Weak reaction rates from holography

Andrea Olzi

Foundation and Application of Relativistic Hydrodynamics Galileo Galilei Institute

C. Hoyos, A. O., D. Rodriguez-Fernandez, JHEP 12 (2024) 058.

May 12, 2025

Andrea Olzi (Florence U., INFN Florence)

Weak reaction rates from holography

May 12, 2025

(日) (四) (日) (日) (日)

Motivations

Neutron stars are the remnants of old massive stars that undergo a supernova explosion and a subsequent gravitational collapse.

 \Rightarrow unique setting for exploring QCD in extreme conditions!

Hints of a quark matter core in massive neutron stars [Annala et al. 1903.09121]

Weak interactions: affect the properties of neutron stars and their binary mergers.

(日) (四) (日) (日) (日)

æ

Why are weak reactions important?

The system is in chemical equilibrium via weak processes

Perturbation: density oscillation \Rightarrow drives system out of equilibrium.

Response: weak processes work to restore the balance and dampen the perturbation \Downarrow

Effective bulk viscosity

Stability window of rotating stars, emission of gravitational waves...

 $\mathsf{Holography} \Rightarrow \mathsf{weak}$ reaction rates for strongly coupled cold quark matter.

(日) (四) (日) (日) (日)

3/17

Weak processes

The relevant weak processes, or reactions, are produced by a W-boson exchange or emission:

$$\boxed{u+d \rightleftharpoons u+s}, \quad u+\ell^- \to d, s+\nu_\ell, \quad d, s \to u+\ell^- + \bar{\nu}_\ell, \quad \ell_1^- \to \ell_2^- + \nu_{\ell_1} + \bar{\nu}_{\ell_2} .$$

beta-equilibrium condition: $\mu_u + \mu_\ell = \mu_d = \mu_s$, $\mu_\ell = \mu_e = \mu_\mu$.

イロト イヨト イヨト イヨト

Weak reaction rates

If a perturbation takes the chemical potentials out of their equilibrium values, the weak reactions will not be in balance, and the densities will change according to the weak rates Γ :

$$\begin{split} \frac{dn_u}{dt} &= \sum_{\ell=e,\mu} \left(\Gamma_{d \to u\ell\bar{\nu}} - \Gamma_{u\ell \to d\nu} + \Gamma_{s \to u\ell\bar{\nu}} - \Gamma_{u\ell \to s\nu} \right) \,, \\ \frac{dn_d}{dt} &= \Gamma_{su \to ud} - \Gamma_{ud \to su} + \sum_{\ell=e,\mu} \left(\Gamma_{u\ell \to d\nu} - \Gamma_{d \to u\ell\bar{\nu}} \right) \,, \\ \frac{dn_s}{dt} &= \Gamma_{ud \to su} - \Gamma_{su \to ud} + \sum_{\ell=e,\mu} \left(\Gamma_{u\ell \to s\nu} - \Gamma_{s \to u\ell\bar{\nu}} \right) \,, \\ \frac{dn_{\ell_1}}{dt} &= \Gamma_{d \to u\ell_1\bar{\nu}} - \Gamma_{u\ell_1 \to d\nu} + \Gamma_{s \to u\ell_1\bar{\nu}} - \Gamma_{u\ell_1 \to s\nu} + \Gamma_{\ell_2 \to \ell_1\nu_2\bar{\nu}_1} - \Gamma_{\ell_1 \to \ell_2\nu_1\bar{\nu}_2} \,. \end{split}$$

Small deviation from beta-equilibrium ($\delta \mu_{f^a} / \mu_B \ll 1$):

$$\begin{split} &\Gamma_{ud \to su} - \Gamma_{su \to ud} \approx \lambda_{ds} (\delta \mu_s - \delta \mu_d), \\ &\Gamma_{u\ell \to d\nu} - \Gamma_{d \to u\ell\bar{\nu}} \approx \lambda_{ud}^{\ell} (\delta \mu_d - \delta \mu_u - \delta \mu_\ell), \\ &\Gamma_{u\ell \to s\nu} - \Gamma_{s \to u\ell\bar{\nu}} \approx \lambda_{us}^{\ell} (\delta \mu_s - \delta \mu_u - \delta \mu_\ell), \\ &\Gamma_{e \to \mu\nu_2\bar{\nu}_1} - \Gamma_{\mu \to e\nu_1\bar{\nu}_2} \approx \lambda_{e\mu} (\delta \mu_\mu - \delta \mu_e). \end{split}$$

イロト イ団ト イヨト イヨト

Fermi's interaction

QCD preserves flavor symmetry.

