Attractors in 3+1D Full Relativistic Boltzmann: dependence on system size, Knudsen number and opacity

Vincenzo Nugara

mostly based on: V. Nugara, S. Plumari, L. Oliva, and V. Greco, *Eur.Phys.J.C 84 (2024) 8, 861*; V. Nugara, S. Plumari, V. Greco *Eur.Phys.J.C 85 (2025) 3, 311*

Foundations and Applications of Relativistic Hydrodynamics – Focus Week

Florence, May 12th

(日) (部) (注) (注)

ultra-Relativistic Heavy-Ion Collisions...

ultra-Relativistic Heavy-Ion Collisions...

...but not only

Collectivity signatures observed also in small systems (pp and pA)

(You Zhou, *Collectivity in high energy proton proton collisions*, SQM2024) Good description by hydrodynamics!

Attractors

What is an attractor? Subset of the phase space to which all trajectories converge

Why do we look for attractors?

- **Uncertainties** in initial conditions affect final observables? Memory of initial conditions?
- Appearance of attractors and **hydrodynamisation**. The issue of small systems, as produced in *pp* or *pA*

Where do we look for attractors?

- Full distribution function f(x, p)
- Moments of f(x, p), probing regions of the phase-space
- Anisotropic flows v_n

See talks by Blaizot, Spalinski, Heller, Pretorius

Jankowski, Spalinski, Hydrodynamic attractors in

🗸 👝 ul trarelativistic nuclear collisions, 2023

Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Appearance of attractors and hydrodynamisation. The issue of small systems, as produced in *pp* or *pA*

Where do we look for attractors?

- Full distribution function f(x, p)
- Moments of f(x, p), probing regions of the phase-space
- Anisotropic flows v_n

See talks by Blaizot, Spalinski, Heller, Pretorius

Jankowski, Spalinski, Hydrodynamic attractors in

ultrarelativistic nuclear collisions, 2023

Attractors

What is an attractor?

Subset of the phase space to which all trajectories converge

Why do we look for attractors?

- Uncertainties in initial conditions affect final observables? Memory of initial conditions?
- Appearance of attractors and hydrodynamisation. The issue of small systems, as produced in *pp* or *pA*

Where do we look for attractors?

- Full distribution function f(x, p)
- Moments of f(x, p), probing regions of the phase-space
- Anisotropic flows v_n

See talks by Blaizot, Spalinski, Heller, Pretorius

Jankowski, Spalinski, Hydrodynamic attractors in

🗸 👝 uļtrareļativistic nuclear collisions, 2023

Relativistic Boltzmann Transport (RBT) Code

- Solve Boltzmann Equation: $p^{\mu}\partial_{\mu}f(x,p) = C_{2\leftrightarrow 2}[f(x,p)]_{p}$
- Large number of Test Particles sample the distribution function

Unique tool from $\eta/s \leq 1/4\pi$ (hydro limit) to $\eta/s \to +\infty$ (free streaming limit)

Preserving causality by construction: Particles velocity $\leq c$, $\Delta t > \Delta x$ see talks by Chen, Luzum, Gavassino (previous weeks)

Relativistic Boltzmann Transport (RBT) Code

- Solve Boltzmann Equation: $p^{\mu}\partial_{\mu}f(x,p) = C_{2\leftrightarrow 2}[f(x,p)]_{p}$
- Large number of Test Particles sample the distribution function

Unique tool from $\eta/s \leq 1/4\pi$ (hydro limit) to $\eta/s \to +\infty$ (free streaming limit)

Preserving causality by construction: Particles velocity $\leq c$, $\Delta t > \Delta x$

see talks by Chen, Luzum, Gavassino (previous weeks)

Code setup for 1D boost-invariant systems (Bjorken flow)

- Conformal system (m = 0)
- One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.
- Boost-invariance. No dependence on $\eta_s dN/d\eta_s = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$
- Normalised moments: $\overline{M}^{nm}(x) = \frac{\int dP \, (p \cdot u)^n (p \cdot z)^{2m} f(x, p)}{\int dP \, (p \cdot u)^n (p \cdot z)^{2m} f_{eq}(x, p)}$ (e.g. $\overline{M}^{01} = P_L/P_{eq}$)

