Hydrodynamics in Anisotropic Systems

Workshop "Foundations and Applications of Relativistic Hydrodynamics", GGI Florence, Italy

May 7th, 2025

Matthias Kaminski University of Alabama

Hydrodynamics in Anisotropic Systems

Workshop "Foundations and Applications of Relativistic Hydrodynamics", GGI Florence, Italy

May 7th, 2025

Matthias Kaminski University of Alabama

Anisotropies at GGI in 2018

Workshop on Chirality, Vorticity and Magnetic Field in Heavy Ion Collisions 2018

Mar 19-22, 2018 Galileo Galilei Institute Europe/Rome timezone

Enter your search term

Q

The workshop is concluded, we thanks all participants and collaborators.

The theme 'standardshort' does not exist.

Overview

Committees

Timetable

Program

First Circular

Second Circular

Third Circular

Important Dates

Call for Abstracts

Registration

Travel Information

Participant List

Previous editions

Contact us

The 4th Workshop on Chirality, Vorticity and Magnetic Field in Galileo Galilei Institute in Florence from March 19 through Ma recent theoretical developments and experimental measurem

avy Ion Collisions will be held at the 22, 2018. The workshop will cover s related to these topics.

AdS/CMT at GGI in 2010

Event at Galileo Galilei Institute

Workshop

AdS4/CFT3 and the Holographic States of Matter

Aug 30, 2010 - Nov 05, 2010

Abstract

An exciting and largely unexpected consequence of Holography is that String and M-theory can provide useful information for transport phenomena of strongly interacting theories in low dimensions, fluid mechanics and non-relativistic systems. Physical systems that may have dual holographic descriptions include quantum critical points in 2+1 dimensions, high-Tc superconductors, quantum Hall systems, systems that exhibit parity breaking, non-relativistic critical systems as well as fluid mechanics and turbulence. Such systems – the Holographic States of Matter - have the potential to radically alter the perception of string theory and its relevance for physics. A basic theoretic setup for the holographic study of such systems is AdS4/CFT3 correspondence. This is also the main framework for holographic studies of the mysterious M-theory. The subject has experienced great formal growth, driven by the discovery of various field theoretical models for M2-branes. It is a fortunate and intriguing that progress in the more applied directions coincides with enhancement in the understanding of more formal aspects of M-theory. By bringing together experts in both the applied and formal directions we aim to create a fertile environment where future developments regarding the Holographic States of Matter in connection with our understanding of M-theory can be studied.

Topics

- AdS4/CFT3 Correspondence
- M2 and M5 branes
- The holographic description of high-Tc superconductivity, superfluidity, Quantum-Hall systems.
- Gravity and fluid dynamics
- Gravitational description of non-relativistic systems.

Matthias Kaminski

•construct **constitutive equations** out of all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group

•construct **constitutive equations** out of all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$

e.g. charge gradient $\nabla^{\mu} n$ (covariant derivative)

- •construct **constitutive equations** out of all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group
- •isotropy of space leads to **rotation symmetry**

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$

e.g. charge gradient $\nabla^{\mu} n$ (covariant derivative)

- •construct **constitutive equations** out of all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group
- •isotropy of space leads to **rotation symmetry**

anisotropy breaks rotation symmetry

Matthias Kaminski

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$

e.g. charge gradient $\nabla^{\mu} n$ (covariant derivative)

- •construct **constitutive equations** out of all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group
- •isotropy of space leads to **rotation symmetry**

anisotropy breaks rotation symmetry

Matthias Kaminski

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$

e.g. charge gradient $\nabla^{\mu} \mathcal{N}$ (covariant derivative)

- •construct **constitutive equations** out of all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group
- •isotropy of space leads to **rotation symmetry**

anisotropy breaks rotation symmetry

more terms in

constitutive equations

novel transport effects

Matthias Kaminski

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$

e.g. charge gradient $\nabla^{\mu} \mathcal{N}$ (covariant derivative)

Anisotropic Hydrodynamics by Martinez/Strickland, Florkowski, Ryblewski

anisotropy breaks rotation symmetry, consider pressure anisotropy

Matthias Kaminski

[Florkowski, Ryblewski; PRC (2010)] [Martinez, Strickland; Nucl.Phys.A (2010)]

Longitudinal versus transverse shear viscosities in N=4 SYM

Outline

1. Strong external magnetic field

2. Large vorticity

3. Bjorken expansion

4. Discussion

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Chiral hydrodynamics - Concepts

Hydrodynamics

- effective field theory
- expansion in small gradients
- large temperature
- conserved quantities survive

Hydrodynamics in Anisotropic Systems

Constitutive equations

$$\langle T^{\mu\nu} \rangle = \epsilon \, u^{\mu} u^{\nu} + P \, \Delta^{\mu\nu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) +$$

$$\overset{\mu}{}_{\text{vector}} \rangle = n u^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$$

$$\dot{j}^{\mu}_{\text{axial}} \rangle = n_a u^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$$

Conservation equations

$$\nabla_{\mu} T^{\mu\nu} = F^{\mu\nu} j_{\mu}$$
$$\nabla_{\mu} j^{\mu}_{\text{vector}} = 0$$
$$\nabla_{\mu} j^{\mu}_{\text{axial}} = C \overrightarrow{E} \cdot \overrightarrow{B}$$

Chiral hydrodynamics - Concepts

Hydrodynamics

- effective field theory
- expansion in small gradients
- large temperature
- conserved quantities survive