Non-Abelian flavor symmetry: $SU(3)_L \times SU(3)_R$ for quarks and $SU(4)_L \times SU(4)_R$ for leptons

Conserved current $J^{\mu}_{f \chi}$ with f = l, q and $\chi = L, R$.

Current transformation:

$$\delta_{\theta_{f\chi}} J^{\mu}_{f\chi} = i\theta^A_{f\chi} [J^{\mu}_{f\chi}, T^A_{f\chi}]$$

Weak interactions can break flavor symmetry!

$$\mathcal{L}_{\mathsf{Fermi}} = -2\sqrt{2} \, G_F \left(J^{\mu}_{\mathsf{ch.}}\right)^{\dagger} \, J_{\mathsf{ch.}\,\mu} J^{\mu}_{\mathsf{ch.}} = \overline{\nu}_{e\,L} \gamma^{\mu} e_L + \overline{\nu}_{\mu\,L} \gamma^{\mu} \mu_L + \cos\theta_C \, \overline{u}_L \gamma^{\mu} d_L + \sin\theta_C \, \overline{u}_L \gamma^{\mu} s_L,$$

 $\mathcal{L}_{\text{Fermi}} \Rightarrow \text{non-conservation of flavor currents } J_{f}^{\mu}$

イロン イ団 とく ヨン イヨン

æ

Flavor Ward identities

Flavor Ward identities

$$\begin{split} \partial_{\mu} \langle (J_{q}^{\mu})_{u}^{u} \rangle &= i\sqrt{2}G_{F} \eta_{\mu\nu} \sum_{\ell=e,\mu} \left[\cos\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{d} (J_{q}^{\nu}_{L})^{u}_{u} - (J_{q}^{\mu}_{L})^{l}_{u} (J_{L}^{\nu})_{\ell}^{\nu} \rangle \right], \\ &+ \sin\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{\ell}^{\nu}_{L})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{u} (J_{\ell}^{\nu}_{L})^{\ell}_{\ell} \rangle \right], \\ \partial_{\mu} \langle (J_{q}^{\mu})^{d}_{d} \rangle &= i\sqrt{2}G_{F} \eta_{\mu\nu} \left[\cos\theta_{C} \sin\theta_{C} \eta_{\mu\nu} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{q}^{\nu}_{L})^{d}_{u} - (J_{q}^{\mu}_{L})^{s}_{u} (J_{q}^{\nu}_{L})^{u}_{d} \rangle \right], \\ &- \cos\theta_{C} \sum_{\ell=e,\mu} \langle (J_{q}^{\mu}_{L})^{u}_{d} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{d}_{u} (J_{L}^{\nu})^{\ell}_{\ell} \rangle \right], \\ \partial_{\mu} \langle (J_{q}^{\mu})^{s}_{s} \rangle &= i\sqrt{2}G_{F} \eta_{\mu\nu} \left[-\cos\theta_{C} \sin\theta_{C} \eta_{\mu\nu} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{q}^{\nu}_{L})^{u}_{s} (J_{\ell}^{\nu}_{L})^{d}_{u} - (J_{q}^{\mu}_{L})^{s}_{u} (J_{\ell}^{\nu}_{L})^{u}_{d} \rangle \right], \\ &- \sin\theta_{C} \sum_{\ell=e,\mu} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{u} (J_{L}^{\nu})^{\ell}_{\ell} \rangle \right], \\ \partial_{\mu} \langle (J_{l}^{\mu})^{\nu_{\ell}}_{\nu_{\ell}} \rangle &= i\sqrt{2}G_{F} \eta_{\mu\nu} \left[-\cos\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{d} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{u} (J_{L}^{\nu})^{\ell}_{\ell} \rangle \right], \\ &- \sin\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{s} (J_{L}^{\nu})^{\nu_{\ell}}_{\ell} \rangle - \langle (J_{L}^{\mu})^{\ell}_{u} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{L}^{\mu}_{L})^{\ell}_{u} \langle J_{L}^{\nu})^{\ell}_{\ell} \rangle \\ &- \sin\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{s} (J_{L}^{\nu})^{\ell}_{\ell} \rangle + \langle (J_{L}^{\mu}_{L})^{\ell}_{u} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{L}^{\mu}_{L})^{\ell}_{\nu_{\ell}} \rangle \right], \\ &\partial_{\mu} \langle (J_{l}^{\mu})^{\ell}_{\ell} \rangle = i\sqrt{2}G_{F} \eta_{\mu\nu} \left[\cos\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{d} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{u} (J_{L}^{\nu})^{\ell}_{\ell} \rangle + \langle (J_{L}^{\mu}_{L})^{\ell}_{\ell'} (J_{L}^{\nu})^{\ell}_{\ell} - (J_{L}^{\mu}_{L})^{\ell'}_{\ell'} \langle J_{L}^{\nu}_{\ell'} (J_{L}^{\nu})^{\ell'}_{\ell} \rangle \right]. \\ &+ \sin\theta_{C} \langle (J_{q}^{\mu}_{L})^{u}_{s} (J_{L}^{\nu})^{\ell}_{\nu_{\ell}} - (J_{q}^{\mu}_{L})^{s}_{s} (J_{L}^{\nu})^{\nu}_{\ell} \rangle + \langle (J_{L}^{\mu}_{L})^{\ell'}_{\ell'} (J_{L}^{\nu})^{\ell'}_{\ell'} \langle J_{L}^{\nu}_{L} \rangle^{\ell'}_{\ell'} \rangle \right].$$

