring α and R: quark-hadron transition, critical point, etc.
 - Measuring λ : In-medium mass modification, coherent pion production

LÉVY WALK IN SCATTERING

- Lévy walk and Lévy flight: known in ecology, climatology, etc.
- In HIC: increasing mean free path, step size increases
 - Seen in expansion under Coulomb potential in solid-state physics
- Observed in UrQMD and EPOS (Commun. Phys. 8 (2025) 55)
 - Scatterings, decays, coalescence contribute to Lévy walk (as discussed later)
 - Interestingly, long-range Coulomb not implemented usually

E. I. Kiselev, Phys. Rev. B 103, 235116 (2021)

Figure 1. The Figure shows the step size distribution $p(\Delta r)$ of a random walk as performed by Coulomb interacting, diffusing particles in two dimensions. At large step sizes, the distribution clearly follows the $p \sim \Delta r^{-3}$ power-law which leads to the superdiffusive dynamics described by Eq. (1). The data was obtained by integrating the system of coupled Langevin equations of Eq. (56).

CHARGED HADRON CLOUD: A SIDE-NOTE

- Coulomb potential: infinite range, affecting evolution for a long time
- Solid-state physics (as mentioned on previous slide): may cause Lévy flight and power-law tails
- Another interesting effect: distortion of flight paths after kinetic freeze-out
 - Phase shift, similar to an Aharonov-Bohm effect (Gribov-90 (2021) 261 and IJMPA 40 (2025) 2444007)
- Phase shift decreases 2- & 3-particle corr. strengths λ_2 & λ_3

exaggerated illustration

Apr 24, 2025

simulated transverse path

HOW DO THE TAILS EMERGE IN HADRON SCATTERING?

• UrQMD: 4 type of processes, scattering (2 \rightarrow 2), decay (1 \rightarrow N), coalescence (2 \rightarrow 1), string fragm. (1 \rightarrow N)

Apr 24, 2025

• Step before the given process; sum of steps: freeze-out coordinate distribution

COUPLE HYDRO WITH URQMD: EPOS, EVENT-BY-EVENT

- EPOS model: parton-based Gribov-Regge theory (PBGRT)
 - Werner et al., PRC82 (2010) 044904, PRC89 (2014) 064903, .
- Source observed in four stages:
 - a) CORE, primordial pions: close to Gaussian
 - b) CORE, with decay products: power-law structures
 - c) CORE+CORONA+UrQMD, primordial pions: Lévy shape
 - d) CORE+CORONA+UrQMD, with decay products: Lévy shape
 - Radii in the four stages (one example event) $3.59 \text{ fm} \rightarrow 4.89 \text{ fm} \rightarrow 7.36 \text{ fm} \rightarrow 7.45 \text{ fm}$
 - Shape (α) change: 2.00 \rightarrow 1.77 \rightarrow 1.55 \rightarrow 1.46
- Scattering stage needed for Lévy shaped sources?
- Can one relate the observed HBT radii to the hydro phase homogeneity lengths?

LÉVY SHAPES IN SINGLE 3D EPOS EVENTS, 3D

- What if the Lévy shapes appeared only because of directional averaging?
- Let's check 3D event shapes in EPOS! \rightarrow 3D Lévy works, with similar α and radii (as those in ID)

Apr 24, 2025

Clear physical reason: Lévy walk

Comm.Phys.8(2025)55, https://www.nature.com/articles/s42005-025-01973-x

CONTENTS

• Ideas

- Lévy walk, femtoscopy, simulations
- Facts
 - Measurements, comparisons
- Questions
 - How to understand all this?

