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Dynamical modelling in small vs. large systems

• large systems: dominated by hydrodynamic QGP, leaves imprints of

thermalization and collectivity in final state observables

• small systems: might not fully equilibrate ⇒ applicability of hydro unclear

• kinetic theory can describe off-equilibrium systems,

applicable to free-streaming and hydrodynamic systems

⇒ in comparison to hydrodynamics, can discern where it is accurate
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Previous study

Compared hydro and hybrid to full kinetic theory simulations based on dE⊥/dη,

εp, ⟨u⊥⟩ϵ and ⟨Re−1⟩ϵ as fct. of opacity γ̂ for averaged initial state profiles

Ambrus,, Schlichting, Werthmann PRD 107 (2023) 094013 and PRL 130 (2023) 152301

• can expect fixed accuracy when switching based on Re−1 =
√

6πµνπµν

e2
:

accurate on 5% level for Re−1
switch = 0.75

• pure hydro problematic even at large opacity, hybrid works in a certain
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Regime of Applicability of Hydrodynamics

Tracking timescales of hydrodynamization and onset of transverse expansion:

Hydro applicable for opacities γ̂ ≳ 3

Pb+Pb
η/s = 0.12
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Applicability of hydrodynamics in real collisions

in practice: using an initial state model, can estimate

γ̂ ≳ 3 =̂ central O+O

problem: Parameters not experimentally accessible,

different models give different predictions!

”But hydro works in small system simulations”:

Flow results from dynamical response to initial state

geometry, which is poorly constrained in small systems

vn = κn,n · ϵn

🤔

New Aim

- find observables that untangle effects of response and geometry on flow

- look for model-independent quantification of hydrodynamicity

- verify these in event-by-event simulations
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Model and Setup: Kinetic Theory

• microscopic description in terms of phase-space distribution

f(τ,x⊥, η,p⊥, y) =
(2π)3

νeff

dN

d3x d3p
(τ,x⊥, η,p⊥, y)

• time evolution: Boltzmann equation in conformal relaxation time

approximation

pµ∂µf = CRTA[f ] = −pµuµ

τR
(f − feq) , τR = 5

η

s
T−1

results will depend only on initial state and opacity

• dimensionless parameter: opacity ∼“total number of interaction”

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965

γ̂ =

(
5
η

s

)−1
(

1

aπ
R
dE

(0)
⊥

dη

)1/4

• encodes dependencies on viscosity, transverse size and energy scale
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Model and Setup: Hydrodynamics

• 2nd order Müller-Israel-Steward type hydrodynamics (vHLLE)

with RTA transport coefficients

Karpenko, Huovinen, Bleicher Comput. Phys. Commun. 185, 3016 (2014)

• How to define initial state? Hydro deviates at early times!
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• solution: hydro initial condition scaled according to attractor curve

prediction of early time behaviour

Ambrus,, Schlichting, Werthmann PRD 107 (2023) 094013
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Initial conditions and Observables

• initial conditions with event-by-event fluctuations (TRENTo model)

Moreland, Bernhard, Bass PRC 92 (2015) 011901(R)

• pre-generated nucleon positions to account for correlations like α-clustering

• reasons for O+O:

• intermediate system size (γ̂ ∼ 3)

• same collision system ran at RHIC and LHC for the first time!

This time we focus on elliptic flow given by

εp e
2iΨp =

∫
x⊥

T xx − T yy + 2iT xy∫
x⊥

T xx + T yy

• measures flow of energy: less sensitive to particlization?

• directly accessible in hydro, no freezeout

• main difference to v2 is a
√
sNN -dependent conversion factor

Kurkela, Wiedemann, Wu EPJC 79 (2019) 11, 965
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Event-by-event flow responses
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• main difference between different systems is opacity scale

• variation in geometry introduces spread of flow response

• still mostly depends on γ̂ with εhydrop ↗ εRTA
p as before
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Universal flow response curve

• mean flow responses in different systems perfectly line up along common

curve κ(γ̂)

• limiting behaviour: ideal hydrodynamics (constant) and opacity-linearized

description

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14

κ(γ̂)
hydro κ(γ̂)
η/s = 0.24
η/s = 0.12
η/s = 0.08
η/s = 0.04

η/s = 0.024
OO LHC

OO RHIC
PbPb LHC

AuAu RHIC

E
lli

pt
ic

flo
w

re
sp

on
se

κ̄

Opacity ¯̂γ

9



Flow cumulants in O+O
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• flow statistics quantified by cumulants

cεp{2} = ⟨ε2p⟩ , cεp{4} = ⟨ε4p⟩ − 2⟨ε2p⟩2

• ideal hydro follows initial state ellipticity

• centrality dependence of κ(γ̂) introduces

modulation

γ̂

κ

Observation:

flow fluctuations dominated by average

response to geometry fluctuations

⟨(ϵp)n⟩ = ⟨(κϵ2)n⟩ = κ̄n⟨(ϵ2)n⟩+O(δκ)
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Cumulant ratios probe geometry (O+O)

If ⟨(ϵp)n⟩ ≈ κ̄n⟨(ϵ2)n⟩, then κ̄ cancels in ratios:

cϵp{4}
cϵp{2}2

=
⟨(ϵp)4⟩ − 2⟨(ϵp)2⟩2

⟨(ϵp)2⟩2
≈ ⟨(ϵ2)4⟩ − 2⟨(ϵ2)2⟩2

⟨(ϵ2)2⟩2
=

cϵ2{4}
cϵ2{2}2

⇒ ratio sensitive mostly to geometry

Bhalerao, Luzum, Ollitrault PRC 84 (2011) 034910

simulations in agreement with fit to LHC data for cumulants

O+O
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How to extract flow response strength?