 $\partial_{\mu}\langle J^{\mu}\rangle \sim G_F \,\eta_{\mu\nu}\,\langle J^{\mu}\,J^{\nu}\rangle$ (non-diagonal operator)

イロト イヨト イヨト イヨト

Flavor Ward identites

Finite temperature theory $T=1/\beta \Rightarrow$ thermal correlation functions

 $\langle T_C[\mathcal{O}(x_1)\mathcal{O}(x_2)] \rangle$

Effect of Fermi's interaction in the thermal expectation value of an operator $\mathcal{O}(x)$

$$\langle \mathcal{O}(x) \rangle_{G_F} = \langle T_C \left[\mathcal{O}(x) e^{i \int_C \mathcal{L}_{\text{Fermi}}} \right] \rangle_0 \approx \langle \mathcal{O}(x) \rangle_0 + i \int_C d^4 x' \langle T_C \left[\mathcal{O}(x) \mathcal{L}_{\text{Fermi}}(x') \right] \rangle_0.$$

Facorization of the current four-point function \Rightarrow happens naturally at large N_c (holographic models)

$$\begin{split} & \Big\langle \Big[(J_f^{\mu})^a{}_b(x) (J_f^{\nu})^c{}_d(x) \Big] \left[(J_{f'}^{\alpha})^a{}_{b'}'(x') (J_{f'}^{\beta})^c{}_{d'}'(x') \Big] \Big\rangle_0 \approx \\ & \delta_{ff'} \bigg[\Big\langle (J_f^{\mu})^a{}_b(x) (J_f^{\alpha})^a{}_{b'}'(x') \big\rangle_0 \big\langle (J_f^{\nu})^c{}_d(x) (J_f^{\beta})^c{}_{d'}'(x') \big\rangle_0 + \\ & \Big\langle (J_f^{\mu})^a{}_b(x) (J_f^{\beta})^c{}_{d'}'(x') \big\rangle_0 \big\langle (J_f^{\nu})^c{}_d(x) (J_f^{\alpha})^a{}_{b'}'(x') \big\rangle_0 \bigg]. \end{split}$$

 \Rightarrow leading contribution $\mathcal{O}(G_F)$ is proportional to the correlators

イロン イ団 とく ヨン イヨン

Gauge invariant formula for the rates

Quark and lepton densities:

$$n_u = (J_q^0)^u_{\ u}, \ n_d = (J_q^0)^d_{\ d}, \ n_s = (J_q^0)^s_{\ s}, \ n_\ell = (J_l^0)^\ell_{\ \ell}.$$