CENTRALITY DEPENDENCE IN 200 GEV AU+AU, PHENIX

- Lévy-index α measured in 200 GeV Au+Au collisions at PHENIX, approximately constant in m_T
- PHENIX Au+Au $\sqrt{s_{NN}}$ = 200 GeV PHENIX Au+Au $\sqrt{s_{NN}}$ = 200 GeV PHENIX Au+Au √s_{NN} = 200 GeV • $\alpha_0 = \langle \alpha(m_T) \rangle$ versus N_{part} : $\pi^{+}\pi^{+} + \pi^{-}\pi^{-}$ $\pi^{+}\pi^{+} + \pi^{-}\pi^{-}$ $\pi^{+}\pi^{+} + \pi^{-}\pi^{-}$ decrease for central collisions 1.8 0-10% 10-20% 20-30% Due to longer time to develop tails? 1.6 1.4 PHENIX paper: <u>PRC110(2024)064909</u> α₀ PHENIX Au+Au $\sqrt{s_{NN}}$ = 200 GeV ъ PHENIX Au+Au $\sqrt{s_{NN}}$ = 200 GeV PHENIX Au+Au $\sqrt{s_{NN}}$ = 200 GeV PHENIX Au+Au Vs_{NN} = 200 GeV 1.5 $\pi^{+}\pi^{+} + \pi^{-}\pi^{-}$ $\pi^{+}\pi^{+} + \pi^{-}\pi^{-}$ $\pi^{+}\pi^{+} + \pi^{-}\pi^{-}$ (a) 30-40% 40-50% 50-60% 1.4 1.8 1.6 1.3 1.4 1.2 1.2 0.5 0.6 0.7 0.8 0.3 0.4 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.2 0.3 0.4 0.5 0.7 0.8 0.6 250 300_N 50 150 200 m_T [GeV] m_T [GeV] m_⊤ [GeV]

CENTRALITY DEPENDENCE IN 200 GEV AU+AU, PHENIX

- As predicted for Gaussian source
 - Why does it work here?
 - Does hydro drive radii?

Au+Au

Note: data close to EPOS result

20-30% cent.

EPOS

0.2 0.3 0.4

0.1

🔺 0-10% cent. 📕 10-20% cent.

CORE+CORONA+UrQMD primordial+decay pions

0.5

0.6

6 0.7 0.8 m_τ [GeV/c]

DETAILED EPOS VS DATA COMPARISION AT 200 GEV

- More detailed comparison to EPOS: disagreement for α , agreement for R
- Especially for central collisions
- Denser system in EPOS: larger α
- Maybe due to more normal diffusion?
- Or long-range Coulomb scattering missing in simulations?

THE λ PARAMETER IN 200 GEV AU+AU AT PHENIX

- Large systematic uncertainties
 - Due to pair reconstruction and other experimental effects
- Can be scaled out if dividing by $\lambda_{\max} = \langle \lambda(m_T) \rangle_{m_T \text{ large}}$
- Meaning of λ in core-halo picture: 1.4 $\sqrt{\lambda} = N_{\rm core}/N_{\rm total}$

 Measures resonance fraction among π s

0.8 0.6 0.7 0.2 0.3 0.5 0.6 0.7 0.8 0.2 0.3 0.7 0.8 0.4 04 0.5 0.6 m_T [GeV] m_T [GeV] m_⊤ [GeV]

RESCALED λ VS MONTE-CARLO MODELS: MASS DROP?

Apr 24, 2025

• MC Models based on thermal resonance production, λ measures primordial vs decay pion ratio

CENTRALITY DEPENDENCE OF BEST ETA' MASS

- Significant decrease in all centrality classes, except most peripheral
- Result: $m_{\eta'}^* pprox m_\eta$
- Implies a second transition?
- "Nuclei, as heavy as bulls, through collision generate **new states** of matter" (T. D. Lee)

CENTRALITY DEPENDENCE AT 200 GEV WITH STAR

- Lévy scale R: decreasing trend with m_T and with centrality, similar to PHENIX results
 - Connection to flow and initial geometry, similarly to Gaussian radii
- Lévy exponent α : EPOS quantitatively close, largest discrepancy for central collisions, similar to PHENIX results
 - Effect of Coulomb scattering? PRB103(2021)235116, IJMPA40(2025)2444007
- Correlation strength λ : increase from low to high m_T and from peripheral to central collisions, similar to PHENIX results
 - m_T dependence: might attributed to modified in-medium η' mass? PRL81(1998)2205, PRL105(2010)182301, PRC110(2024)064909

