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Rotation and Polarization : Barnett effect

An initially unmagnetized body becomes magnetized under rotation, due
to spin alignment induced by conservation of total angular momentum.

M = χΩ/γ

where χ is the magnetic susceptibility, Ω is the angular velocity and γ is
the gyromagnetic ratio.

Image source : Front. Phys. 3:54 (2015)



Polarization in lab. QGP?

Image source -
arXiv:0910.4114

Nuclei carry a large orbital angular
momentum (OAM),
L0 = pb ≃ A

√
sNNb/2.

e.g. for
√
sNN = 200 GeV and b = 5

fm, L0 ∼ 5× 105.

A fraction of L0 if transferred to QGP
fireball will result in polarization of
quarks.

A signature of an OAM would be the
polarization of the emitted hadrons



Experimental observation of Λ-polarization

STAR Collaboration, Nature 548, 62-65 (2017)



Purpose of talk !

Currently, there are four main prescriptions for computing spin
polarization, assuming collective rotation of the system.

The purpose is to demonstrate that if the temperature is high and the
lifetime of the fireball is long enough, all four provide “equivalent”
descriptions at freezeout within the experimental uncertainities.

Conclusion based on numerical simulations of spin polarization data
for Λ hyperons produced in Au+Au collisions at

√
sNN =200 GeV.
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Relativistic Hydrodynamics

Continuity equations for energy-momentum and charge conservation

DµT
µν = 0 , DµN

µ = 0

In the Landau frame (Tµ
ν uν = εuµ),

Tµν = εuµuν − (p +Π)∆µν + πµν , Nµ = nuµ + V µ

We consider V µ = 0 for simplicity. The shear-stress tensor (πµν) and bulk
pressure (Π) are treated as dynamical variables, evolution equations are

Π̇ =
ΠNS − Π

τΠ
− δΠΠ

τΠ
Πθ +

λΠπ

τΠ
πµνσµν

π̇⟨µν⟩ =
πµνNS − πµν

τπ
− δππ

τπ
πµνθ +

ϕ7
τπ
π⟨µα π

ν⟩α − τππ
τπ
π⟨µα σ

ν⟩α +
λπΠ
τπ

Πσµν

where
Ȧ = uµDµA , A⟨µν⟩ = ∆µν

αβA
αβ



Model description and parameter calibration

Initial condition: PRC 102, 014909 (2020) and PRC 104, 054908
(2021), six parameters.

Equation of state: NEOS-BQS (PRC 100, 024907 (2019))

Transport coefficients (Cη=0.12):
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Switching hypersurface : Constant energy density, ε = 0.5
GeV/fm3.



SKS, R. Ryblewski, and W. Florkowski, PRC 111, 024907 (2025)



Quantum statistical approach

AOP 338, 32 (2013); PLB 820, 136519 (2021) and PRL 127, 272302
(2021)

Compute local equilibrium density operator (ρ̂LE) by maximizing
entropy (S = −tr[ρ̂ logρ̂]) subject to constraints

nµ tr[ρ̂T̂µν ] = nµT
µν , nµ tr[ρ̂N̂µ] = nµN

µ

In the Belinfante pseudogauge (spin tensor is 0), the procedure gives:

ρ̂LE =
1

ZLE
exp

[
−
∫
Σ
dΣµ

(
βνT̂

µν − ζN̂µ
)]

with βν =
uν
T

, ζ =
µ

T

Evaluate the mean value of a quantum operator as

O(x) = tr[ρ̂LEÔ(x)]

.



Polarization of spin-1/2 particles in a fluid cell is

Sµ(x , p) = − 1

8m
ϵµρστ (1− nF )ϖ

ρσpτ +O(ϖ2)

where ϖρσ is thermal vorticity defined as

ϖρσ =
1

2
(∂σβρ − ∂ρβσ) with βρ =

uρ
T

Mean polarization vector is given by

Sµ(p) =

∫
Σ (dΣ.p) Sµ(x , p)nF (x , p)∫

Σ (dΣ.p) nF (x , p)

Input T , uµ and their gradients from the numerical solution of relativistic
hydrodynamics to compute the above expression.