Romatschke-Strickland Distribution Function $f_0(\mathbf{p}; \gamma_0, \Lambda_0, \xi_0) = \gamma_0 \exp\left(-\frac{1}{\Lambda_0}\sqrt{p_\perp^2 + p_w^2(1+\xi_0)}\right)$

where $p_{\perp}^{z} = p_{x}^{z} + p_{y}^{z}$ and $p_{w} = (p \cdot z)$ ξ_{0} fixes initial P_{L}/P_{T} , γ_{0} and Λ_{0} fix initial ε and n

Code setup for 1D boost-invariant systems (Bjorken flow)

- Conformal system (m = 0)
- One-dimension Homogeneous distribution and periodic b.c. in the transverse plane.
- Boost-invariance. No dependence on $\eta_s dN/d\eta_s = \text{const.}$ in $[-\eta_{s_{\text{max}}}, \eta_{s_{\text{max}}}]$

• Normalised moments:
$$\overline{M}^{nm}(x) = \frac{\int dP \ (p \cdot u)^n (p \cdot z)^{2m} \ f(x, p)}{\int dP \ (p \cdot u)^n (p \cdot z)^{2m} \ f_{eq}(x, p)}$$
(e.g. $\overline{M}^{01} = P_L / P_{eq}$)

Romatschke-Strickland Distribution Function

$$f_0(\mathsf{p};\gamma_0,\Lambda_0,\xi_0) = \gamma_0 \exp\left(-\frac{1}{\Lambda_0}\sqrt{p_\perp^2 + p_w^2(1+\xi_0)}\right)$$

where $p_{\perp}^2 = p_x^2 + p_y^2$ and $p_w = (p \cdot z)$ ξ_0 fixes initial P_L/P_T , γ_0 and Λ_0 fix initial ε and n

Distribution function evolution: Forward attractor vs τ , $\eta/s = 10/4\pi$.

• At $\tau = \tau_0$, three different distributions in momentum space: oblate ($\xi_0 = 10$), spherical ($\xi_0 = 0$) and prolate ($\xi_0 = -0.5$).

Attractors in 3+1D Full Relativistic Boltzmann

7 / 23

Distribution function evolution: Forward attractor vs τ , $\eta/s = 10/4\pi$.

- Already at $\tau \sim 1$ fm, strong initial longitudinal expansion brings the system away from equilibrium
- Distribution functions have similar (but not identical) shape.

Distribution function evolution: Forward attractor vs τ , $\eta/s = 10/4\pi$.

- At $\tau \sim$ 5 fm, clear universal behaviour also for the distribution functions.
- Two components: strongly peaked p_w distribution and a more isotropic one

(Strickland, JHEP 12, 128)

Distribution function evolution: Forward attractor vs au, $\eta/s = 10/4\pi$.

 For large τ the system is almost completely thermalized and isotropized.

Forward Attractor vs τ

Different initial anisotropies $\xi_0 = -0.5, 0, 10, \infty$, for $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$.

- $\eta/s = 1/4\pi$: attractor at $\tau \sim 0.5~{
 m fm}$
- $\eta/s = 10/4\pi$: attractor at $\tau \sim 1.0~{
 m fm}$
- Not 10 times larger!
- Less collisions to reach the attractor?
- Different attractors for different η/s ?

Mean free time & Pull-back attractors

(Denicol et al.PRD 83, 074019)

Same relaxation time as RTA

ヘロト 人間ト 人団ト 人団

Mean free time & Pull-back attractors

(Denicol et al.PRD 83, 074019)

Same relaxation time as RTA

(日) (四) (四) (日) (四)

Mean free time & Pull-back attractors

Only one relevant time-scale \implies Solution rescaling: Pull-back attractor

V. Nugara

Attractors in 3+1D Full Relativistic Boltzmann

Comparison with different models

Who is **the** attractor? Go to the limit $\xi_0 \to \infty$ $(P_L \to 0)$, $(\tau/\tau_{eq})_0 = \tau_0 T_0/(\eta/s) \to 0$; in agreement with RTA and aHydro (M. Strickland *et al.PRD*, 97, 036020 (2018), P. Romatschke *PRL* 120, 012301 (2018))

