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Anisotropies at GGI in 2018 AdS/CMT at GGI in 2010
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Hydrodynamics is based on symmetries

•construct constitutive equations out of all  
(pseudo)scalars, (pseudo)vectors and 
(pseudo)tensors under Lorentz group

•isotropy of space leads to rotation symmetry

•anisotropy breaks rotation symmetry

< jμ > = nuμ+𝒪(∂)+𝒪(∂2) + . . .
e.g. charge gradient 
(covariant derivative)

∇μn

additional Lorentz 
vector, e.g.

bμ =
Bμ

B

➡ more terms in 

constitutive equations


➡ novel transport effects
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Anisotropic Hydrodynamics by Martinez/Strickland, Florkowski, Ryblewski 

• anisotropy breaks rotation symmetry, 
consider pressure anisotropy [Martinez, Strickland; Nucl.Phys.A (2010)]

[Florkowski, Ryblewski; PRC (2010)]

➡ difference large enough 

to matter for heavy-ion 

collisions?

[Alqahtania, Nopoush, 
Strickland; PPNP (2018)]

https://arxiv.org/pdf/1007.0889
https://arxiv.org/pdf/1007.0889
https://arxiv.org/pdf/1712.03282
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Longitudinal versus transverse shear viscosities in N=4 SYM

angular momentum a

4π
η
s

strong magnetic field

Anisotropy from magnetic field Anisotropy from rotation

η⊥

s
=

1
4π

➡ qualitative differences 


➡ large quantitative differences

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

https://arxiv.org/abs/2112.13857
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Outline

1. Strong external magnetic field


2. Large vorticity


3. Bjorken expansion


4. Discussion
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Conservation equations


7

fluid cells with 
distinct 

temperatures

Hydrodynamics


•effective field theory 


• expansion in small gradients


• large temperature


•conserved quantities survive

Chiral hydrodynamics - Concepts

∇μTμν = Fμνjμ

∇μ jμ
axial = C ⃗E ⋅ ⃗B

∇μ jμ
vector = 0

Constitutive equations


⟨jμ
vector⟩ = nuμ + 𝒪(∂) + 𝒪(∂2) + . . .
⟨Tμν⟩ = ϵ uμuν + P Δμν + 𝒪(∂) + 𝒪(∂2) + . . .

⟨jμ
axial⟩ = nauμ + 𝒪(∂) + 𝒪(∂2) + . . .
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fluid cells with 
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temperatures

Hydrodynamics
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• expansion in small gradients


• large temperature


•conserved quantities survive

Chiral hydrodynamics - Concepts

Fourier transform hydro fields, e.g. T(x):
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@µ
Fµ⌫ u ⌫

2. Restricted by conservation equations

Example:

3. Further restricted by positivity of local entropy production:
∇µJ

µ

s ≥ 0[Landau, Lifshitz]

1. Construct constitutive equations or generating functional: all 
(pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group

∇µj
µ

(0) = ∇µ(nuµ) = 0

8

vorticity

Examples at :𝒪(∂)

ω
µ

=
1

2
ε
µνλρ

uν∇λuρ

Chiral hydrodynamics - Construction

➡ Most general hydrodynamic 1-point functions for chiral 
charged fluid in strong magnetic field
 [Ammon, Kaminski et al.; JHEP (2017)]

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

< jμ > = nuμ + 𝒪(∂) + 𝒪(∂2) + . . .
charge gradient 

(covariant derivative)∇μn

[Jensen, Kaminski, Kovtun, Meyer, et al.; PRL (2012)]

[Banerjee et al.; JHEP (2012)]
[JHEP (2011)]

[Haehl et al.; PRL (2015)]
[Crossley et al.; (2015)]

Idea: generating 
functional W[T, μ]

⟨Tμν⟩ ∼
δW[T, μ]

δgμν

⟨TμνTαβ⟩ ∼
δ2W

δgμνδδgαβ

http://arxiv.org/abs/arXiv:1701.05565
https://arxiv.org/abs/2012.09183
http://arxiv.org/abs/arXiv:1203.3556
https://arxiv.org/abs/1203.3544
https://arxiv.org/pdf/1112.4498.pdf
https://arxiv.org/abs/1412.1090
https://arxiv.org/abs/1511.03646
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Simple (non-chiral) example in 2+1 dims:

u
µ = (1, 0, 0)

fluctuations

sources

one point functions       (use               )