Hydrodynamic simulation for global polarization



Spin sign puzzle

”Hydrodynamics predict a negative sign of the longitudinal component of
the polarization vector.”

Ann. Rev. Nucl. Part. Sci. 70 (2020) 395

Additional contribution from thermal shear, ξµν = 1
2(∂σβρ + ∂ρβσ), was

derived such that
Sµ(p) = Sµ

ϖ(p) + Sµ
ξ (p)

The sign of longitudinal polarization is still negative.



Isothermal approximation

At high energies µB ≈ 0. Hence, constant energy density implies constant
T on Σ, so that

ρ̂LE ∼ exp

[
− 1

T

∫
Σ
dΣµ T̂µνuν

]
This gives Prescription I (PRL 127, 272302 (2021))

Sµ(p) = −ϵµνρσpσ

∫
dΣ · p nF (1− nF )

[
ωνρ + 2t̂ν

pλ

p·t̂Ξλρ

]
8mΛT

∫
dΣ · p nF

where t̂ = (1, 0, 0, 0) and

ωνρ =
1

2
(∂ρuν − ∂νuρ)

Ξνρ =
1

2
(∂ρuν + ∂νuρ)



Chiral kinetic theory approach

JHEP07(2021)188 and PRL 127, 142301 (2021)

The expression of axial Wigner function Aµ from chiral kinetic theory
is

Aµ =
∑
λ=±

(
λpµfλ +

1

2

ϵµναρpνuα∂ρfλ
p · u

)
Replace fλ with local equilibrium distribution nF (β(ε0 −∆ελ)) with
ε0 = p · u, ∆ελ = −λω · p/(2ε0) and expand to first order in
gradients. Finally, averaging over Σ gives Prescription II

Sµ(p) = Sµ
ϖ(p) + Sµ

ξ,LY(p)

Sµ
ξ,LY(p) = − ϵµνρσ

4m pσ

∫
dΣ·p nF (1−nF )

pλ⊥uν
p·u ξρλ∫

dΣ·p nF

For m = mΛ, Sz(ϕ) has wrong sign. However, for m ≈ 300 MeV, the
sign is correct. “The memory of strange quark polarization is
preserved in the measured Λ polarization”.



Results from Prescriptions I (top) and II (bottom). Image source: PRL 127,
272302 (2021) and PRL 127, 142301 (2021)



Relativistic spin hydrodynamics

Prescriptions I & II assume instantaneous equilibration of spin degrees
of freedom.

Several studies suggest that the spin relaxation time is comparable to
the lifetime of the fireball. This implies that spin dynamics cannot be
neglected.

Spin dynamics is introduced by demanding conservation of total
angular momentum

DµJ
µ,αβ = 0

in addition to conservation of energy-momentum and charge

DµT
µν(x) = 0 , DµN

µ(x) = 0.

We have Jµ,αβ = Lµ,αβ + Sµ,αβ, where Lµ,αβ = Tµ[βxα]. This gives

DµS
µ,αβ = T [βα]

where T [βα] is the antisymmetric part of energy-momentum tensor.



Kinetic theory approach with local collisions only

In the GLW pseudogauge, the energy-momentum tensor is symmetric,
so that total spin is conserved (PRC 97 (2018) 4, 041901)

DµS
µ,αβ = 0

Spin tensor is given by (PRC 98, 044906 (2018))

Sα,βγ = A1u
αωβγ + A2u

αu[βκ
γ]
0 + A3

(
u[βωγ]α + gα[βκ

γ]
0

)
where κ0,µ = ωµαu

α and

A1 = CT
3

π2

[(
4 +

m2

2T 2

)
K2

(m
T

)
+

m

T
K1

(m
T

)]
A2 = 2CT

3

π2

[(
12 +

m2

2T 2

)
K2

(m
T

)
+ 3

m

T
K1

(m
T

)]
A3 = −CT

3

π2

[
4K2

(m
T

)
+

m

T
K1

(m
T

)]
Spin evolution decouples from the background. Numerical solution of
spin hydrodynamics requires µB , T and uµ from the background.



Algorithm

Convert the original problem to solving Riemann problem at each cell
boundary.

Approximate the numerical flux of a Riemann problem using
relativistic HLLE prescription. Compute the net flux entering each
fluid cell and update.