M. Csanád, GGI Hydro Workshop 2025

- Anisotropic Lévy-stable distribution: $\mathcal{L}(\alpha, R; \mathbf{r}) = \frac{1}{2\pi} \int d^3 q e^{iqr} e^{-\frac{1}{2}|\mathbf{q}R^2\mathbf{q}|^{\alpha/2}}$, where \mathbf{R}^2 : matrix of squared radii
- Lévy exponent α : negligible dependence on m_T , average value ~1.3, compatible with ID
- Correlation strength λ : small increase from low to high m_T , compatible with ID

- EPOS and data (both from 3D analysis) comparison partly shows good agreement for radii
 - EPOS analysis described in Commun.Phys. 8 (2025) 1,55
- Moderate discrepancy for R_{side} and α : maybe due to long-range Coulomb scattering (not in EPOS)
 - See effect of Coulomb potential in a 2D solid-state physics paper: E. I. Kiselev, Phys. Rev. B 103, 235116 (2021)

RESULTS AT COLLIDER ENERGIES DOWN TO 7.7 GEV

- What happens at lower collision energies?
- Slow decrease with $\sqrt{S_{NN}}$ from 200 to 7.7 GeV
 - Same trend as Gaussian R
- Decrease in R with m_T
 - Connection to flow
 - Not $1/\sqrt{m_T}$ like trend
 - Qualitatively similar decrease as hydro prediction

RESULTS AT COLLIDER ENERGIES: 7.7 TO 200 GEV

- No strong m_T dependence \ge
- Average α :
 - \approx I.33 at 200 GeV
 - \approx I.62 at 7.7 GeV
- Small, smooth increase in α with $\sqrt{s_{NN}}$ from 200 to 7.7 GeV
 - Connection to decreased density? Or lifetime?
- Significantly below 2.0 and above 1.0 everywhere

RESULTS AT COLLIDER ENERGIES: 7.7 TO 200 GEV

- Clear decrease in λ with $\sqrt{s_{NN}}$ from 200 to 7.7 GeV
 - Decrease in multiplicity
 - Larger role of halo
- Decrease towards small m_T
 - Increase in halo for small m_T
 - Attributed to modified *in-medium η' mass* and U_A(I) restoration in the literature Vance, Csörgő, Kharzeev, <u>PRL81(1998)2205</u> & PHENIX, PRC110(2024)064909

- Non-Gaussian values ($\alpha < 2$); small systematic difference between $\pi^{-}\pi^{-}$ and $\pi^{+}\pi^{+}$ pairs
- 3.9 and 3.2 GeV compatible with each other, no m_T dependence observed
- UrQMD within uncertainties no other effect but rescattering and decays, good agreement (t<50 fm/c!)

LÉVY SCALE R AT FXT ENERGIES

- Decreases towards higher m_T and lower energies
- Small systematic difference between $\pi^-\pi^-$ and $\pi^+\pi^+$ pairs
- Two FXT energies compatible
- UrQMD describes the trends qualitatively well, moderate quantitative mismatch, but ran only until 50 fm/c

LÉVY EXPONENT FROM 3.2 TO 200 GEV

- Non-gaussian values ($\alpha \ll 2$)
- Increasing density for larger $\sqrt{s_{NN}} \rightarrow$ rescattering decreases α ?
- 200 GeV centrality dependence, same trend:
 - Larger α for peripheral collisions
- Trend illustrated by power-law: $\alpha_0 \approx 0.85 + \sqrt{s_{NN}}^{-0.14}$
- No non-monotonic trend in α observed yet, far from conjectured critical value (0.5)
- What do Monte-Carlo models say?

WHAT DOES EPOS SAY?