(fix T and u)

D =

σ

χ

At, Ax ∝ e−iωt+ikx

Einstein relation:

two point functions⇒

1. Kubo-formula derivation example: hydrodynamic correlators in 2+1

Pµν
= gµν

+ uµuν

∇µjµ
= 0

9

susceptibility: χ =

∂n

∂µ

jµ
= nuµ

+ σ
[

Eµ
− TPµν∂ν

( µ

T

)]

n = n(t, x, y) ∝ e−iωt+ikx

〈jt〉 = n(ω, k) =
ikσ

ω + ik2 σ
χ

(ωAx + kAt)

〈jx〉 =
iωσ

ω + ik2 σ
χ

(ωAx + kAt)

〈jy〉 = 0
〈jxjx〉 =

δ〈jx〉

δAx

=
iω2σ

ω + iDk2

∆
µν

∆
µν

Kubo formula:⇒ � = lim
!!0

1

i!
hjxjxi(!, k = 0)
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Chiral hydrodynamics - conductivity Kubo formulae

z

current

Parallel conductivity B
||

? perpendicular

parallel
lim
ω→0

⟨JzJz⟩
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Chiral hydrodynamics - conductivity Kubo formulae

z

current

Parallel conductivity

Perpendicular resistivity

B

z

current

B

x

||

? perpendicular

parallel
lim
ω→0

lim
ω→0

⟨JzJz⟩

⟨JxJx⟩
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Chiral hydrodynamics - conductivity Kubo formulae

z

current

Parallel conductivity

Perpendicular resistivity

B

z

current

B

x

hJzJzi(!,k = 0) ⇠ �||

hJxJxi(!,k = 0) ⇠ ⇢?

Very different parallel versus perpendicular

||

? perpendicular

parallel
lim
ω→0

lim
ω→0

⟨JzJz⟩

⟨JxJx⟩
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Two shear viscosities

x

y
@uy

@x

fluid 
velocity
uy

Shear viscosity perpendicular

Shear viscosity parallel

x

z

fluid 
velocity

B

B

Hall resistivityperpendicular 
resistivity

➡ Value of shear viscosity depends on 
direction of magnetic field

➡ Can lead to creation of flow at early times
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Shear-induced Hall conductivity c10

12

Chiral hydrodynamics - novel transport coefficient c10

charge current 

z

x

y

uν = (1, 0, uy(z), uz(y))

⟨jx⟩ ∼ c10(∂yuz + ∂zuy)

shear in fluid flow 
(in yz-plane)

c10 ∼ lim
ω→0

1
ω
Im⟨Ttx Tyz⟩(ω, ⃗k = 0)

➡ novel Hall response


➡ non-dissipative                          


➡ interplay: shear-charge

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

https://arxiv.org/abs/2012.09183
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Perpendicular magnetic vorticity susceptibility M2

13

Chiral hydrodynamics - novel equilibrium coefficient M2

magnetic 
vorticity

z

x

y
Bx(y)

Bz Ωμ
B ∼ (∇xBy − ∇yBx)

magnetic vorticity :

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

M2 = − lim
kz→0

1
2kzB2

0
Im⟨TxzTyz⟩(ω = 0, kz)

response in energy/pressure :

➡ Can be computed on lattice


➡ Test these Kubo formulae and constitutive relations now?

⟨Ttt⟩ =

[Adhikari et al.; to appear in PPNP (2025)]

https://arxiv.org/abs/2012.09183
https://arxiv.org/abs/2412.18632
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Charged magnetic black branes

• charged magnetic analog of Reissner-Nordstrom black brane

• asymptotically AdS5

[D’Hoker, Kraus; JHEP (2010)]

Einstein-Maxwell-Chern-Simons action

5-dimensional Chern-
Simons term encodes 
chiral anomaly

Holographic model for chiral hydrodynamics
➡ Construct holographic dual to charged plasma in strong B


➡ Compute values for novel transport coefficients (N=4 SYM) 
from quasi normal modes and correlation functions

[Ammon, Kaminski et al.; JHEP (2017)] 
[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

cf. [Son,Surowka; PRL (2009)]
[Erdmenger,Haack,Kaminski,Yarom; JHEP (2008)]