The scheme is conservative. The loss in total spin is between 3-6%.



Numerical solution of spin conservation equations

The spin conservation equations are numerically solved in SKS, R.
Ryblewski and W. Florkowski, PRC 111, 024907 (2025).

Similar to traditional hydrodynamics, we need an initial condition and
information about the spin thermalization time (τ s0 ). We treat the
initial time as a parameter, with two parameters in total: m and τ s0 .

We use the following initial condition for the spin polarization tensor

ωµν(τ
s
0 ) = ϖiso

µν + 4τ̂[µξ
iso
ν]ρu

ρ,

τ̂ = (1, 0, 0, 0) being the unit normal to constant τ hypersurface.

The spin polarization is obatined using Prescription III (see also PRC
105 (2022), 044907)

Sµ(p) = − 1

8mΛ
ϵµνρσpσ

∫
dΣ · p nF (1− nF )ωνρ∫

dΣ · p nF



Note that the initial time for background hydrodynamics is 1 fm.
Also, mΛ = 1.115 GeV.

Simulation results for a fixed m but different τ s0 PRC 111, 024907 (2025)

“Good” fit is obtained if the initial spin time is 4 fm. What happens
between 1 and 4 fm? Dissipative processes are important at early
times, while spin-conserving processes dominate at later stages.



We fix τ s0 = 4 fm,

Simulation results for a fixed τ s0 but different mass (left) m = 300 MeV,
(right) m = 1.115 GeV PRC 111, 024907 (2025)

“Good” fit is obtained for small m. Relaxation seems to be faster for
less massive particles.



Kinetic theory approach with local and non-local collisions

Boltzmann equation with spin DOF (PRD 106 (2022) 11, 116021)

k .∂f (x , k , s) = Cl [f ] + Cnl [f ]

Non-local collisions provide an exchange mechanism between spin and
orbital angular momentum, facilitating spin equilibration.

Image
source:Prog.
Part. Nucl. Phys.
108 (2019) 103709

Local equilibrium distribution, feq, is defined as

Cl [feq] = 0

T [µν] ∼
m→0

[
1

τκ
u[µ

(
ων]α −ϖν]α

)
uα +

1

τω

(
ϵµνρσuρω0,σ −∆µ

ρ∆
ν
σϖ

ρσ
)]

The spin equations are given by

DµS
µ,αβ = T [βα]



Due to non-local collisions, energy-momentum tensor has an
anti-symmetric contribution even in equilibrium.

T
[µν]
0 =

ℏσ
2

∫
dΓ Σµν

s Cnl [feq] where Σµν
s = − 1

m
ϵµναβkαsβ

The equations of ideal spin hydrodynamics are

DµT
(µν)
0 = 0 +O(ℏ2) , DλS

λ,µν
0 =

1

ℏ
T

[νµ]
0 +O(ℏ2)

Equations of dissipative spin hydrodynamics were obtained in D.
Wagner, PRD 111, 016008 (2025) using the moment expansion
method. The equations involve spin degrees of freedom ωµ

0 , κ
µ
0 , and

the spin-shear stress (tµν) where

Ωµν
0 = u[µκ

ν]
0 + ϵµναβuαω0,β

The spin-shear stress, tµν , has a dissipative effect and plays a role
analogous to thermal shear ξµν in equilibrium approach.



The evolution equations for spin degrees of freedom that we solve
numerically in Sapna, SKS and D. Wagner, arXiv:2503.22552 are

τωω̇
⟨µ⟩
0 + ωµ

0 = −
ωµ
K

T
+ δωωω

µ
0 θ + ϵµναβuν (ℓωκ∇ακ0,β − τωu̇ακ0,β)

+ λωωσ
µνω0,ν + λωtt

µ
νω

ν
K ,

τκκ̇
⟨µ⟩
0 + κµ0 = − u̇µ

T
+ δκκκ

µ
0 θ + ϵµναβuν

(τκ
2
∇αω0,β + τκu̇αω0,β

)
+ ℓκt∆

µ
λ∇νt

νλ + τκtt
µν u̇ν +

(
λκκσ

µν +
τκ
2
ωµν
K

)
κ0,ν ,

τt ṫ
⟨µν⟩ + tµν =

d

T
σµν + δttt

µνθ + λtttλ
⟨µσν⟩λ +

5

3
τttλ

⟨µω
ν⟩λ
K + ℓtκ∇⟨µκ

ν⟩
0

+ τtωω
⟨µ
K ω

ν⟩
0 + λtωσλ

⟨µϵν⟩λαβuαω0,β .