- Quantitatively agrees for 14-30 GeV
- Disagreement at 7.7 and 200 GeV
 - Band: event-by-event shape variance
- Trend qualitatively different
- Recall: centrality trend was also opposite
- Data: α decreases with multiplicity
 - Same for centrality and $\sqrt{s_{NN}}$
- EPOS: *α* **increases** with multiplicity
 - Same for centrality and $\sqrt{S_{NN}}$
- Maybe due to long-range Coulomb missing?

NA61/SHINE RESULTS

- At I50 AGeV: α (Be+Be) < α (Ar+Sc)
 - Corresponds to $\sqrt{s_{NN}} \approx 16.8 \text{ GeV}$
- Interesting trend of α for smaller energies in Ar+Sc
 - (not incompatible with constant)
- Next step: Xe+La, 3D analysis
- General findings (not shown here)
 - $\alpha(m_T)$ approximately constant
 - $R(m_T)$ shows sign of flow
 - $\lambda(m_T)$ shows no "hole" at low m_T
 - Compare to RHIC energies

URQMD AT NA61 ENERGIES

- Quantitatively not very far from the data for $\sqrt{s_{NN}} = 6$ to 10 GeV
- Larger differences at 13 and 150 AGeV
- Seemingly different UrQMD trend compared to data
- Next analysis in Xe+La system might provide smaller uncertainties

LÉVY EXPONENT FROM 3.2 GEV TO 5 TEV

- Non-gaussian values ($\alpha \ll 2$)
- 200 GeV centrality dependence: smaller α for central collisions
- Same trend with energy: increasing density \rightarrow decreased α : more time for Lévy walk?
- RHIC trend described by power-law: $\alpha_0 \approx 0.85 + \sqrt{s_{NN}}^{-0.14}$
- CMS result at 5 TeV: off the RHIC trend
 - Opposite centrality dependence: smaller α for peripheral collisions
- SPS: interesting, almost non-monotonic trend

CONTENTS

- Ideas
 - Lévy walk, femtoscopy, simulations
- Facts
 - Measurements, comparisons
- Questions
 - How to understand all this?

HOW TO RECONCILE HYDRO HBT & LÉVY WALK?

- Experimental observations:
 - I. Lévy-stable source shapes, far from Gaussian ($\alpha < 2$)
 - 2. Radii (Lévy scales) follow hydro prediction $(R \sim 1/\sqrt{m_t})$
- Simulation results:
 - I. Hadronic scattering & decay (altogether: Lévy walk) create Lévy-stable source, modifies source size & shape
 - 2. Radii (Lévy scales) follow hydro prediction $(R \sim 1/\sqrt{m_t})$ and experiment
 - 3. Results on Lévy exponent (α) significantly differ from experiment
- How to reconcile? What do HBT radii mean if source is distorted after hydro phase?
- Experimental side: measure particle-type dependence!
- Phenomenology side: can hydro contribute to power-law tails?

WHEN DO THE POWER-LAW TAILS FORM?

- Based on EPOS: apparently Gaussian in hydro phase
- Power-law tails due to Lévy walk: scattering processes
 - 2-by-2, decay, coalescence, all add up to a Lévy walk
- How to test? Particle type dependence!
 - Based on elastic cross-sections: $\alpha(p) > \alpha(\pi) > \alpha(K)$ • Humanic, IJMPE15(2006)197, Csanád, Csörgő, Nagy, BJP37(2007)1002
 - Not confirmed by an EPOS LHC analysis! Role of decays and inelastic collisions?

200

150<u>E</u>

100 _ 50

0

1 (thin)

0

UrOML

- Good agreement between kaons and pions, experiment and EPOS
 - Slightly surprising: same source shape for kaons and pions!
 - Very different decays and scatterings, how can source shape end up to be the same?

- Excellent agreement between kaons and pions, experiment and EPOS
 - Slightly surprising: same source for kaons and pions as expected from hydro •
 - Despite role of scattering? Why does it not distort m_T -scaling? Maybe hydro affects shape as well?