- Very good agreement with other models for M^{nm}, n > 0, get slightly worse for higher order moments
- Worse agreement for M^{0m} : sensitivity to slowly thermalising particles with $p_z \sim 0$

(日)

Code setup for 3D systems

- Conformal system (m = 0)
- Relax boundary conditions in the transverse plane \implies Transverse expansion

Romatschke-Strickland Distribution Function

$$f_0(x, \mathbf{p}) = \gamma_0 \exp\left(-\frac{\sqrt{p_T^2 + p_w^2(1 + \xi_0)}}{\Lambda_0}\right) e^{-x_\perp^2/R^2} \theta(2.5 - |\eta_s|)$$

- γ_0 and Λ_0 fix initial ε and n (Landau matching conditions);
- ξ_0 fixes initial P_L/P_T
- Gaussian distribution in the transverse plane
- Uniform distribution in η_s : [-2.5, 2.5]

3D

 η

x

Comparison with hydro

Very good agreement with 3D conformal hydro (MUSIC) with $\eta/s = 1/(4\pi)$:

- Matching time at 1.0 fm via full $T^{\mu
 u}$
- Conformal EOS, same $\eta/s=1/4\pi$
- Fugacity: $\Gamma(t) \neq 1$ in Boltzmann $\neq \Gamma(t) = 1$ in hydro.

< ロ > < 同 > < 回 > < 回 >

Longitudinal expansion (~ 1 D)

t > R

Onset of transverse expansion

t > 2R

Quasi free streaming $(\langle eta_{\perp}
angle > 0.8)$

0 < t < R

Longitudinal expansion (\sim 1D)

t > h

Onset of transverse expansion

t > 2R

Quasi free streaming $(\langle eta_\perp
angle > 0.8)$

0 < t < R

Longitudinal expansion $(\sim 1 {
m D})$

t > h

Onset of transverse expansion

t > 2R

Quasi free streaming $(\langle eta_\perp
angle > 0.8)$

New relevant time/length scale

Transverse dimension R

Opacity vs Inverse Knudsen Number R/λ_{mfp}

In Relaxation and Isotropization Time Approximation, opacity $\hat{\gamma}$ emerges in the Boltzmann equation as the only scaling parameter. (Kurkela et al., PLB 783, 274 (2018); Ambrus et al. PRD 105, 014031 (2022)) In RBT one finds:

$$rac{R}{\lambda_{
m mfp}}(t=R)pprox\hat{\gamma}$$

See talk by Werthmann tomorrow

Universality classes in R/λ_{mfp}

Link with 1D:
$$\hat{\gamma} = \frac{1}{5\eta/s} \left(\frac{R}{\pi a} \frac{dE_{\perp}^{0}}{d\eta}\right)^{1/4} = \frac{\tau_0 T_0}{5\eta/s} \left(\frac{R}{\tau_0}\right)^{3/4} = (\tau/\tau_{eq})_0 \left(\frac{R}{\tau_0}\right)^{3/4}$$

Opacity vs Inverse Knudsen Number R/λ_{mfp}

In Relaxation and Isotropization Time Approximation, opacity $\hat{\gamma}$ emerges in the Boltzmann equation as the *only scaling parameter*. (Kurkela et al., PLB 783, 274 (2018); Ambrus et al. PRD 105, 014031 (2022)) In RBT one finds:

$$rac{R}{\lambda_{
m mfp}}(t=R)pprox\hat{\gamma}$$

See talk by Werthmann tomorrow

Universality classes in R/λ_{mfp}

Link with 1D:
$$\hat{\gamma} = \frac{1}{5\eta/s} \left(\frac{R}{\pi a} \frac{dE_{\perp}^{0}}{d\eta}\right)^{1/4} = \frac{\tau_0 T_0}{5\eta/s} \left(\frac{R}{\tau_0}\right)^{3/4} = (\tau/\tau_{eq})_0 \left(\frac{R}{\tau_0}\right)^{3/4}$$

Forward attractors

3+1D, with azimuthal symmetry at $\eta_s \sim 0 \implies \overline{M}^{nm} = \overline{M}^{nm}(t, x_{\perp})$. Fix $\eta/s = 1/4\pi$. Change $\xi_0 \ (P_L/P_T)$ and R.