In above equations, the symbols are as follows:

A⟨µ⟩ = ∆µνAν , Ȧ = u · ∂A, ∇µ = ∆µν∂ν , σµν = D⟨µuν⟩

ωµν
K =

1

2
∆µ

α∆
ν
βD

[αuβ] = ϵµναβuαωK ,β



Algorithm

The equations for spin are of the form

γ

(
∂

∂t
+ v i

∂

∂x i

)
W = −W −WNS

τW
− IW

Use Strang-Splitting method to obtain

∂W
∂t

= −W −WNS

τW
− SW ,

∂W
∂t

+ v i
∂W
∂x i

= 0

First solve relaxation equation using PES method. If ∆t > τW ,

Wn+1
i = Wn

i −∆t
Wn+ 1

2
i −Wn+ 1

2
i ,NS

τW
− S

n+ 1
2

i ,W

If ∆t < τW

Wn+1
i = Wn+ 1

2
i ,NS + exp

[
−∆t

τW

(
Wn

i −Wn+ 1
2

i ,NS

)]
− S

n+ 1
2

i ,W

Use upwind scheme for advection.



Numerical solution of dissipative spin hydrodynamics

The transport coefficients are computed for three interactions
(i) Scalar (IS): Lint,S = G (ψ̄ψ)2, (ii) Scalar+Pseudoscalar (ISP):
Lint,SP = G [(ψ̄ψ)2 − (ψ̄γ5ψ)

2], and (iii) Vector (IV ): Lint,V = −G (ψ̄γµψ)2

The transport coefficients are independent of G when computed as ratios.

The only parameter of the model is the mass of particles, which we fix at
300 MeV. For Au+Au collision at 200 GeV with b = 8.4 fm, z increases
from 1.2 to approximately 1.9.



The spin polarization is given by Prescription IV

Sµ(p) = Sµ
ω (p) + Sµ

κ (p) + Sµ
t (p)

where

Sµ
ω (p) =

1

N(p)

∫
dΣ · p

uµ(ω0 · p)− ωµ
0 (p · u)

2mΛ
f0f̃0,

Sµ
κ (p) = − 1

N(p)

∫
dΣ · p ϵ

µνρσuνpσ
2mΛ

κ0,ρf0f̃0 ,

Sµ
t (p) =

1

N(p)

∫
dΣ · p ϵ

µνρσuνp
λpσ

3T 2(ε+ P)
tρλf0f̃0 ,

and f0 denotes the Fermi-Dirac distribution, f̃0 = 1− f0, and
N(p) = 2

∫
dΣ · p f0.

Note that Sµ
t (p) is a dissipative correction to spin polarization, in

absence of which Prescription IV reduces to Prescription III.



Results: Time evolution of spin potential and spin-shear
stress

arXiv:2503.22552

⟨A⟩(τ) =
∫
dx dy dηs A(τ, x , y , ηs)ε(τ, x , y , ηs)Θ(ε− εcut)∫

dx dy dηs ε(τ, x , y , ηs)Θ(ε− εcut)



Results: Individual contributions

arXiv:2503.22552



Results: Spin Polarization

Effects due to interaction type. arXiv:2503.22552



Results: Spin Polarization

Comparison with Prescription I. arXiv:2503.22552



Results: Sensitivity to mass parameter

Spin polarization for different values of m. arXiv:2503.22552

Dissipative effects are necessary to describe the polarization
measurements.



Summary

We study spin dynamics in the fireball produced in heavy-ion
collisions, guided by polarization measurements from Au+Au
collisions at 200 GeV.

Results suggest that at high temperatures and with long fireball
lifetimes, the four prescriptions yield “equivalent” descriptions at the
switching hypersurface

The results also highlight that a consistent treatment of dissipative
effects is crucial in microscopic approaches for matching experimental
data.

The real test of the approaches will be at lower collision energies or in
small systems.