CAN HYDRO PRODUCE LÉVY DISTRIBUTED SOURCES?

• Take a simple Maxwell-Jüttner distribution with Cooper-Frye freeze-out

$$S(x,p)d^4x = Nn(x)\exp\left(-\frac{p_{\mu}u^{\mu}(x)}{T(x)}\right)p^{\mu}d^3\Sigma_{\mu}(x)H(\tau)d\tau$$

- Can the resulting distribution be Lévy-stable? Probably, if appropriate thermodynamic fields are chosen
- Does hydrodynamics allow that? Surely, for example in a Hubble-flow and $\tau = \text{const.}$ freeze-out:

•
$$u^{\mu}(x) = \gamma \left(1, \frac{\dot{R}}{R} \vec{r}\right), n(x) = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{L}\left(\frac{r^2}{R^2}\right), T(x) = T_0 \left(\frac{\tau_0}{\tau}\right)^{3/\kappa} \frac{1}{\mathcal{L}(r^2/R^2)} \rightarrow \text{Lévy source, unrealistic observables}$$

- Would the observables still be meaningful (compatible with experiment)? That is not so simple!
 - A non-solution final state: $u^{\mu}(x) = \gamma \left(1, \frac{\vec{r}}{\tau + r}\right), \quad n(x) = n_0 \left(\frac{\tau_0}{\tau}\right)^3 \mathcal{L}\left(\frac{r^2}{R^2}\right), \quad T(x) = T_0 \left(\frac{\tau_0}{\tau}\right)^{3/\kappa}$
 - With this, spectra, flow OK, and Lévy-stable source, and HBT-radii decrease with m_T
 - Can be evolved back numerically; possible with full analytic solution as well?
- Is it compatible with realistic initial conditions?

WHAT ABOUT ALTERNATIVES?

- Usual framework: superdiffusion and subdiffusion, using fractional derivatives
 - Various definitions: Grunwald–Letnikov, Riemann–Liouville, Caputo, Riesz–Feller, ...
 - Caputo version, for $p \in \mathbb{R}^+$, m = [p]: $f^{(p)}(t) = \frac{1}{\Gamma(m-\alpha)} \int_0^t (t-\tau)^{m-1-p} f^{(m)}(\tau) d\tau$
- Fractional diffusion $\frac{\partial u(x,t)}{\partial t^{\gamma}} = D \frac{\partial u(x,t)}{\partial |x|^{\alpha}}$
 - Subdiffusion for $\alpha > 2\gamma$, superdiffusion for $\alpha < 2\gamma$; leads to Lévy-stable distributions for $\gamma = 1, 0 < \alpha < 2$
 - See e.g. Chen et al, <u>Comp. Math. Appl. 59 (2010) 1754</u> or Metzler, Klafter, <u>Physics Reports 339 (2000) 1-77</u>
- What if superdiffusion happens between hydro (small m.f.p.) and free streaming (infinite m.f.p.)?
- How to connect power-law exponent α to QGP or hadron properties?
 - Jet-dominated correlations: anomalous dimension of QCD (Csörgő, Hegyi, Novák, Zajc, <u>APPoIB 36 (2005) 329</u>)
 - At the critical point: critical exponent η (Csörgő, Hegyi, Novák, Zajc, <u>AIP Conf.Proc. 828 (2006) 525</u>)
 - What about the QGP phase, scattering, decays and Lévy-walk?