- Same trend of 1D: attractor due to initial longitudinal expansion (identical in 1D and 3D)
- Reached at same t for different R (transverse size doesn't matter)

イロト イポト イヨト イヨト

• Differentiate when transverse expansion starts to play a role

Forward attractors

3+1D, with azimuthal symmetry at $\eta_s \sim 0 \implies \overline{M}^{nm} = \overline{M}^{nm}(t, x_{\perp})$. Fix $\eta/s = 1/4\pi$. Change $\xi_0 \ (P_L/P_T)$ and R.

- Same trend of 1D: attractor due to initial longitudinal expansion (identical in 1D and 3D)
- Reached at same t for different R (transverse size doesn't matter)
- Differentiate when transverse expansion starts to play a role

V. Nugara

Pull-back attractors

We do not have a unique time-scale any more. How do we rescale time? Do we expect pull-back attractors at all?

- If plotted wrt t/R, a pull-back attractor emerges for each universality class, i.e. each value of opacity γ̂.
- One can 'rescale' one system evolution to another within the same universality class

Pull-back attractors

We do not have a unique time-scale any more. How do we rescale time? Do we expect pull-back attractors at all?

- If plotted wrt t/R, a pull-back attractor emerges for each universality class, i.e. each value of opacity γ̂.
- One can 'rescale' one system evolution to another within the same universality class

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y): $z = x + iy \rightarrow z' = z - \alpha \overline{z}^{n-1}$

$$\epsilon_n = \frac{\sqrt{\langle x_{\perp}^n \cos(n\phi) \rangle^2 + \langle x_{\perp}^n \sin(n\phi) \rangle^2}}{\langle x_{\perp}^n \rangle} \stackrel{\alpha \ll 1}{\simeq} n \alpha \frac{\langle x_{\perp}^{2(n-1)} \rangle}{\langle x_{\perp}^n \rangle}.$$

< ロ > < 同 > < 回 > < 回 >

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

$$rac{dN}{d\phi\, p_\perp\, dp_\perp} \propto 1 + 2\sum_{n=1} {
m v}_{
m n}(p_\perp) \cos[n(\phi_p - \Psi_n(p_\perp))].$$

Anisotropic flows $v_n = \langle \cos(n\phi)
angle$

How efficiently does this conversion happen? How does it depend on η/s , $\hat{\gamma}$ and R/λ_{mfp} ?

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y): $z = x + iy \rightarrow z' = z - \alpha \overline{z}^{n-1}$

$$\epsilon_n = \frac{\sqrt{\langle x_{\perp}^n \cos(n\phi) \rangle^2 + \langle x_{\perp}^n \sin(n\phi) \rangle^2}}{\langle x_{\perp}^n \rangle} \stackrel{\alpha \ll 1}{\simeq} n\alpha \frac{\langle x_{\perp}^{2(n-1)} \rangle}{\langle x_{\perp}^n \rangle}.$$

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

$$rac{dN}{d\phi\, p_\perp\, dp_\perp} \propto 1 + 2\sum_{n=1} {\sf v}_n(p_\perp) \cos[n(\phi_p - \Psi_n(p_\perp))].$$

Anisotropic flows $v_n = \langle \cos(n\phi) \rangle$

How efficiently does this conversion happen? How does it depend on η/s , $\hat{\gamma}$ and R/λ_{mfp} ?