Fourier transform hydro fields, e.g. T(x):

$$\frac{\partial_t e^{-i\omega t} = -i\omega e^{-i\omega t}}{\overline{T}} \ll 1, \quad \frac{|\vec{k}|}{\overline{T}} \ll 1$$

 $B \sim \mathcal{O}(1) \qquad B \ll T^2$

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Constitutive equations

$$\langle T^{\mu\nu} \rangle = \epsilon \, u^{\mu} u^{\nu} + P \, \Delta^{\mu\nu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) +$$

$$\overset{\mu}{}_{\text{vector}} \rangle = n u^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$$

$$\dot{j}^{\mu}_{\text{axial}} \rangle = n_a u^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$$

Conservation equations

$$\nabla_{\mu} T^{\mu\nu} = F^{\mu\nu} j_{\mu}$$
$$\nabla_{\mu} j^{\mu}_{\text{vector}} = 0$$
$$\nabla_{\mu} j^{\mu}_{\text{axial}} = C \overrightarrow{E} \cdot \overrightarrow{B}$$

Chiral hydrodynamics - Construction

1. Construct constitutive equations or generating functional: all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$

Examples at $\mathcal{O}(\partial)$: $\nabla^{\mu} n$ charge gradient (covariant derivative) vorticity $\omega^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} u_{\nu} \nabla_{\lambda} u_{\rho}$

[JHEP (2011)] [Crossley et al.; (2015)]

Chiral hydrodynamics - Construction

1. Construct constitutive equations or generating functional: all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group

$$\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{$$

2. Restricted by conservation equations *Example:* $\nabla_{\mu} j^{\mu}_{(0)} = \nabla_{\mu} (n u^{\mu}) = 0$

[JHEP (2011)] [*Crossley et al.; (2015)*]

Chiral hydrodynamics - Construction

1. Construct constitutive equations or generating functional: all (pseudo)scalars, (pseudo)vectors and (pseudo)tensors under Lorentz group

 $\langle j^{\mu} \rangle = nu^{\mu} + \mathcal{O}(\partial) + \mathcal{O}(\partial^2) + \dots$ Examples at $\mathcal{O}(\partial)$: $\nabla^{\mu} n$ charge gradient (covariant derivative) vorticity $\omega^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\lambda\rho} u_{\nu} \nabla_{\lambda} u_{\rho}$ 2. Restricted by conservation equations

3. Further restricted by positivity of local entropy production:

Most general hydrodynamic 1-point functions for chiral charged fluid in strong magnetic field [Ammon, Kaminski et al.; JHEP (2017)]

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

Matthias Kaminski

Example: $\nabla_{\mu} j^{\mu}_{(0)} = \nabla_{\mu} (n u^{\mu}) = 0$

[Landau, Lifshitz]

 $\nabla_{\mu}J^{\mu}_{s} \ge 0$

[JHEP (2011)] [Crossley et al.; (2015)]

1. Kubo-formula derivation example: hydrodynamic correlators in 2+1

Simple (non-chiral) example in 2+1 dim

sources $A_t, A_x \propto e^{-i\omega t + ikx}$

 $n = n(t, x, y) \propto e^{-i\omega t + ikx}$ (fix T and u) fluctuations

one point functions (use $\nabla_{\mu} j^{\mu} = 0$ $\langle j^t \rangle = n(\omega, k) = \frac{ik\sigma}{\omega + ik^2 \frac{\sigma}{\nu}} (\omega A_x + kA_t)$ $\langle j^x \rangle = \frac{i\omega\sigma}{\omega + ik^2 \frac{\sigma}{\gamma}} (\omega A_x + kA_t)$ $\langle j^y \rangle = 0$ two poi

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

ns:

$$j^{\mu} = nu^{\mu} + \sigma \left[E^{\mu} - T \Delta^{\mu\nu} \partial_{\nu} \left(\frac{\mu}{T} \right) \right]$$

$$\Delta^{\mu\nu} = g^{\mu\nu} + u^{\mu} = (1, 0, q)$$

$$\begin{array}{c|c} 0 \\ \mathbf{h}_{t} \end{pmatrix} & \text{susceptibility:} \quad \chi = \frac{\partial n}{\partial \mu} \\ \text{Einstein relation:} \\ D = \frac{\sigma}{\chi} \\ \text{nt functions} \quad \langle j^{x} j^{x} \rangle = \frac{\delta \langle j^{x} \rangle}{\delta A_{x}} = \frac{i\omega^{2}\sigma}{\omega + iDk^{2}} \\ \text{ormula:} \quad \sigma = \lim_{\omega \to 0} \frac{1}{i\omega} \langle j^{x} j^{x} \rangle (\omega, k = 0) \end{array}$$

Chiral hydrodynamics - conductivity Kubo formulae

Parallel conductivity

$$\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle J^{z} J^{z} \rangle (\omega, \mathbf{k} = 0) = 0$$

current

Chiral hydrodynamics - conductivity Kubo formulae

Parallel conductivity

$$\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle J^{z} J^{z} \rangle (\omega, \mathbf{k} = 0) = 0$$

Perpendicular **resistivity**

$$\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle J^{x} J^{x} \rangle (\omega, \mathbf{k} = \mathbf{0}) = \omega$$

Matthias Kaminski

Chiral hydrodynamics - conductivity Kubo formulae

Parallel conductivity

$$\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle J^{z} J^{z} \rangle (\omega, \mathbf{k} = 0) = 0$$