If ⟨(ϵp)n⟩ ≈ κ̄n⟨(ϵ2)n⟩, then geometry cancels

in ratio of cumulants between systems with

similar geometry (O+O at RHIC and LHC?)

In our data: response is a smooth transition

between limiting cases:
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ideal hydro : κ(γ̂ ≫ 1) = κid

dilute regime : κ(γ̂ ≪ 1) ∝ γ̂
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but how do we get at the absolute response coefficient?
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Hydrodynamization observable: definition

Idea: set change in κ in relation to
change in γ̂

γ̂ =

(
5
η

s

)−1

 R
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1/4

• comparing systems with same
geometry (and same η/s):
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≈
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1/4

• logarithm turns ratios into

differences

→ finite difference derivative

• small γ̂: linear buildup d log κ
d log γ̂

≲ 1

large γ̂: saturation d log κ
d log γ̂

→ 0

hydrodynamization observable

W = 2
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Hydrodynamization observable: Proof of principle

crosscheck of W-observable:

• compute d log κ
d log γ̂

from extracted κ(γ̂): smooth monotonous transition

⇒ one-to-one correspondence between W and γ̂!

• compare with simulation data for proposed observable: agreement!
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Hydrodynamization observable: real data

• first test with LHC data: results agree with theory

(γ̂ from Trento initial conditions, η/s chosen s.t. dE⊥/dη matches)
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experiment: v2{2}
experiment: v2{4}

• centrality dependence off for v2{2} (nonflow?), but accurate for v2{4}

previous hydrodynamization criterion

γ̂ ∼ 3 corresponds to W ∼ 0.5

15



Non-conformal effects

• probing non-conformal effects in hydro simulations with chiral eos

• losing theoretical control
• mostly relative factor ∼ 0.8, but centrality dependence at RHIC

• predictions deviate from conformal case, but still captured by
adjusted calibration curve
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Summary

• applicability of hydrodynamics can be assessed by comparing to

kinetic theory, but uncertainties in initial state obscure results

• can untangle effects of initial state and dynamical response on

flow using appropriate observables:

- cumulant ratios for initial state geometry

- W-observable for hydrodynamization via variation of strength

of flow response

W = 2
∆ log(cεp{2})
∆ log(dE⊥/dy)

≈ d log κ

d log γ̂

• verified discriminative power in event-by-event simulations

• criterion for hydrodynamic behaviour in experiment: W ≲ 0.5
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Backup



Early time longitudinal cooling and scaled hydro

evolution of τe:

Kinetic Theory

→ →

Naive Hydro

→ →

Scaled Hydro

τ = 3 · 10−6fm

→

τ = 8 · 10−4fm

→

τ = 3 · 10−3fm

(times for 4πη/s = 0.05)
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Hydrodynamics in real collision systems

Taking the criterion of γ̂ ≳ 3 seriously, what does this mean for the

applicability of hydrodynamics to “real-life” collisions?

Pb + Pb :
30−40%

γ̂ ∼ 5.7
(

η/s
0.16

)−1 (
R

2.78 fm

)1/4(dE
(0)
⊥ /dη

1280GeV

)1/4

∼
70−80%

2.7 −
0−5%

9.0

hydrodynamic behaviour in all but peripheral collisions

O+O :
30−40%

γ̂ ∼ 2.2
(

η/s
0.16

)−1 (
R

1.13 fm

)1/4(dE
(0)
⊥ /dη

55GeV

)1/4

∼
70−80%

1.4 −
0−5%

3.1

probes transition region to hydrodynamic behaviour

p + Pb :
min.bias

γ̂ ∼ 1.5
(

η/s
0.16

)−1 (
R

0.81 fm

)1/4(dE
(0)
⊥ /dη

24GeV

)1/4 high mult.

≲ 2.7

very high multiplicity events approach regime of applicability, but do not reach

it

p + p :
min.bias

γ̂ ∼ 0.7
(

η/s
0.16

)−1 (
R

0.12 fm

)1/4(dE
(0)
⊥ /dη

7.1GeV

)1/4

far from hydrodynamic behaviour
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Hydrodynamization in viscosity and centrality dependence

• transverse expansion sets in at τ⊥ ∼ 0.2R, independent of opacity

• Hydro appicable when Re−1 < Re−1
c ∼ 0.75 after timescale

τHydro/R ≈ 1.53 γ̂−4/3
[
(Re−1

c )−3/2 − 1.21(Re−1
c )0.7

]
• hydrodynamization before transv. Expansion for γ̂ ≳ 3
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Universal work functions

fwork(γ̂) = ⟨dE⊥/dη(τf )
dE⊥/dη(τ0)
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