Eccentricities and anisotropic flows

Reproduce eccentricity in coordinate space by shifting (x, y): $z = x + iy \rightarrow z' = z - \alpha \overline{z}^{n-1}$

$$\epsilon_n = \frac{\sqrt{\langle x_{\perp}^n \cos(n\phi) \rangle^2 + \langle x_{\perp}^n \sin(n\phi) \rangle^2}}{\langle x_{\perp}^n \rangle} \stackrel{\alpha \ll 1}{\simeq} n\alpha \frac{\langle x_{\perp}^{2(n-1)} \rangle}{\langle x_{\perp}^n \rangle}.$$

(I) < (I)

(S. Plumari, G. L. Guardo, V. Greco, J.-Y. Ollitrault, Nucl. Phys. A 941, 87 (2015))

Viscosity converts space anisotropies in momentum space. Expand distribution function as:

$$rac{dN}{d\phi\, p_\perp\, dp_\perp} \propto 1 + 2\sum_{n=1} {\sf v}_n(p_\perp) \cos[n(\phi_p - \Psi_n(p_\perp))].$$

Anisotropic flows $v_n = \langle \cos(n\phi) \rangle$

How efficiently does this conversion happen? How does it depend on η/s , $\hat{\gamma}$ and R/λ_{mfp} ?

Response functions v_n/ϵ_n : Knudsen number vs opacity

- No dependence on ϵ_n
- Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R
Response functions v_n/ϵ_n : Knudsen number vs opacity

Response functions v_n/ϵ_n : Knudsen number vs opacity

Attractors in 3+1D Full Relativistic Boltzmann

Memory of initial v_2 in pA vs AA

• Minijets + m = 0.3 GeV (\approx QPM) + $\eta/s(T)$

- Initial v₂(p_T) from CGC (Schenke et al., PLB 747 (2015))
- Initial eccentricity $\epsilon_2 = 0.3$ (Sun et al., EPJC (2020))
- No memory of initial $v_2(p_T)$ in AA
- Sensitive impact of initial $v_2(p_T)$ in pA

Summary

1D systems

- Attractors in all the examined cases in the distribution function and its moments
- One relevant time scale (au_{eq}) driving the evolution

3D systems

- \checkmark Forward and pull-back attractors (\sim 1D), difference w.t.r. 1D for t>R
- \checkmark Inverse Knudsen number R/λ_{mfp} very good universal parameter
- \checkmark Memory of initial momentum correlations in \sim pA systems, not in \sim AA

Outlook

- Non-conformal equation of state implemented
- Initial fluctuations for event-by-event simulation implemented
- Pre-hydrodynamic transport + transport/hydro without discontinuity in bulk pressure Π

(日)

Thank you for your attention.

3

イロト イポト イヨト イヨト

LRF and matching conditions

Define the Landau Local Rest Frame (LRF) via the fluid four-velocity:

$$T^{\mu
u}u_
u = arepsilon u^\mu, \ n = n^\mu u_\mu$$

 ε and *n* are the energy and particles density in the LRF. Fluid is not in equilibrium \implies define locally effective T and Γ via Landau matching conditions:

$$T = \frac{\varepsilon}{3 n}, \qquad \Gamma = \frac{n}{d T^3 / \pi^2}$$

d is the # of dofs, fixed d = 1.

Testing boost-invariance

Compute normalized moments at different η_s 's within an interval $\Delta \eta_s = 0.04$.

No dependence on η ! We look for them at midrapidity: $\eta \in [-0.02, 0.02]$

Boltzmann RTA Equation for number-conserving systems

Boltzmann equation in Relaxation Time Approximation (RTA) (Strickland, Tantary, JHEP10(2019) 069)

$$p^{\mu}\partial_{\mu}f_{p}=-rac{p\cdot u}{ au_{eq}}(f_{eq}-f_{p}).$$

Exactly solvable, by fixing number and energy conservation. Two coupled integral equations for $\Gamma_{eff} \equiv \Gamma$ and $T_{eff} \equiv T$: $\Gamma(\tau)T^4(\tau) = D(\tau,\tau_0)\Gamma_0 T_0^4 \frac{\mathcal{H}(\alpha_0\tau_0/\tau)}{\mathcal{H}(\alpha_0)} + \int_{\tau_0}^{\tau} \frac{d\tau'}{2\tau_{eq}(\tau')}D(\tau,\tau')\Gamma(\tau')T^4(\tau')\mathcal{H}\left(\frac{\tau'}{\tau}\right),$ $\Gamma(\tau)T^3(\tau) = \frac{1}{\tau} \left[D(\tau,\tau_0)\Gamma_0 T_0^3\tau_0 + \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')}D(\tau,\tau')\Gamma(\tau')T^3(\tau')\tau' \right].$

Here $\alpha = (1 + \xi)^{-1/2}$. System solvable by iteration.