Perpendicular **resistivity**

$$\lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle J^{x} J^{x} \rangle (\omega, \mathbf{k} = \mathbf{0}) = \omega$$

$$\langle J^z J^z \rangle (\omega,$$

$$\langle J^x J^x \rangle(\omega, z)$$

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Two shear viscosities

Shear viscosity perpendicular

$$\frac{1}{\omega} \operatorname{Im} G_{T^{xy}T^{xy}}(\omega, \mathbf{k}=0)$$

Shear viscosity parallel

$$\frac{1}{\omega} \operatorname{Im} G_{T^{xz}T^{xz}}(\omega, \mathbf{k}=0) = \eta_{\parallel} + (\delta_{y}) = \eta_$$

➡ Value of shear viscosity depends on direction of magnetic field Can lead to creation of flow at early times

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Chiral hydrodynamics - novel transport coefficient c_{10}

Shear-induced Hall conductivity C_{10}

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

$$c_{10} \sim \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} \langle T^{tx} T^{yz} \rangle(\omega, \vec{k} =$$

 $\begin{array}{c} {}_{\text{charge current}} \left(j_{\chi} \right) \sim c_{10} (\partial_{y} u_{\chi} + \partial_{z} u_{y}) \end{array}$

novel Hall response

non-dissipative

interplay: shear-charge

Chiral hydrodynamics - novel equilibrium coefficient M_2

► Can be computed on lattice [Adhikari et al.; to appear in PPNP (2025)] Test these Kubo formulae and constitutive relations now?

Matthias Kaminski

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

Perpendicular magnetic vorticity susceptibility M₂

$$M_2 = -\lim_{k_z \to 0} \frac{1}{2k_z B_0^2} \operatorname{Im} \langle T^{xz} T^{yz} \rangle (\omega = 0, \lambda)$$

response in energy/pressure :

 $\langle T^{tt} \rangle = \mathcal{E}_{eq} \sim \mathcal{P}_{eq} \sim M_2 B \cdot \Omega_B$

magnetic vorticity : $\Omega^{\mu}_{R} = \epsilon^{\mu\nu\rho\sigma} u_{\nu} \nabla_{\rho} B_{\sigma}$

Holographic model for chiral hydrodynamics

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

Einstein-Maxwell-Chern-Simons action

$$S_{grav} = \frac{1}{2\kappa^2} \left[\int_{\mathcal{M}} d^5 x \sqrt{-g} \left(R + \frac{12}{L^2} - \frac{1}{4} F_{mn} F^{mn} \right) \right]$$

Charged magnetic black branes

[D'Hoker, Kraus; JHEP (2010)]

- charged magnetic analog of Reissner-Nordstrom black brane
- asymptotically AdS_5

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

Matthias Kaminski

\rightarrow Construct holographic dual to charged plasma in strong B

Compute values for novel transport coefficients (N=4 SYM) from quasi normal modes and correlation functions

cf. [Son, Surowka; PRL (2009)] [Erdmenger, Haack, Kaminski, Yarom; JHEP (2008)]

$$\frac{\gamma}{6} \int_{\mathcal{M}} A \wedge F \wedge F \bigg]$$

5-dimensional Chern-Simons term encodes chiral anomaly

2. Holographic model for chiral hydrodynamics - Results

Perpendicular magnetic vorticity susceptibility M₂

Matthias Kaminski

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)]

	$\operatorname{coefficient}$	name	Kubo formulae	\mathcal{C}			
	Thermodynamic $\left(\lim_{\mathbf{k}\to0}\lim_{\omega\to0}\right)$, non-dissipative						
	helicity 1						
	M_2	perp. magnetic vorticity susceptibility	$T^{xz}T^{yz}$ (2.30)	+			
	M_5	magneto-vortical susceptibility	$T^{lx}T^{yz}$ (2.30,2.31)	+			
	ξ	chiral vortical conductivity	$J_x T_{tu}$ (2.38,2.39)	+			
	ξ_B	chiral magnetic conductivity	$J^x J^y$ (2.38,2.39)	+			
	ξ_T	chiral vortical heat conductivity	$T^{\iota x}T^{\iota y}$ (2.38,2.39)	+			
	helicity 0						
	M_1	magneto-thermal susceptibility	$J^{t}T^{xx}$ (2.32)	+			
	M_3	magneto-acceleration susceptibility	$J^{t}T^{tt}$ (2.32)	+			
	M_4	magneto-electric susceptibility	$J^{t}J^{t}$ (2.32)	+			

	Non-dissipative Hydrodynamic $\left(\lim_{\omega \to 0} \lim_{\mathbf{k} \to 0} \right)$					
coefficient	name	Kubo formulae				
helicity 2	ity 2					
$ ilde\eta_\perp$	transverse Hall viscosity	$T_{xy}(T_{xx} - T_{yy})(2.55f)$				
helicity 1	licity 1					
$c_{10} \propto c_{17}$	shear-induced Hall cond.	$T^{tx}T^{xz}, T^{tx}T^{yz}$ (2.60,2.62a,2.62b)				
$ ilde{\sigma}_{\perp}$	Hall conductivity	$J^x J^x, J^x J^y$ (2.54,2.53b,2.53c)				