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

https://arxiv.org/pdf/0911.4518.pdf
http://arxiv.org/abs/arXiv:1701.05565
https://arxiv.org/abs/2012.09183
http://www.arxiv.org/abs/0906.5044
http://www.arxiv.org/abs/0809.2488
https://arxiv.org/abs/2012.09183
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Shear-induced 

Hall conductivity c10

Perpendicular magnetic 
vorticity susceptibility M2

➡ not zero, finite, Onsager satisfied

➡ all Kubo formulae consistent 

B
T2

= 0.05

B
T2

= 12.5

B
T2

= 30

μ
T

= 0

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

2. Holographic model for chiral hydrodynamics - Results

μ
T

> 0

https://arxiv.org/abs/2012.09183
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Chiral hydrodynamics - all coefficients
[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

 cf. [Hernandez, Kovtun; JHEP (2017)]

➡ relevant for QGP or cond-mat?
[Cartwright, Kaminski, Schenke; PRC (2022)]

https://arxiv.org/abs/2012.09183
http://arxiv.org/abs/arXiv:1703.08757
https://arxiv.org/abs/2112.13857
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Sound modes

Hydrodynamic modes from holography

Momentum diffusion mode

Interacting many-body systems at large temperature T  have collective 
excitations, damped eigenmodes, with specific dispersion relations :

(assuming rotation invariance:   )k ≡ | ⃗k |

Re(ω)

Im(ω)

Complex frequency plane

k = 0
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GR
diffusion ∝ 𝒫−1

diffusion ∝
1

∂t − D∂2
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ω + iDk2 + 𝒪(3)

𝒫 GR = δ

𝒫 ϕ = 0 linear equation of motion 
for conserved quantity
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Sound modes

Hydrodynamic modes from holography

Momentum diffusion mode

Interacting many-body systems at large temperature T  have collective 
excitations, damped eigenmodes, with specific dispersion relations :

(assuming rotation invariance:   )k ≡ | ⃗k |

ω(k) = − iDk2 + 𝒪(3)

ω(k) = ± vs k − iΓk2 + 𝒪(3)
Re(ω)

Im(ω)

Complex frequency plane

k > 0

GR
diffusion ∝ 𝒫−1

diffusion ∝
1

∂t − D∂2
x + 𝒪(3)

∝
1

ω + iDk2 + 𝒪(3)

𝒫 GR = δ

𝒫 ϕ = 0 linear equation of motion 
for conserved quantity

➡Compute   from holography: 𝒫(ω, k) = 0 𝒫 ∼ |δgμν |boundary
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Holographic model exhibits hydrodynamic modes under rotation

Fluctuations


•Einstein gravity dual to N=4 SYM theory


•metric of a rotating asymptotically AdS5 
black hole (solution to Einstein equations) 
dual to a rotating thermal SYM state


•black hole thermodynamics “determines” 
thermodynamics of the rotating SYM state


•poles of the SYM Green’s functions dual to 
quasi normal mode (QNM) frequencies of 
black hole:  QNMs encode SYM dispersion 
relations

➡Compute the QNM frequencies around 
rotating black hole as function of momentum. 

Momentum diffusion mode
ω(k) = − iDk2 + 𝒪(3)

Example: rotation-invariant fluid from QNMs of metric fluctuations

Sound modes
ω(k) = ± vs k − iΓk2 + 𝒪(3)

[Kovtun/Starinets; 
JHEP (2005)]

δgtx, δgzx, . . . (vector)

δgtt, δgtz, δgzz (scalar)
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Holographic model exhibits hydrodynamic modes under rotation

Rotating AdS5 black hole
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Holographic model exhibits hydrodynamic modes under rotation

Milne coordinates (τ, x1, x2, ξ; r)

Rotating AdS5 black hole Rotating thermal SYM state
analytic fluid flow (cf. Gubser flow)

[Bantilan, Ishii, Romatschke; PLB (2018)]

Large black holes: large T

https://arxiv.org/abs/1803.10774
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High temperature: dispersion relations of rotating black hole look like boosted fluid
[Garbiso-Amano, Kaminski; JHEP (2019)]

Einstein relations:

Dispersion relations:

Speeds of sound:“Speeds of diffusion”:

Corresponding damping:

Shear viscosities:

Boost transformation:

➡If transport coefficients known at rest, then they are 
known in high T rotating fluid (boosted fluid). 

cf. [Hoult,Kovtun (2020)] [Kovtun (2019)]
[Garbiso-Amano, Cartwright, Kaminski, Wu; PPNP (2024)]

https://arxiv.org/pdf/1904.11507
https://arxiv.org/abs/2308.11686
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Is hydrodynamics valid? - Scaling

• validity of the constitutive relations and transport coefficients

Momentum diffusion

[Cartwright,Garbiso-Amano;Kaminski,Wu; arXiv:2308.11686]

https://arxiv.org/abs/2308.11686
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Is hydrodynamics valid? - Transport coefficients

• validity of the constitutive relations and transport coefficients

Momentum diffusion

Dashed horizontal lines: 

boosted fluid values

➡window of horizon values 
1,000 < r+ < 10^7: 
hydrodynamic behavior 
distinct from a boosted fluid

[Cartwright,Garbiso-Amano;Kaminski,Wu; arXiv:2308.11686]

https://arxiv.org/abs/2308.11686
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Two Speeds of Sound in Bjorken-Expanding N=4 SYM QGP
transverse to expansion

longitudinal along expansion

no time-
derivatives

with time-
derivatives

thermo-
dynamic

thermo-
dynamic

no time-
derivatives

[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]
[Cartwright,Kaminski,Knipfer; PRD (2023)]

https://arxiv.org/abs/2207.02875
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Methods: Thermodynamic Definition

Transverse/longitudinal speeds of sound out of 
equilibrium

Equilibrium speed of sound

➡ verify with perturbative calculation

Using technique from 

[Wondrak, Kaminski, Bleicher; 

Phys.Lett.B (2020)]

gμν(τ)+ h(sound)
μν

ds2 = gμν dxμdxν

gμν ∼ g(0)
μν + ⟨Tμν⟩ z4 + …

source one-point function

Metric near-boundary expansion

metric

[Cartwright,Kaminski,Knipfer; PRD (2023)]

https://arxiv.org/abs/2002.11730
https://arxiv.org/abs/2207.02875
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Sound Attenuation
[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]
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Relaxation Time
[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]
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Methods: Perturbative Definition

w(q) = ± Cs q − i
Γs

2
q2 ± Γs

2Cs (C2
s τπ −

Γs

4 ) q3 + O(q4)

Dispersion relation in sound sector

speed 
of 

sound

relaxation 
time

… extracted from quasinormal modes in spin-0 sector of metric perturbations

1. background metric dual to Bjorken-expanding plasma


2. add perturbation


3. quasi-static: on fixed time slice  : Fourier-transform 

4. calculate quasinormal mode frequency w at momentum q


τ

g(Bjorken)
μν (τ)+ h(sound)

μν sound modes

w(q)

Re(w)

Im(w)

Complex 
frequency 
plane

g(Bjorken)
μν (τ)

sound 
attenuation

h(sound)
μν

[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]
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Bjorken-Expanding Plasma
[Cartwright,Kaminski,Knipfer; PRD (2023)]

‣ far away from equilibrium thermodynamic 
quantities are not well-defined


‣ plasma is approximately boost invariant 
along the beam-line


‣ initially large anisotropy between that 
direction and the transverse plane

proper time

➡late times: system still expanding but approximately isotropic


➡early times: far from equilibrium

Gravity dual: Einstein Gravity, anisotropic metric AdS radial coordinate  r = 1/z

boundary at   has Milne metric:r = ∞

rapidity 

https://arxiv.org/abs/2207.02875
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Discussion
Summary

• considered three examples of anisotropic systems

➡ external magnetic field

➡ rotation

➡ Bjorken expansion


• novel transport coefficients, changed Kubo formulae


• drastic differences, e.g. specific shear viscosity drops to zero (below 1/(4 ))


• anisotropic hydrodynamics needed

π
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Discussion

Outlook

• calculate novel transport coefficients on the lattice and perturbative QCD


• effect of anisotropies on (elliptic) flow ?