CONCLUSIONS AND OUTLOOK

- Lévy parameters for pions measured from 3.2 GeV to 5 TeV from SPS through RHIC to LHC
 - Lévy α : between I and 2, decrease with $\sqrt{s_{NN}}$ at RHIC, constant with m_T
 - Interesting trends at SPS and towards LHC, incompatibility with simulations
 - **R**: decrease with m_T , similarly to Gaussian radii
 - Relation to Gaussian through HWHM/HWHI
 - λ : decrease at low m_T , overall increase with $\sqrt{s_{NN}}$
- Possible reasons for power-law tails and Lévy sources:
 - Critical phenomena \rightarrow no non-monotonicity seen in α vs s_{NN}
 - **Resonance decays** \rightarrow part of the reason, predicts alone larger α
 - Hadronic scattering, Lévy walk → plausible explanation
- Questions to be answered:
 - Why are kaon and pion sources similar?
 - Only hadronic phase creates Lévy distributions? Role of hydrodynamics?
 - Origin of Lévy (power-law) exponent?
 - Discrepancy between simulations (UrQMD & EPOS) and data?

THANK YOU FOR YOUR ATTENTION

If you are interested in further developments: 25th Zimányi School Winter Workshop http://zimanyischool.kfki.hu/25/

(and also:WPCF 2026 in Budapest)

BACKUP

ENERGY DEPENDENCE OF LÉVY SOURCE SIZE?

- Experimental observation: $\hat{R} = \frac{R}{\lambda(1+\alpha)}$ doesn't depend on $\alpha \to \text{can estimate } R_{\text{free }\alpha} = R_{\text{Gauss}} \frac{\lambda_{\text{free }\alpha}(1+\alpha)}{\lambda_{\text{Gauss}}(1+2)}$
 - Assuming trends of α and λ as $A \cdot \sqrt{s_{NN}}^B$, with $A_{\alpha} = 1.85, B_{\alpha} = -0.06, A_{\lambda} = 0.6, B_{\lambda} = 0.06$
- Different trends of guesstimated $R_{Lévy}$ and R_{Gauss}
- Caused by shape change with $\sqrt{S_{NN}}$
- Connection of $\sqrt{R_o^2 R_s^2}$ to emission duration: based on Gaussian sources
- Maybe $(R_o^{\alpha} R_s^{\alpha})^{1/\alpha}$ for Lévy source, Csörgő, Hegyi, Zajc, EPJC36(2004)67
- Importance of measuring $R_{o,s,l}$ with free α

 \widehat{R} scaling guesstimate for Lévy radii

original Gaussian radii

 α -powered version –

RESCALING HBT RADII FROM GAUSS TO LÉVY

SOURCE RADII: 3D LÉVY MEASUREMENT VS GAUSSIAN

- Lévy-scale R: usual decreasing trend with m_T
- Free α fits reduce χ^2 by 200-500 units compared to Gaussian fits
- χ^2/NDF values within 1-1.04 for all fits
- Confidence levels (p-values) improve by I-3 orders of magnitude with free α

= 200 GeV

 χ^2 difference

م^{علو} 500 م

 $\chi^2_{\alpha=2}$

300

200

INTERACTIONS

- Plane-wave result, based on $\left|\Psi_{2,q}^{(0)}(r)\right|^2 = 1 + e^{iqr}$, for pair source D(r) $C_2(q,K) \cong \int D(r,K) \left|\Psi_{2,q}^{(0)}(r)\right|^2 dr = 1 + \int D(r,K)e^{iqr}dr$
- If there are interactions, solve Schrödinger eq: $\Psi_{2,a}^{(0)}(r) \rightarrow \Psi_{2,a}^{(int)}(r_1, r_2)$
- For Coulomb, solution is known: $|\Psi_{2,q}^{(C)}(r)|^2 = \frac{\pi\eta}{e^{2\pi\eta}-1} \cdot (\text{hypergeometric expression})$
- Direct fit with this, or the usual iterative Coulomb-correction: $C_{\text{Bose-Einstein}}(q)K(q), \text{ where } K(q) = \int D(r, K) \left| \Psi_{2,q}^{(C)}(r) \right|^2 dr / \int D(r, K) \left| \Psi_{2,q}^{(0)}(r) \right|^2 dr_{\underline{E}^{100}}(r)$
- Complication: need for integrating power-law tails
 - Precalculated in a tabular form, iterative fitting, e.g., PHENIX, PRC97(2018)064911
 - Interpolating functional form, see Csanád, Lökös, Nagy, Phys.Part.Nucl. 51 (2020)238
 - Role of the strong interaction, see Kincses, Nagy, Csanád, PRC102(2020)064912
 - Recent method: EPJC83(2023)1015, code at github.com/csanadm/CoulCorrLevyIntegral
- Many new results, also for the strong interaction: see talk by M. Nagy on Tuesday