-

+

 \mathcal{P}

-

 \mathcal{P}

+

+

+

+

+

+

Chiral hydrodynamics - all coefficients

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; JHEP (2020)] cf. [Hernandez, Kovtun; JHEP (2017)]

dissipative, hydrodynamic $\left(\lim_{\omega \to 0} \lim_{\mathbf{k} \to 0}\right)$		odynamic $\left(\lim_{\omega \to 0} \lim_{\mathbf{k} \to 0}\right)$		
coefficient	name	Kubo formulae	1	
helicity 2			-	
η_{\perp}	perp. shear viscosity	$T_{xy}T_{xy}$ (2.55)	-	
helicity 1	•		-	
$\eta_{ }$	parallel shear viscosity	$T^{xz}T^{xz}$ (2.59a)	-	
$\tilde{\eta}_{ }$	parallel Hall viscosity	$T_{yz}T_{xz}$ (2.59b)	-	
$c_8 \propto c_{15}$	shear-induced conductivity	$T_{tx}T_{xz}, T_{tx}T_{yz}$ (2.57)	Ŀ	
ρ_{\perp}	perp. resistivity	$J^{x}J^{x}$ (2.54)	Ŀ	
$\widetilde{ ho}_{\perp}$	Hall resistivity	$J^{x}J^{y}$ (2.55e)	-	
$\sigma_{ }$	long. conductivity	$J^{z}J^{z}$ (2.53a)	Ŀ	
σ_{\perp}	perp. conductivity	$\rho_{ab} \equiv (\sigma^{-1})_{ab} = \rho_{\perp} \delta_{ab} + \tilde{\rho}_{\perp} \epsilon_{ab}$	•	
helicity 0			-	
η_1	bulk viscosity	$\mathcal{O}_1\mathcal{O}_1$ (2.55c)	·	
η_2	bulk viscosity	$\mathcal{O}_2\mathcal{O}_2~(ext{2.55d})$	-	
ζ_1	bulk viscosity	$T^{ij}(T^{xx} + T^{yy})(2.55a)$	Ŀ	
ζ_2	bulk viscosity	$3\zeta_2 - 6\eta_1 = 2\eta_2$	-	
c_4	expaninduced long. cond.	$J_x T_{xx} \ (2.57)$	-	
c_5	expaninduced long. cond.	$J_z T_{zz} \ (2.57)$	Ŀ	
c_3		$c_5 = -3(c_3 + c_4)$		
			_	

relevant for QGP or cond-mat?

[Cartwright, Kaminski, Schenke; PRC (2022)]

Interacting many-body systems at large temperature *T* have collective excitations, damped **eigenmodes**, with specific dispersion relations :

Sound modes

Momentum diffusion mode

Matthias Kaminski

(assuming rotation invariance: $k \equiv |\vec{k}|$)

Interacting many-body systems at large temperature *T* have collective excitations, damped **eigenmodes**, with specific dispersion relations :

Sound modes

Momentum diffusion mode

Matthias Kaminski

(assuming rotation invariance: $k \equiv |\vec{k}|$)

Interacting many-body systems at large temperature T have collective excitations, damped **eigenmodes**, with specific dispersion relations :

Sound modes

Momentum diffusion mode

Matthias Kaminski

(assuming rotation invariance: $k \equiv |\vec{k}|$)

Interacting many-body systems at large temperature T have collective excitations, damped **eigenmodes**, with specific dispersion relations :

Sound modes

 $\omega(k) = \pm v_s k - i\Gamma k^2 + \mathcal{O}(3)$

Momentum diffusion mode

 $\omega(k) = -iDk^2 + \mathcal{O}(3)$

(assuming rotation invariance: $k \equiv |\vec{k}|$)

Interacting many-body systems at large temperature T have collective excitations, damped **eigenmodes**, with specific dispersion relations :

Sound modes

$$\omega(k) = \pm v_s k - i\Gamma k^2 + \mathcal{O}(3)$$

Momentum diffusion mode

$$\omega(k) = -iDk^2 + \mathcal{O}(3)$$

$$\mathcal{P}\phi = 0 \qquad \begin{array}{l} \textit{linear equation of motion} \\ \textit{for conserved quantity} \end{array}$$
$$\mathcal{P}G^R = \delta$$
$$G^R_{diffusion} \propto \mathcal{P}^{-1}_{diffusion} \propto \frac{1}{\partial_t - D\partial_x^2 + \mathcal{O}(3)} \propto \frac{1}{\omega + iDk^2 + \mathcal{O}(3)}$$

Matthias Kaminski

(assuming rotation invariance: $k \equiv |\vec{k}|$)

Interacting many-body systems at large temperature T have collective excitations, damped **eigenmodes**, with specific dispersion relations :

Sound modes

$$\omega(k) = \pm v_s k - i\Gamma k^2 + \mathcal{O}(3)$$

Momentum diffusion mode

$$\omega(k) = -iDk^2 + \mathcal{O}(3)$$

$$\mathcal{P}\phi = 0$$
linear equation of motion
for conserved quantity

$$\mathcal{P}G^{R} = \delta$$

$$G^{R}_{diffusion} \propto \mathcal{P}^{-1}_{diffusion} \propto \frac{1}{\partial_{t} - D\partial_{x}^{2} + \mathcal{O}(3)} \propto \frac{1}{\omega + iDk^{2} + \mathcal{O}(3)}$$

Compute $\mathscr{P}(\omega, k) = 0$ from holography: $\mathscr{P} \sim |\delta g_{\mu\nu}|_{\text{boundary}}$

Matthias Kaminski

Hydrodynamic modes from holography

(assuming rotation invariance: $k \equiv |\vec{k}|$)

Holographic model exhibits hydrodynamic modes under rotation

Fluctuations

- **Einstein gravity** dual to *N*=4 SYM theory
- metric of a **rotating asymptotically AdS5 black hole** (solution to Einstein equations) dual to a rotating thermal SYM state
- black hole thermodynamics "determines" thermodynamics of the rotating SYM state
- poles of the SYM Green's functions dual to quasi normal mode (QNM) frequencies of black hole: **QNMs encode SYM dispersion** relations

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Compute the QNM frequencies around rotating black hole as function of momentum.

