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Motivation

Chiral Fluctuations

Baryon Fluctuations

Temperature T [MeV]

Nuclei Net Baryon Density

Can we locate the chiral phase transition, or the endpoint of a first-order
QGP-hadron gas transition?



Critical Dynamics

What is the dynamical theory near the critical point?

The basic logic of fluid dynamics still applies. Important modifications:
e Critical equation of state.

e Stochastic fluxes, fluctuation-dissipation relations.
e Possible Goldstone modes (chiral field in QCD)
Classified by Hohenberg & Halperin in 1977 (model A, B, ...)

Chiral phase transition: Model G (Rajagopal & Wilczek, 1993)

Possible critical endpoint: Model H (Son & Stephanov, 2004)



Digression: Diffusion

Consider a Brownian particle

p(t) = —vpp(t) + ¢(t) (C)¢(t)) = rd(t —t')

drag (dissipation) white noise (fluctuations)

For the particle to eventually thermalize
(p?) = 2mT

drag and noise must be related
mi
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Einstein (Fluctuation-Dissipation)



Hydrodynamic equation for critical mode

Equation of motion for critical mode ¢ (“model H")
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Fluctuation-Dissipation relation

(C(x, )¢ (2", 1)) = —26TV?6(x — 2')o(t — 1)

<§Z(x7 t)‘SJ' (.I'/, t/)> — —277TV2P55('T - x/)é(t - t/) .

ensures P[o, 7| ~ exp(—F|¢,7|/T)

Mode couplings governed by Poisson brackets: 1% = (¢, 7)
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as well as self coupling (self-advection) of 7
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Note: There is a consistent truncation (“model HO") in which the
self-coupling of 7 is dropped. This model is claimed to be in the same
dynamical universality class as model H. Hohenberg, Halperin, RMP (1977)

And: There is a generalization ( “compressible model H") in which 7 is
retained. This theory is needed to understand the critical behavior of the

bulk ViSCOSity. M. Martinez, T.S., V.S, arXiv:1906.11306



Numerical realization

Stochastic relaxation equation (“model A")

Oph = —I’?—Z ¢ (C(z, )¢ (2", ")) =TT6(x — 2")o(t — t)

Naive discretization

OF [T
O (At)a3

Noise dominates as At — 0, leads to discretization ambiguities in the

Yt + At) = P(t) + (At) 0 60%) =1

equilibrium distribution.

|ldea: Use Metropolis update

Y (t + At) )+ 2 (At)d p = min(1,e P27)



Numerical realization

Central observation

(Wt + At T) — (¢, T)) = —(At)r%+0((m)2)
([t + At Z) —(t, D)]°) = 2(ATT + 0 ((At)?) .

Metropolis realizes both diffusive and stochastic step. Also

Ply] ~ exp(=SF[Y])

Note: Still have short distance noise; need to adjust bare parameters such
as I', m?, \ to reproduce physical quantities.



Model A: Static Distribution

Tune m? to critical point m? = m? (lsing critical point)

Check finite size scaling
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Critical exponents 5 = 0.326 and v = 0.630.

T.S., V. Skokov, arXiv:2204.02433
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Model B: Static Distribution

Model B (conserving dynamics): Static distribution modified

but scaling exponent is the same
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Critical exponents 5 = 0.326 and v = 0.630.

C. Chattopadhyay et al., arXiv:2304.07279



Model A/B: Dynamical Scaling

Finite size scaling of dynamic order parameter correlation function
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G(t.K) = [ %™ (u(0,0)0(.0)

Look for dynamic scaling G(t, k, L) = G(t/L?, kL)



Numerical realization: Model H

Model H: Conserving update
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Advection (PB terms) conserves H. On the lattice use “skew” discretized

derivatives
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., using Fourier transforms.

and project on



Numerical results (critical Navier-Stokes)

Order parameter (3d) Order parameter/velocity field (2d)




Renormalized viscosity

Renormalization of n

“Stickiness of shear waves”
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Relaxation Rate

Order parameter relaxation rate

C(t) = (¢(0)o—k (1))
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Crossover from 7r ~ &% at large nr 2(n=0.01) = 3.07

to 7p ~ &3 for small np



Relaxation Rate

Order parameter relaxation rate
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Universality: model H/HO

Order parameter relaxation rate
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Critical behavior of transport coefficients (2d, prelim)
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Consistent with z =4 — x,, — n* (n* = 0.25 correlation function exponent)



Evolution of higher moments
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Relaxation time 7, = qu,o)Lz with exponent z independent of n

But: 7+ depends (non-trivially) on n



Summary and Outlook

Numerical simulation of stochastic fluid dynamics, observed renor-
malization of shear viscosity and dynamical scaling. Obtained z ~
3.07, in good agreement with the € expansion.

Outlook: Extend the present framework to full (relativistic) fluid
dynamics, or couple the simulations to fixed relativistic background
flow (no backreaction). Density frame provides a promising approach.