Finally, the rates are given by

$$\begin{array}{lll} \lambda_{ds} &\approx & 4G_F^2 \sin^2 \theta_C \cos^2 \theta_C \; \Lambda_{ud \to su}, \\ \lambda_{ud}^\ell &\approx & 4G_F^2 \cos^2 \theta_C \; \Lambda_{u\ell \to d\nu}, \\ \lambda_{us}^\ell &\approx & 4G_F^2 \sin^2 \theta_C \; \Lambda_{u\ell \to s\nu}, \\ \lambda_{e\mu} &\approx & 4G_F^2 \; \Lambda_{\mu\nu_e \to \nu_\mu e}. \end{array}$$

$$\begin{split} \Lambda_{f_1^a f_2^b \to f_1^c f_2^d} &\approx \eta_{\mu\nu} \eta_{\alpha\beta} \int \frac{d^4 k}{(2\pi)^4} \frac{\rho_{f_1;ac}^{\mu\alpha}(k_0,\mathbf{k}) \rho_{f_2;db}^{\beta\nu}(k_0,\mathbf{k})}{4T \sinh^2\left(\frac{k_0}{T}\right)},\\ \rho_{ab}^{\mu\nu} &= -2 \mathrm{Im} \left[G_{ab,ba}^{\mathrm{Ret.\,;\,}\mu\nu} \right] \end{split}$$

The spectral function ρ can be computed using holographic methods!

Andrea Olzi (Florence U., INFN Florence)

May 12, 2025

< □ > < □ > < □ > < □ > < □ >

9/1

Why Holography?

Neutron stars involve one of the most extreme forms of matter ($T_{\rm core} \approx 100$ keV, $\mu_B \approx 1$ GeV)

At the densities involved, QCD cannot be treated perturbatively, and lattice QCD suffers from the sign problem \Rightarrow other non-perturbative approaches

Holography can be used as a tool to study non-perturbative aspects of QCD-like theories.

The holographic model

Bottom-up holographic QCD model dual to a $SU(N_c)$ gauge theory with N_f flavors. Gravity and matter content:

$$S_{c} = \frac{1}{16\pi G_{5}} \int d^{5}x \sqrt{-g} \left(R - 2\Lambda\right), \quad \Lambda = -\frac{6}{L^{2}}$$
$$S_{f} = \int d^{5}x \sqrt{-g} \operatorname{Tr}\left[g_{X}^{2} \left(-|DX|^{2} + \frac{3}{L^{2}}|X|^{2}\right) - \frac{1}{4g_{5}^{2}} \left(F_{(R)}^{2} + F_{(L)}^{2}\right)\right]$$

where

$$D_N X = \partial_N X - iA_N^{(L)} X + iXA_N^{(R)} \qquad D_N X^{\dagger} = \partial_N X^{\dagger} - iX^{\dagger}A_N^{(L)} + iA_N^{(R)} X^{\dagger}$$

$$F_{MN}^{(L,R)} = \partial_M A_N^{(L,R)} - \partial_N A_M^{(L,R)} + i[A_M^{(L,R)}, A_N^{(L,R)}]$$

$$\frac{L}{g_5^2} = \frac{N_c}{12\pi^2} \,, \qquad \qquad g_X^2 L^3 = \frac{N_c}{4\pi^2}$$

イロト イヨト イヨト イヨト

э.

The holographic model

We consider **zero quark mass** $\Rightarrow X^{bkg} = 0$ (consistent with the EOMs)

₽

Anti-de-Sitter Reissner-Nordstrom black hole geometry

$$ds^{2} = \frac{L^{2}}{z^{2}} \left(-f(z)dt^{2} + d\vec{x}^{2} + \frac{dz^{2}}{f(z)} \right) \qquad \qquad f(z) = 1 - M\frac{z^{4}}{z_{h}^{4}} + Q^{2}\frac{z^{6}}{z_{h}^{6}}$$

$$\left((A_L)_0^{\text{bkg}} \right)_b^a = \left((A_R)_0^{\text{bkg}} \right)_b^a = \frac{\mu_q}{2} \left(1 - \frac{z^2}{z_h^2} \right) \delta_b^a$$

$$M = 1 + Q^2 \qquad Q^2 = \frac{z_h^2 \mu_q^2}{2} \qquad z_h = \frac{2}{\mu_q} \left(\sqrt{1 + \left(\frac{\pi T}{\mu_q}\right)^2} - \frac{\pi T}{\mu_q} \right)$$

イロン イヨン イヨン イヨン

Computation of the spectral function

Fluctuations of the background gauge field

$$A^{(L,R)}_{\mu}(x^{\mu},z) = \int \frac{d\omega}{2\pi} \int \frac{d^3k}{(2\pi)^3} e^{-ik^0 x^0 + i\mathbf{k}\cdot\mathbf{x}} A^{(L,R)}_{\mu}(k^0,\mathbf{k},z) \; . \label{eq:A_matrix}$$