Holographic model exhibits hydrodynamic modes under rotation

Rotating AdS5 black hole

$$\begin{split} ds^2 &= -\left(1 + \frac{r^2}{L^2}\right) dt^2 + \frac{dr^2}{G(r)} + \frac{r^2}{4} \left((\sigma^1)^2 + (\sigma^1)^2 + (\sigma^1)^2\right) \\ &+ (\sigma^3)^2 + \frac{2\mu}{r^2} \left(dt + \frac{a}{2}\sigma^3\right)^2 \\ G(r) &= 1 + \frac{r^2}{L^2} - \frac{2\mu(1 - a^2/L^2)}{r^2} + \frac{2\mu a^2}{r^4} \\ \mu &= \frac{r_+^4 \left(L^2 + r_+^2\right)}{2L^2 r_+^2 - 2a^2 \left(L^2 + r_+^2\right)} \,, \end{split}$$

 $(\sigma^2)^2$

Holographic model exhibits hydrodynamic modes under rotation

Rotating AdS5 black hole

$$\begin{split} ds^2 &= -\left(1+\frac{r^2}{L^2}\right) dt^2 + \frac{dr^2}{G(r)} + \frac{r^2}{4} \left((\sigma^1)^2 + (\sigma^2)^2 \right. \\ &+ (\sigma^3)^2\right) + \frac{2\mu}{r^2} \left(dt + \frac{a}{2}\sigma^3\right)^2 \\ G(r) &= 1 + \frac{r^2}{L^2} - \frac{2\mu(1-a^2/L^2)}{r^2} + \frac{2\mu a^2}{r^4} \,, \\ \mu &= \frac{r_+^4 \left(L^2 + r_+^2\right)}{2L^2 r_+^2 - 2a^2 \left(L^2 + r_+^2\right)} \,, \end{split}$$

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Rotating thermal SYM state

$$\begin{aligned} analytic fluid flow (cf. Gubser flow) \\ u^{\tau} &= \lambda \left[\cosh \xi \left(L^2 + \tau^2 + x_{\perp}^2 \right) \right. \\ &+ 2\Omega (Lx_1 \sinh \xi + \tau x_2) \right] \\ u^1 &= \lambda \left[2 (L\tau \Omega \sinh \xi + \tau x_1 \cosh \xi + x_1 x_2 \Omega) \right] , \\ u^2 &= \lambda \left[\Omega \left(L^2 + \tau^2 - x_1^2 + x_2^2 \right) + 2\tau x_2 \cosh \xi \right] , \\ u^{\xi} &= -\tau^{-1} \lambda \left[-\sinh \xi \left(L^2 - \tau^2 + x_{\perp}^2 \right) - 2Lx_1 \Omega \cosh \xi \right] \\ \epsilon &= (16L^8 \Theta^4) \left(1 - \Omega^2 \right)^{-2} \times \\ \left(2L^2 \tau^2 \cosh 2\xi + \left(L^2 + x_{\perp}^2 \right)^2 + \tau^4 - 2\tau^2 x_{\perp}^2 \right)^{-2} , \\ \lambda &= \left(\frac{\epsilon}{16L^8 \Theta^4} \right)^{1/4} , \quad \Theta = \left(\frac{3(1 - \Omega^2)\mu}{8\pi G_5 L^3} \right)^{1/4} , \end{aligned}$$

Large black noles: large 1 $r_+ \to \alpha r_+, \quad r \to \alpha r, \quad \alpha \to \infty$

[Bantilan, Ishii, Romatschke; PLB (2018)]

Milne coordinates $\xi = \frac{1}{2} \ln[(t + x_3)/(t - x_3)] \qquad \tau = \sqrt{t^2 - x_3^2}$

 $(\tau, x_1, x_2, \xi; r)$

High temperature: dispersion relations of rotating black hole look like boosted fluid

Dispersion relations:

$$\nu(j) = -aj - i\frac{1}{2}(1 - a^2)^{3/2}j^2 + \mathcal{O}(j^3)$$

$$\nu(j) = \frac{\pm 1 - \sqrt{3}a}{\sqrt{3} \mp a} j - i\sqrt{3}\frac{(1 - a^2)^{3/2}}{(\sqrt{3} - a)^3} j^2 + \mathcal{O}_{j}(1 - a^2)^{3/2} + \mathcal{O}_{j}(1 - a$$

"Speeds of diffusion":

 $v_{||}=a,$

Speeds of sound:

$$v_{s,\pm} = v_{s,0} \frac{\sqrt{3}a}{1\pm}$$

Corresponding damping: $\mathcal{D}_{||} = \mathcal{D}_0(1-a^2)^{3/2}, \quad \Gamma_{s,\pm} = \Gamma_0 rac{\left(1-a^2\right)^{3/2}}{\left(1\pm rac{a}{\sqrt{3}}
ight)^3},$

Shear viscosities:

$$\eta_{\perp}(a) = \eta_0 \frac{1}{\sqrt{1-a^2}}, \quad \eta_{||}(a) = \eta_0 \sqrt{1-a^2},$$

known in high T rotating fluid (boosted fluid).