• construct holographic heavy ion collisions to model QGP (dynamical 
magnetic field and dynamically created axial imbalance)


• use holographic collisions to test formulations of hydrodynamics

vn

Summary

• considered three examples of anisotropic systems

➡ external magnetic field

➡ rotation

➡ Bjorken expansion


• novel transport coefficients, changed Kubo formulae


• drastic differences, e.g. specific shear viscosity drops to zero (below 1/(4 ))


• anisotropic hydrodynamics needed

π

[AdS4CME Collaboration]

[Ghosh, Shovkovy, 
Eur.Phys.J.C. (2024)]

[Adhikari et al.; to 
appear in PPNP (2025)]

[Bernhard et al., Nature Physics (2019)]

https://ads4cme.wixsite.com/ads4cme
https://ads4cme.wixsite.com/ads4cme
https://arxiv.org/abs/2407.13828
https://arxiv.org/abs/2412.18632
https://www.nature.com/articles/s41567-019-0611-8
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APPENDIX
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CME far from equilibrium, strong B

non-expanding plasma


expanding plasma

HOLOGRAPHY

32

CME near equilibrium (+hydro)

weak magnetic field B


strong B

Chiral Magnetic Effect (CME) 
from chiral anomaly

[Son,Surowka; PRL (2009)]

[Son,Surowka; PRL (2009)]
ti

m
e

[Neiman,Oz; JHEP (2010)]

[Gosh,Grieninger,Landsteiner,Morales-Tejera; PRD (2021)]

Frequency dependence of CME
[Amado,Landsteiner,Pena_Benitez; JHEP (2011)]

[Li,Yee; PRD (2018)]
[Koirala; PhD thesis (2020)]

[Ammon,Leiber,Macedo; JHEP (2016)]

[Ammon, Kaminski et al.; JHEP (2017)]

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, 
Leiber, Wu; JHEP (2021)]

[Erdmenger,Haack,Kaminski,Ya
rom; JHEP (2008)]

[Banerjee et al.; JHEP (2011)]

Chiral Vortical Effect


fluid/gravity correspondence

gives constitutive equations

contain weird parity-odd term

hydro and holo in 
parallel

[Kharzeev,Yee;  PRD (2011)]

Jμ
A = ξBB

[Cartwright,Kaminski,Schenke; PRC (2022)]

Jμ
A = ξVΩμ

vorticity
ξV ∼ C μ2

A + bT2

[Neiman,Oz; JHEP (2010)]

[Kharzeev; PRC (2004)]

HYDRODYNAMICS & 
THERMODYNAMICS

A winning team: hydrodynamics and holography in parallel 
More balanced review in 

my Section 5.2 on Hydrodynamics 

in White Paper [Sorensen et al.; 
Prog.Part.Nucl.Phys. (2024)]

http://www.arxiv.org/abs/0906.5044
http://www.arxiv.org/abs/0906.5044
https://arxiv.org/abs/1011.5107
https://arxiv.org/abs/2105.05855
https://arxiv.org/abs/1102.4577
https://arxiv.org/abs/1805.04057
https://www.proquest.com/dissertations-theses/transport-strongly-coupled-charged-relativistic/docview/2454193407/se-2?accountid=14472
https://arxiv.org/abs/1601.02125
http://arxiv.org/abs/arXiv:1701.05565
https://arxiv.org/abs/2012.09183
http://www.arxiv.org/abs/0809.2488
http://www.arxiv.org/abs/0809.2596
http://arxiv.org/abs/arXiv:1012.6026
https://arxiv.org/abs/2112.13857
https://arxiv.org/abs/1011.5107
https://arxiv.org/abs/hep-ph/0406311
https://arxiv.org/abs/2301.13253
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[Cartwright,Kaminski,Schenke; PRC (2022)]

➡CME-current more likely to be seen 

at lower energies!