HOW TO CALCULATE THE COULOMB EFFECT

- Calculating correlation functions with the Coulomb effect included: time consuming in the past
- Method used in early analyses: Coulomb correction calculated for fixed radius and shape
 - For example, fixing R = 5 fm and $\alpha = 2$
- More consistent method: correlation function with Coulomb FSI precalculated in a tabular form
 - Iterative fitting, see e.g., PHENIX, PRC97 (2018) 6, 064911
- Convenient, but somewhat restricted method: interpolating functional form, in a limited R, α range
 - See Csanád, Lökös, Nagy, Phys.Part.Nucl. 51 (2020) 238, used in arXiv:2306.11574 [CMS], arXiv:2302.04593 [NA61]
- Recent method: see talk by Márton Nagy
 - Nagy, Purzsa, Csanád, Kincses Eur. Phys. J. C 83, 1015 (2023), code at <u>github.com/csanadm/CoulCorrLevyIntegral</u>
 - Recent developments: 3D calculation, protons, see talk by M. Nagy on Wednesday

LÉVY INDEX AS A CRITICAL EXPONENT?

• Critical spatial correlation: ~ $r^{-(d-2+\eta)}$; Lévy source: ~ $r^{-(1+\alpha)}$; $\alpha \Leftrightarrow \eta$?

Csörgő, Hegyi, Zajc, Eur. Phys. J. C36 (2004) 67

QCD universality class ↔ 3D Ising

Halasz et al., Phys.Rev.D58 (1998) 096007 Stephanov et al., Phys.Rev.Lett.81 (1998) 4816

- At the critical point:
 - Random field 3D Ising: $\eta = 0.50 \pm 0.05$ • Rieger, Phys.Rev.B52 (1995) 6659
 - 3D Ising: $\eta = 0.03631(3)$ El-Showk et al., J.Stat.Phys.157 (4-5): 869
- Motivation for precise Lévy HBT!
- Change in α_{Levy} proximity of CEP?

• Finite-size/time & non-equilibrium effects \rightarrow what does power-law tail mean?

⁸ 2.0

-évy index of stability 50 01

Finite-size effects not important? See e.g. Fytas et al, PRE93, 063308 (2016), Ballesteros et al., PLB387 (1996) 125

 $(T - T_c)/T_c$

-0.5

Apr 24, 2025

Color super-

conductor

phases

RHIC-

Beam Energy Scan

LHC

CORRELATION STRENGTH λ : CORE/HALO

- Two-component core+halo source
 - Core: hydrodynamically expanding, thermal medium
 - Halo: long lived resonances ($\gtrsim 10 \text{ fm/c}, \omega, \eta, \eta', K_0^{S}, ...$)
 - Unresolvable experimentally
 - Define $f_C = N_{\rm core}/N_{\rm total}$
- True $q \rightarrow 0$ limit: C(0) = 2
- Apparently $C(q \rightarrow 0) \rightarrow 1 + \lambda$
- $\lambda(m_{\mathrm{T}}) = f_{C}^{2}(m_{\mathrm{T}})$

Bolz et al, Phys.Rev. D47 (1993) 3860-3870; Csörgő, Lörstad, Zimányi, Z.Phys. C71 (1996) 491-497

ROLE OF EVENT AVERAGING?

- Event-averaged source also analyzed
- Not perfectly Lévy shape, very large χ^2
- Nevertheless: similar parameters achieved
 - Event averaged: $\alpha \approx 1.62, R \approx 9.15 \text{ fm}$
 - Event-by-event: $\alpha \approx 1.66, R \approx 8.96 \text{ fm}$
- More reasonable approach for kaons
 - No event-by-event analysis possible for kaons

SOURCE OR PAIR DISTRIBUTION?