Matthias Kaminski

[Garbiso-Amano, Kaminski; JHEP (2019)] [Garbiso-Amano, Cartwright, Kaminski, Wu; PPNP (2024)] cf. [Hoult,Kovtun (2020)] [Kovtun (2019)]

Boost transformation:

$$q^2 = \frac{(a\nu + j)^2}{1 - a^2}, \qquad \mathfrak{w}^2 = \frac{(\nu + aj)^2}{1 - a^2}$$

 $\mathcal{O}(j^3)$

Einstein relations:

$$egin{split} \mathcal{D}_{||}(a) &= 2\pi T_0 rac{\eta_{||}(a)}{\epsilon(a) + P_{\perp}(a)}\,, \ \Gamma_{\pm}(a) &= rac{2\eta_{||}(a)}{3(\epsilon(a) + P_{\perp}(a))} rac{1}{(1\pm a/\sqrt{3})^3}\,. \end{split}$$

➡If transport coefficients known at rest, then they are

Is hydrodynamics valid? - Scaling

• validity of the <u>constitutive relations and transport coefficients</u>

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

[Cartwright, Garbiso-Amano; Kaminski, Wu; arXiv:2308.11686]

Is hydrodynamics valid? - Transport coefficients

A

[Cartwright, Garbiso-Amano; Kaminski, Wu; arXiv:2308.11686]

$$\mathcal{D}_{||} = \mathcal{D}_0 (1 - a^2)^{3/2}$$

Two Speeds of Sound in Bjorken-Expanding N=4 SYM QGP

Matthias Kaminski

Page 23

$$c_{\perp}^{2} = -\frac{\partial \langle T_{x_{1}}^{x_{1}} \rangle}{\partial \langle T_{0}^{0} \rangle}, \qquad c_{\parallel}^{2} = -\frac{\partial \langle T_{\xi}^{\xi} \rangle}{\partial \langle T_{0}^{0} \rangle}$$

Metric near-boundary expansion

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$

$$\begin{array}{ll} g_{\mu\nu} \sim g^{(0)}_{\mu\nu} + \langle T_{\mu\nu} \rangle z^4 + \dots \\ {}_{\textit{metric}} & {}_{\textit{source}} & {}_{\textit{one-point function}} \end{array}$$

Matthias Kaminski

Methods: Thermodynamic Definition

verify with perturbative calculation h (sound) Using technique from The Kaminski, Blei (2020 [Wondrak, Kaminski, Bleicher; *Phys.Lett.B* (2020)]

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

Sound Attenuation

[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]

Relaxation Time

Matthias Kaminski

[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]

Hydrodynamics in Anisotropic Systems

Dispersion relation in <u>sound sector</u>

... extracted from quasinormal modes in <u>spin-0 sector</u> of metric perturbations

1. **background metric** dual to Bjorken-expanding plasma $g^{(\text{Bjorken})}_{\mu\nu}(\tau)$

2. add **perturbation** $g_{\mu\nu}^{(Bjorken)}(\tau) + h_{\mu\nu}^{(sound)}$

3. **quasi-static:** on fixed time slice τ : Fourier-transform $h_{\mu\nu}^{(sound)}$

4. calculate quasinormal mode **frequency** *w* at **momentum** *q*

Methods: Perturbative Definition

[Cartwright,Ilyas,Kaminski,Knipfer,Zhang; in progress]

Bjorken-Expanding Plasma

[Cartwright,Kaminski,Knipfer; PRD (2023)] ▶ far away from equilibrium thermodynamic Freeze out quantities are not well-defined plasma is approximately boost invariant along the beam-line Hadron Gas $au pprox 7 - 10 {
m fm/c}$ initially large anisotropy between that direction and the transverse plane $\tau \approx 1 \mathrm{fm/c}$ $ightarrow x_3$ rapidity $\xi = \frac{1}{2} \ln[(t+x_3)/(t-x_3)]$

proper time
$$au=\sqrt{t^2-x_3^2}$$

early times: far from equilibrium

Gravity dual: Einstein Gravity, anisotropic metric AdS radial coordinate r = 1/z $ds^{2} = 2drdv - A(v,r)dv^{2} + e^{B(v,r)}S(v,r)^{2}(dx_{1}^{2} + dx_{2}^{2}) + S(v,r)^{2}e^{-2B(v,r)}d\xi^{2}$ **boundary at** $r = \infty$ has Milne metric: $\lim_{r \to \infty} \frac{1}{r^2} ds^2 = -d\tau^2 + dx_1^2 + dx_2^2 + \tau^2 d\xi^2$

late times: system still expanding but approximately isotropic

Discussion

Summary

- considered three examples of **anisotropic systems**
 - ➡ external magnetic field
 - ➡ rotation
 - ➡ Bjorken expansion
- novel transport coefficients, changed Kubo formulae
- drastic differences, e.g. specific shear viscosity drops to zero (below $1/(4\pi)$)
- anisotropic hydrodynamics **needed**

Discussion

Summary

- considered three examples of **anisotropic systems**
 - ➡ external magnetic field
 - \rightarrow rotation
 - ➡ Bjorken expansion
- novel transport coefficients, changed Kubo formulae
- drastic differences, e.g. specific shear viscosity drops to zero (below $1/(4\pi)$)
- anisotropic hydrodynamics **needed**

Outlook

[Ghosh, Shovkovy, [Adhikari et al.; to appear in PPNP (2025)] Eur.Phys.J.C. (2024)]

- calculate novel transport coefficients on the lattice and perturbative QCD
- effect of anisotropies on (elliptic) flow v_n ? [Bernhard et al., Nature Physics (2019)]
- construct holographic heavy ion collisions to model QGP (dynamical magnetic field and dynamically created axial imbalance)
- use holographic collisions to **test formulations of hydrodynamics**

Hydrodynamics in Anisotropic Systems

Thanks to my collaborators (since 2012) and Thank You!