イロト 不得下 不良下 不良下 一時

vHydro equations

Second-order dissipative viscous hydrodynamics equations according to DNMR derivation, starting from kinetic theory (G. S. Denicol *et al.*, *PRL*105, 162501 (2010)) :

$$\partial_ auarepsilon = -rac{1}{ au}(arepsilon+P-\pi),
onumber \ \partial_ au\pi = -rac{\pi}{ au\pi} + rac{4}{3}rac{\eta}{ au_\pi au} - eta_\pirac{\pi}{ au},$$

where $\tau_{\pi} = 5(\eta/s)/T$ and $\beta_{\pi} = 124/63$. Solved with a Runge-Kutta-4 algorithm.

aHydro for number-conserving systems

Formulation of dissipative anisotropic hydrodynamics with number-conserving kernel (Almaalol, Alqahtani, Strickland, PRC 99, 2019). System of three coupled ODEs:

$$\partial_{ au}\log\gamma + 3\partial_{ au}\log\Lambda - rac{1}{2}rac{\partial_{ au}\xi}{1+\xi} + rac{1}{ au} = 0;$$

 $\partial_{ au}\log\gamma + 4\partial_{ au}\log\Lambda + rac{\mathcal{R}'(\xi)}{\mathcal{R}(\xi)}\partial_{ au}\xi = rac{1}{ au}\left[rac{1}{\xi(1+\xi)\mathcal{R}(\xi)} - rac{1}{\xi} - 1
ight];$
 $\partial_{ au}\xi - rac{2(1+\xi)}{ au} + rac{\xi(1+\xi)^2\mathcal{R}^2(\xi)}{ au_{eq}} = 0.$

Solved with a Runge-Kutta-4 algorithm.

Computation of moments in other models

• RTA:

$$\begin{split} \mathcal{M}^{nm}(\tau) &= \frac{(n+2m+1)!}{(2\pi)^2} \Big[D(\tau,\tau_0) \alpha_0^{n+2m-2} T_0^{n+2m+2} \Gamma_0 \frac{\mathcal{H}^{nm}(\alpha\tau_0/\tau)}{[\mathcal{H}^{20}(\alpha_0)/2]^{n+2m-1}} + \\ &+ \int_{\tau_0}^{\tau} \frac{d\tau'}{\tau_{eq}(\tau')} D(\tau',\tau') \Gamma(\tau') T^{n+2m+2}(\tau') \mathcal{H}^{nm}\left(\frac{\tau'}{\tau}\right) \Big]; \end{split}$$

• DNMR:

$$\overline{M}^{nm}_{\mathsf{DNMR}} = 1 - rac{3m(n+2m+2)(n+2m+3)}{4(2m+3)} rac{\pi}{arepsilon};$$

• a Hydro:

$$\overline{M}_{\mathsf{aHydro}}^{nm}(\tau) = (2m+1)(2\alpha)^{n+2m-2} \frac{\mathcal{H}^{nm}(\alpha)}{[\mathcal{H}^{20}(\alpha)]^{n+2m-1}};$$

3

イロト 不良 トイヨト イロト

Pressure anisotropy in different frameworks

For $\eta/s = 1/4\pi$ and $\eta/s = 10/4\pi$, compute P_L/P_T from three different initial anisotropies: $\xi_0 = -0.5, 0, 10.$

- RTA (not showed) really similar to aHydro
- \bullet aHydro attractor reached \sim time than RBT
- vHydro attractor reached at later time, especially for larger η/s

Attractors in different models

- \overline{M}^{nm} , m > 0: very good agreement
- Higher order moments
 → stronger departure
 between models
- **RBT** thermalizes earlier
- No agreement for \overline{M}^{n0}

Midrapidity

At midrapidity no difference w.r.t. the boost invariant case.