Matching to QCD: 

SUSY value for 

L=1fm fixes 

α
κ

Initial state: 
constant B,

pressure anisotropy


time-dependent ,

plasma expanding 
along beam line 

μ5

T(τ0)=165 MeV

T(τ0)=181 MeV

T(τ0)=199 MeV

T(τ0)=225 MeV

T(τ0)=299 MeV

T(τ0)=577 MeV

-1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

τ [fm]

<
J V

1
>
[1

0
-

4
G

e
V

3
]

Fixed initial eB ≈ m2
π , nA = 0.00032 GeV3

APPENDIX - CME far from equilibrium - case I

Near-equilibrium CME

ξχ = C μAJμ
V = ξχB

 [Son,Surowka; PRL (2009)]
[Fukushima,Kharzeev,Warringa; PRD (2008)]
[Kharzeev; PRC (2004)]

agrees with non-expanding holographic model: 
[Gosh,Grieninger,Landsteiner,Morales-Tejera; PRD (2021)]

[DOE Highlight Article; 
Cartwright,Kaminski,S

chenke (2023)]

https://arxiv.org/abs/2112.13857
http://www.arxiv.org/abs/0906.5044
https://arxiv.org/pdf/0808.3382.pdf
https://arxiv.org/abs/hep-ph/0406311
https://arxiv.org/abs/2105.05855
https://www.energy.gov/science/np/articles/holographic-view-quantum-anomalies
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APPENDIX -  Far from equilibrium shear: Results

Δt = 0.3 fmsNN = 200 GeV

Tfinal = 310 MeV

RHIC parameters:

➡ Shear transport ratio first drops below 60%,  

then rises above 110% of KSS value 1/(4 )π

[Bleicher, Kaminski, Wondrak; Phys.Lett.B (2020)]

T = THawking

s ∼
∂Son−shell

∂T

Tc = 155 MeV

η
s

KSS equilibrium result 
η
s

=
1

4π

[Kovtun,Son,
Starinets; 

PRL (2005)]

Entropy density from 
generating functional

Temperature

No universal bound
[Buchel, Myers, Sindha; 

JHEP (2008)]

https://arxiv.org/abs/2002.11730
https://arxiv.org/abs/hep-th/0405231
https://arxiv.org/abs/0812.2521
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APPENDIX -  Far from equilibrium shear: Results 

➡ stark contrast: near equilibrium lattice QCD / FRG suggest          

whereas far from equilibrium Super-Yang-Mills (SYM) plasma suggests  


➡ currently underestimating flow generated at early times

η/s > 1/(4π)

η/s < 1/(4π)

[Bleicher, Kaminski, Wondrak; Phys.Lett.B (2020)]

FRG results from

[Christiansen, Haas, Pawlowski, Strodthoff; PRL (2015)]
Lattice QCD data from

[Astrakhantsev, Braguta, Kotov; JHEP (2017)]

FRG and holography minimum

η
s

[Bernhard, Moreland, Bass, Nature (2019)]

https://arxiv.org/abs/2002.11730
https://arxiv.org/abs/1411.7986
https://arxiv.org/abs/1701.02266
https://doi.org/10.1038/s41567-019-0611-8
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APPENDIX: Same magneto response in LQCD and N=4 SYM 

with magnetic field

36

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; JHEP (2018)]

Lattice QCD with 2+1 flavors, dynamical quarks, physical masses

pT = �LT

V

@FQCD

@LT

pL = �LL

V

@FQCD

@LL

transverse pressure:

longitudinal pressure:

FQCD… free energy

… transverse system sizeLT

… longitudinal system size

… system volume

LL

V

https://arxiv.org/abs/1806.09632
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APPENDIX: Strong B thermodynamics

Strong B thermodynamics with anomaly :

[Ammon, Kaminski et al.; JHEP (2017)]

[Israel; Gen.Rel.Grav. (1978)]

equilibrium charge current

[Kovtun; JHEP (2016)]

[Jensen, Loganayagam, Yarom; 
JHEP (2014)]

[Ammon, Leiber, Macedo; JHEP (2016)]

previous work:

Energy momentum tensor:

Axial current:

➡ new contributions to thermodynamic 
equilibrium observables 

equilibrium heat current

“magnetic pressure shift”

http://arxiv.org/abs/arXiv:1701.05565
http://link.springer.com/article/10.1007%2FBF00759845
https://arxiv.org/abs/1606.01226
http://arxiv.org/abs/arXiv:1310.7024
https://arxiv.org/abs/1601.02125
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APPENDIX: strong B hydrodynamics

Spin-1 modes
[Hernandez, Kovtun; JHEP (2017)]

weak B:

strong B:

weak B:

strong B:

Spin-0 modes

parity-odd Agreement in 
form}

parity-odd

Anisotropic transport 
coefficients 

Agreement in form

Anisotropic transport coefficients 

}

Exact agreement in real part!

http://arxiv.org/abs/arXiv:1703.08757
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APPENDIX: weak B hydrodynamics comparison
Spin-1 modes

weak B hydro prediction:

No knowledge of anisotropic (B-dependent) 
transport coefficients 

  — take B=0 values of this model instead

We find agreement between hydrodynamic prediction and holographic 
model for small values of B, increasing deviations for larger B.