Matthias Kaminski

APPENDIX

Matthias Kaminski

A winning team: hydrodynamics and holography in parallel

More balanced review in *my Section* 5.2 *on Hydrodynamics* in White Paper [Sorensen et al.; Prog.Part.Nucl.Phys. (2024)]

HYDRODYNAMICS & **THERMODYNAMICS**

Chiral Magnetic Effect (CME) from chiral anomaly

[*Kharzeev*; *PRC* (2004)] [Son,Surowka; PRL (2009)] [Neiman, Oz; JHEP (2010)]

$$J^{\mu}_{A} = \xi_{B}B$$

----hydro and holo in parallel

[Erdmenger,Haack,Kaminski,Ya

Chiral Vortical Effect

quilibrium

time

rom; JHEP (2008)]

QGP

[Banerjee et al.; JHEP (2011)]

$$J_A^{\mu} = \xi_V \Omega^{\mu}_{vorticity}$$

fluid/gravity correspondence

- gives constitutive equations
- contain weird parity-odd term G

멾

Matthias Kaminski

Initial tate

Hydro e 9 Å

hadron

HOLOGRAPHY

CME far from equilibrium, strong B

le non-expanding plasma

[Gosh,Grieninger,Landsteiner,Morales-Tejera; PRD (2021)]

expanding plasma

[Cartwright,Kaminski,Schenke; PRC (2022)]

Frequency dependence of CME

[Amado,Landsteiner,Pena_Benitez; JHEP (2011)] [Li,Yee; PRD (2018)]

[Koirala; PhD thesis (2020)]

CME near equilibrium (+hydro) \bigcirc weak magnetic field B

[Son,Surowka; PRL (2009)] [Kharzeev, Yee; PRD (2011)] [Ammon, Kaminski et al.; JHEP (2017)]

strong **B**

[Ammon,Leiber,Macedo; JHEP (2016)]

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, *Leiber, Wu; JHEP (2021)*]

[Neiman,Oz; JHEP (2010)]

APPENDIX - CME far from equilibrium - case I

[DOE Highlight Article; Cartwright,Kaminski,S chenke (2023)]

Initial state:

constant B, pressure anisotropy

time-dependent μ_5 , plasma expanding along beam line

Matching to QCD:

SUSY value for α L=1fm fixes κ

Near-equilibrium CME $\xi_{\gamma} = C \,\mu_A$

[Kharzeev; PRC (2004)] [Fukushima,Kharzeev,Warringa; PRD (2008)] [Son, Surowka; PRL (2009)]

Matthias Kaminski

[Cartwright,Kaminski,Schenke; PRC (2022)]

η	
S	

APPENDIX - Far from equilibrium shear: Results

300.

Temperature

$$T = T_{\text{Hawking}}$$

Entropy density from generating functional

$$s \sim \frac{\partial S^{\text{on-shell}}}{\partial T}$$

MeV 200.

100.

0.

No universal bound [Buchel, Myers, Sindha; JHEP (2008)]

Matthias Kaminski

[Bleicher, Kaminski, Wondrak; Phys.Lett.B (2020)]

Matthias Kaminski

whereas far from equilibrium Super-Yang-Mills (SYM) plasma suggests $\eta/s < 1/(4\pi)$

currently underestimating flow generated at early times [Bernhard, Moreland, Bass, Nature (2019)]

APPENDIX: Same magneto response in LQCD and N=4 SYM with magnetic field

Matthias Kaminski

Hydrodynamics in Anisotropic Systems

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; JHEP (2018)]

APPENDIX: Strong B thermodynamics

B

Energy momentum tensor:

$$\langle T^{\mu\nu} \rangle = \begin{pmatrix} \epsilon_0 & 0 & 0 \\ 0 & P_0 - \chi_{BB} B^2 & 0 \\ 0 & 0 & P_0 - \chi_B \\ \xi_V^{(0)} B & 0 & 0 \end{pmatrix}$$

Axial current:

$$\langle J^{\mu} \rangle = \left(n_0, \, 0, \, 0, \, \xi_B^{(0)} B \right) + \mathcal{O}(\partial)$$

equilibrium charge current

new contributions to thermodynamic equilibrium observables

Matthias Kaminski

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

Strong B thermodynamics with anomaly : $\langle T^{\alpha\beta} \rangle = \epsilon u^{\alpha} u^{\beta} + p \Delta^{\alpha\beta} + \tau^{\alpha\beta}$

previous work:

[Kovtun; JHEP (2016)]

[Jensen, Loganayagam, Yarom; JHEP (2014)]

[Israel; Gen.Rel.Grav. (1978)]

APPENDIX: strong B hydrodynamics

Spin-1 modes

strong B:
$$\omega = \pm \frac{B_0 n_0}{w_0} - \frac{i B_0^2}{w_0} (\sigma_{\perp} \pm w_0)^2$$

weak B:
$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0}$$

Exact agreement in real part!