V. Nugar

Attractors in 3+1D Full Relativistic Boltzmann

3

イロト イポト イヨト イヨト

Finite distribution in η

- Tails of the distribution function at $|\eta_{s}| > 1$
- Discontinuity in initial distribution \rightarrow non-analyticity points in moments' evolution

-4

-5

-3

-2

-1

0

 η_s

1

2

3

5

4

Non-monotonic τ/τ_{eq} for Case 1

Loss of attractors for extremely small $\hat{\gamma}$

- Attractor do not reached even for t = 4 fm $\approx 5R$.
- This case is strongly unphysical! Low estimates for $\hat{\gamma}_{pp}\gtrsim 0.4$

Response functions v_n/ϵ_n at fixed opacity $\hat{\gamma}$

• No dependence on ϵ_n

• Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$

• For fixed $\hat{\gamma}$, monotonic ordering in R

V. Nugara

< ロ > < 同 > < 回 > < 回 >

Response functions v_n/ϵ_n at fixed opacity $\hat{\gamma}$

- No dependence on ϵ_n
- ullet Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R

< ロ > < 同 > < 回 > < 回 >

Response functions v_n/ϵ_n at fixed opacity $\hat{\gamma}$

- No dependence on ϵ_n
- ullet Clusters in $\hat{\gamma}$ within 10%. Spreading decreases with increasing $\hat{\gamma}$
- For fixed $\hat{\gamma}$, monotonic ordering in R

(日)

Backup slides

Dissipation of initial v_2

- Initial ($au_{
 m 0}\sim$ 0.1 0.4 fm) v_n from CGC model prediction
- Mimic initial $v_2 = 0.025$ by $\psi_0 = -0.1 \implies f \propto \exp\left(-\sqrt{p_x^2(1+\psi_0) + p_y^2 + p_z^2}/T\right)$

• How does this initial v_2 impact on the observed $v_2(t = 2R)$?

- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- \bullet For *pp* strong impact $\gtrsim 15\%$

イロト イヨト イヨト

Dissipation of initial v_2

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2 = 0.025$ by $\psi_0 = -0.1 \implies f \propto \exp\left(-\sqrt{p_x^2(1+\psi_0)+p_y^2+p_z^2}/T\right)$

• How does this initial v_2 impact on the observed $v_2(t = 2R)$?

- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- \bullet For *pp* strong impact $\gtrsim 15\%$

ヘロト ヘヨト ヘヨト

Dissipation of initial v_2

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2 = 0.025$ by $\psi_0 = -0.1 \implies f \propto \exp\left(-\sqrt{p_x^2(1+\psi_0)+p_y^2+p_z^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t = 2R)$?
 - \sim Universality in $\hat{\gamma}$ (same colour curves)
 - For AA systems really small impact: collisions cancel initial correlation
 - \bullet For *pp* strong impact $\gtrsim 15\%$

ヘロト ヘ戸ト ヘヨト ・ヨト

- 32

Backup slides

Dissipation of initial v_2

- Initial ($au_0 \sim 0.1 0.4$ fm) v_n from CGC model prediction
- Mimic initial $v_2 = 0.025$ by $\psi_0 = -0.1 \implies f \propto \exp\left(-\sqrt{p_x^2(1+\psi_0) + p_y^2 + p_z^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t = 2R)$?

- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- For pp strong impact $\gtrsim 15\%$

イロト イボト イヨト イヨト

Backup slides

Dissipation of initial v_2

- Initial ($au_{
 m 0}\sim$ 0.1 0.4 fm) v_n from CGC model prediction
- Mimic initial $v_2 = 0.025$ by $\psi_0 = -0.1 \implies f \propto \exp\left(-\sqrt{p_x^2(1+\psi_0) + p_y^2 + p_z^2}/T\right)$
- How does this initial v_2 impact on the observed $v_2(t = 2R)$?

- \sim Universality in $\hat{\gamma}$ (same colour curves)
- For AA systems really small impact: collisions cancel initial correlation
- ullet For pp strong impact $\gtrsim 15\%$

イロト イヨト イヨト