Apr 24, 2025

• Under some circumstances (thermal emission, no interactions, ...):

$$C_{2}(q,K) = \int S\left(r_{1}, K + \frac{q}{2}\right) S\left(r_{2}, K - \frac{q}{2}\right) |\Psi_{2}(r_{1}, r_{2})|^{2} dr_{1} dr_{2}$$

$$\approx 1 + \left|\int S(r, K) e^{iqr} dr\right|^{2}$$

• Let us introduce the spatial pair distribution:

$$D(r,K) = \int S\left(\rho + \frac{r}{2}, K\right) S\left(\rho - \frac{r}{2}, K\right) d\rho$$

• Then the Bose-Einstein correlation function becomes:

 $C_2(q,K) \cong \int D(r,K) |\Psi_2(r)|^2 dr = 1 + \int D(r,K) e^{iqr} dr$

- Bose-Einstein correlations measure spatial pair distributions!
- Coulomb and strong Final State Interactions? Under control for Lévy sources

Csanad, Lökös, Nagy, Phys. Part. Nuclei 51 (2020) 238 [arXiv:1910.02231] Kincses, Nagy, Csanad Phys. Rev. C102, 064912 (2020) [arXiv:1912.01381]

ROLE OF THE STRONG INTERACTION

Apr 24, 2025

• In case of other interactions or not identical bosons, the formula still works:

 $C_2(q,K)\cong\int D(r,K)|\Psi_2(r)|^2dr$

- Pair wave function determines $D \leftrightarrow C_2$ connection
- Mesons, baryons: strong interaction; fermions: anticorrelation
- Non-identical pairs: interaction modifies wave function

STRONG INTERACTION FOR PION PAIRS

- Additional potential appearing
- Possible handling: strong phase shift, Modify s-wave component in wave func.
 R. Lednicky, Phys. Part. Nucl.40, 307 (2009)
- Small difference in case of pions

(g)^{1.7} 0[∞]1.6

1.5E

1.4⊟

1.3

1.2

1.1]

 $\alpha = 1.5, \lambda = 1$

R = 4 fm

R = 8 fm

= 6 fm= 8 fm.

Coulomb only

Coulomb + strong

TWO-PARTICLE SPATIAL CORRELATIONS

• Object to be investigated: two-particle source

$$D(r,K) = \int d^4 \rho S\left(\rho + \frac{r}{2}, K\right) S\left(\rho - \frac{r}{2}, K\right)$$

- Experimental results measure power-law tails, Lévy shapes
 - Measure momentum-space correlations, reconstruct D(r) or fit its parameters
- Why do these Lévy shapes appear?
 - What physics does contribute to it? Rescattering, decays?
 - What role does event averaging have in it? Cimerman, Plumberg, Tomasik, Phys.Part.Nucl. 51 (2020) 282, PoS ICHEP2020 538
 - What do specific α values mean?
- Event generator models (like EPOS) direct access to pair-source!
 - Phenomenological investigations of D(r) possible
 - Effects can be turned off or on, investigated separately

EPOS SUMMARY

- D(r) calculated in EPOS evt-by-evt
- Lévy fits done evt-by-evt
- Non-Gaussianity in single events
- Extracting mean, & std.dev. of R, α
- m_T & centrality dependence

KAON ANALYSIS AT STAR

- Data successfully described by Lévy fits
- Lévy-stability parameter α between I and 2
- Kaon and pion source of same shape at the same m_T ?
- Unlike anomalous diffusion expectation of $\alpha(K) < \alpha(\pi)$

M. Csanád, GGI Hydro Workshop 2025

KAON ALPHA

Good agreement with EPOS

KAON R

Good agreement with EPOS

D. Kincses, WPCF 2022