Spin-0 modes

strong B:
$$\omega = \pm k v_s - i \frac{\Gamma_{s,\parallel}}{2} k^2$$
, $\omega = -i D_{\parallel} k^2$,

weak B:
$$\omega_0 = v_0 k - iD_0 k^2 + \mathcal{O}(\partial^3)$$

 $\omega_+ = v_+ k - i\Gamma_+ k^2 + \mathcal{O}(\partial^3)$
 $\omega_- = v_- k - i\Gamma_- k^2 + \mathcal{O}(\partial^3)$

Matthias Kaminski

[Hernandez, Kovtun; JHEP (2017)]

Anisotropic transport coefficients

APPENDIX: weak B hydrodynamics comparison

Spin-1 modes

No knowledge of anisotropic (B-dependent) *transport coefficients except zero charge: [Finazzo, Critelli, Rougemont,* Noronha; PRD (2016)] — take B=0 values of this model instead

weak B hydro prediction:

model for small values of B, increasing deviations for larger B.

Real part of spin-1 modes matches exactly even at large B!

Matthias Kaminski

We find agreement between hydrodynamic prediction and holographic

APPENDIX: Dispersion relations: weak B hydrodynamics

Weak B hydrodynamics - poles of 2-point functions [Ammon, Kaminski et al.; JHEP (2017)] $\langle T^{\mu\nu} T^{\alpha\beta} \rangle, \langle T^{\mu\nu} J^{\alpha} \rangle, \langle J^{\mu} T^{\alpha\beta} \rangle, \langle J^{\mu} J^{\alpha} \rangle$ [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

former momentum diffusion modes

spin 0 modes under SO(2) rotations around B $\omega_0 = v_0 k - i D_0 k^2 + \mathcal{O}(\partial^3)$ former charge diffusion mode $\omega_{+} = v_{+} k - i\Gamma_{+} k^{2} + \mathcal{O}(\partial^{3})$ $\omega_{-} = v_{-}\,k - i\Gamma_{-}\,k^{2} + \mathcal{O}(\partial^{3})$ former sound modes

modified by anomaly and B

Matthias Kaminski

 $\mathfrak{s}_0 = s_0/n_0$ $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

→ a chiral magnetic wave
[Kharzeev, Yee; PRD (2011)]

$$v_0 = \frac{2BT_0}{\tilde{c}_P n_0} \left(\tilde{C} - 3C\mathfrak{s}_0^2\right)$$

 $D_0 = \frac{w_0^2 \sigma}{\tilde{c}_P n_0^3 T_0}$

dispersion relations of hydrodynamic modes are heavily

APPENDIX: EFT result III: weak B details

Weak B hydrodynamics - poles of 2-point functions:

spin 0 modes under SO(2) rotations around B

$$egin{aligned} &\omega_0 = v_0 \, k - i D_0 \, k^2 + \mathcal{O}(\partial^3) & former \ choose \ &\omega_+ = v_+ \, k - i \Gamma_+ \, k^2 + \mathcal{O}(\partial^3) & former \ &\omega_- = v_- \, k - i \Gamma_- \, k^2 + \mathcal{O}(\partial^3) & sound \ &modes \end{aligned}$$

damping coefficients:

$$\Gamma_{\pm} = \frac{3\zeta + 4\eta}{6w_0} + c_s^2 \frac{w_0 \sigma}{2n_0^2} \left(1 - \frac{\alpha_P w_0}{\tilde{c}_P n_0}\right)^2$$

velocities:

$$v_{\pm} = \pm c_s - B \frac{c_s^2}{n_0} \left(1 - \frac{\alpha_P w_0}{\tilde{c}_P n_0} \right) \left[3CT_0 \mathfrak{s}_0 + \frac{\alpha_P T}{\tilde{c}_P} + B \frac{1 - c_s^2}{w_0} \xi_V^{(0)} \right]$$

chiral conductivities:

$$\xi_V = -3C\mu^2 + \tilde{C}T^2$$
, $\xi_B = -6C\mu$, $\xi_3 = -2C\mu^3 + 2\tilde{C}\mu T^2$

Matthias Kaminski

known from entropy current argument [Son,Surowka; PRL (2009)] [Neiman,Oz; JHEP (2010)]

APPENDIX: Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes (QNMs)

- Weak B: holographic results are in "agreement" with hydrodynamics.
- result indicates that **chiral waves propagate**:

confirming conjectures and results in probe brane approach [Kharzeev, Yee; PRD (2011)]

Matthias Kaminski

[Ammon, Kaminski et al.; JHEP (2017)]

• Strong B: holographic result in agreement with thermodynamics, and numerical

APPENDIX: Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes (QNMs)

- Weak B: holographic results are in "agreement" with hydrodynamics.
- result indicates that **chiral waves propagate**:

Matthias Kaminski

[Ammon, Kaminski et al.; JHEP (2017)]

• Strong B: holographic result in agreement with thermodynamics, and numerical

APPENDIX: More thermodynamic transport coefficients

Magneto-thermal susceptibility M_1 : $\mathcal{E}_{eq} \sim M_1 B^\mu \partial_\mu \left(\frac{B^2}{T^4}\right)$

Magneto-acceleration susceptibility M_3 :

 $\mathcal{E}_{eq} \sim \mathcal{P}_{eq} \sim M_{3,B^2} B \cdot a$

Magneto-electric susceptibility M_4 : $\mathcal{E}_{eq} \sim M_{4,T} B \cdot E, \qquad \mathcal{P}_{eq} \sim M_{4,B^2} B \cdot E$

Magneto-vortical susceptibility M_5 : $\mathcal{E}_{eq} \sim \mathcal{P}_{eq}$

Matthias Kaminski

 $\sim M_5 B \cdot \Omega$