↓

Equations of motion

$$\begin{split} \partial_z^2 A_i^{(L,R)}(z) &+ \left(\frac{f'(z)}{f(z)} - \frac{1}{z}\right) \partial_z A_i^{(L,R)}(z) + \left(\frac{k_0^2}{f^2(z)} - \frac{k^2}{f(z)}\right) A_i^{(L,R)}(z) = 0\\ \partial_z \left(\frac{f(z)}{z} \frac{\partial_z E_{(L,R)}(z)}{k_0^2 - k^2 f(z)}\right) &+ \frac{1}{f(z)z} E_{(L,R)}(z) = 0, \qquad E_{(L,R)} = k A_0^{(L,R)} + k^0 \frac{k^i}{k} A_i^{(L,R)}(z) = 0, \end{split}$$

Holographic prescription for computing the retarded correlator of an operator \mathcal{O} :

$$G^{\text{Ret.}}(k^0,\mathbf{k}) = \frac{\partial_z \phi(k^0,\mathbf{k},z)}{\phi(k^0,\mathbf{k},z)} \bigg|_{z=0} \quad \Rightarrow \quad \rho(k^0,\mathbf{k}) = -2\text{Im}\left[G^{\text{Ret.}}(k^0,\mathbf{k})\right].$$

(日) (四) (日) (日) (日)

Results

Analytic estimate

$$\Lambda_{ud \to ds} \approx \frac{\mathcal{N}^2}{128} \sqrt{\frac{3}{\pi}} \mu_q^5 T^2 \left(\log \frac{6\mu_q}{\pi T} \right)^{-3/2} \qquad \qquad \mathcal{N} = \frac{N_c}{6\pi^2}$$

イロト イヨト イヨト イヨト

4/17

Comparison with the pQCD formula

[H. Heiselberg, J. Madsen, and K. Riisager, Phys. Scripta 34 (1986) 556–560; H. Heiselberg, Phys. Scripta 46 (1992) 485–488; J. Madsen, Phys. Rev. D 47 (1993) 325–330.]

We have obtained the leading order low-T behavior of the weak rate in a large-density state of strongly coupled matter at beta-equilibrium.

We can compare this result to the perturbative QCD result ($\kappa \approx 0.13$)

$$\lambda_{ds} \approx \underbrace{G_F^2 \sin^2 \theta_C \cos^2 \theta_C}_{\text{flavor symmetry breaking}} \frac{16}{\pi^2} \underbrace{\mu_q^5 T^2}_{\text{Fermi liquid}} \underbrace{\left(1 + \frac{4\alpha_{\text{strong}}}{9\pi} \log \frac{\kappa \alpha_{\text{strong}} \mu_q}{T}\right)^4}_{\text{non-Fermi liquid Log-correction}}$$

イロト イ団ト イヨト イヨト

5/17

Comparison with the pQCD formula

[H. Heiselberg, J. Madsen, and K. Riisager, Phys. Scripta 34 (1986) 556–560; H. Heiselberg, Phys. Scripta 46 (1992) 485–488; J. Madsen, Phys. Rev. D 47 (1993) 325–330.]

We have obtained the leading order low-T behavior of the weak rate in a large-density state of strongly coupled matter at beta-equilibrium.

We can compare this result to the perturbative QCD result

$$\lambda_{ds} \approx \underbrace{G_F^2 \sin^2 \theta_C \cos^2 \theta_C}_{\text{flavor symmetry breaking}} \frac{16}{\pi^2} \underbrace{\mu_q^5 T^2}_{\text{Fermi liquid}} \underbrace{\left(1 + \frac{4\alpha_{\text{strong}}}{9\pi} \log \frac{\kappa \alpha_{\text{strong}} \mu_q}{T}\right)^4}_{\text{non-Fermi liquid Log-correction}}$$

< ロ > < 同 > < 回 > < 回 >

Outlook

Future directions

- Compute the rates in other models used to study neutron stars: D3/D7, VQCD,... [C. Hoyos, N. Jokela, A.O., ongoing work]
- Non-zero quark masses [C. Hoyos, N. Jokela, A.O., ongoing work]
- Quark pairing

イロト イ団ト イヨト イヨト

э.

Thank you for your time!

・ロト ・回ト ・ヨト ・ヨト