Real part of spin-1 modes matches exactly even at large B!

calculate from holography

except zero charge: [Finazzo, Critelli, Rougemont, 
Noronha; PRD (2016)]

http://arxiv.org/abs/arXiv:1605.06061
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APPENDIX: Dispersion relations: weak B hydrodynamics
Weak B hydrodynamics - poles of 2-point functions                                              
:

[Ammon, Kaminski et al.; JHEP (2017)]

spin 1 modes under SO(2) rotations around B

spin 0 modes under SO(2) rotations around B

➡ dispersion relations of hydrodynamic modes are heavily 
modified by anomaly and B

former momentum diffusion modes

former charge 
diffusion mode

former 
sound 
modes

[Abbasi et al.; PLB (2016)]

➡ a chiral magnetic wave
[Kharzeev, Yee;  PRD (2011)]

hTµ⌫ T↵�i, hTµ⌫ J↵i, hJµ T↵�i, hJµ J↵i [Kalaydzhyan, Murchikova; NPB (2016)]

http://arxiv.org/abs/arXiv:1701.05565
https://arxiv.org/abs/1509.08878
http://arxiv.org/abs/arXiv:1012.6026
https://arxiv.org/abs/1609.00024
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APPENDIX: EFT result III: weak B details
Weak B hydrodynamics - poles of 2-point functions:

[Ammon, Kaminski et al.; JHEP (2017)]

spin 0 modes under SO(2) rotations around B

former charge diffusion mode

former 
sound 
modes

[Abbasi et al.; PLB (2016)]
[Kalaydzhyan, Murchikova; NPB (2016)]

damping coefficients:

velocities:

chiral conductivities: known from entropy 
current argument

[Son,Surowka; PRL (2009)]
[Neiman,Oz; JHEP (2010)]

http://arxiv.org/abs/arXiv:1701.05565
https://arxiv.org/abs/1509.08878
https://arxiv.org/abs/1609.00024
http://xxx.lanl.gov/abs/0906.5044
https://arxiv.org/abs/1011.5107
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APPENDIX: Holographic result: hydrodynamic poles
Fluctuations around charged magnetic black branes (QNMs)

[Ammon, Kaminski et al.; JHEP (2017)]

• Weak B: holographic results are in “agreement” with hydrodynamics.

• Strong B: holographic result in agreement with thermodynamics, and numerical 
result indicates that chiral waves propagate: 


                               (i) at the speed of light                 and (ii) without attenuation

[Kharzeev,Yee;  PRD (2011)]confirming conjectures and results in probe brane approach

Modes:

sound


charge diffusion

sound

Modes:

charge diffusion


sound

sound

RECALL: weak B hydrodynamic poles

former charge 
diffusion mode

former 
sound 
modes

http://arxiv.org/abs/arXiv:1701.05565
http://arxiv.org/abs/arXiv:1012.6026
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APPENDIX: Holographic result: hydrodynamic poles
Fluctuations around charged magnetic black branes (QNMs)

[Ammon, Kaminski et al.; JHEP (2017)]

• Weak B: holographic results are in “agreement” with hydrodynamics.

• Strong B: holographic result in agreement with thermodynamics, and numerical 
result indicates that chiral waves propagate: 


                               (i) at the speed of light                 and (ii) without attenuation

[Kharzeev,Yee;  PRD (2011)]confirming conjectures and results in probe brane approach

Modes:

sound


charge diffusion

sound

Modes:

charge diffusion


sound

sound

RECALL: weak B hydrodynamic poles

former charge 
diffusion mode

former 
sound 
modes

http://arxiv.org/abs/arXiv:1701.05565
http://arxiv.org/abs/arXiv:1012.6026
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APPENDIX: More thermodynamic transport coefficients

Magneto-thermal susceptibility  :M1

Magneto-acceleration susceptibility  :M3

Magneto-electric susceptibility  :M4

Magneto-vortical susceptibility  :M5


