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Dynamical modelling in small vs. large systems
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e large systems: dominated by hydrodynamic QGP, leaves imprints of
thermalization and collectivity in final state observables
e small systems: might not fully equilibrate = applicability of hydro unclear
e kinetic theory can describe off-equilibrium systems,
applicable to free-streaming and hydrodynamic systems
= in comparison to hydrodynamics, can discern where it is accurate



Previous study

Compared hydro and hybrid to full kinetic theory simulations based on dE, /dn,
p, {(u1)e and (Re™!). as fct. of opacity 4 for averaged initial state profiles

Ambrus, Schlichting, Werthmann PRD 107 (2023) 094013 and PRL 130 (2023) 152301

e can expect fixed accuracy when switching based on Re ! = 4/ Gt
0.75
e pure hydro problematic even at large opacity, hybrid works in a certain
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Regime of Applicability of Hydrodynamics

Tracking timescales of hydrodynamization and onset of transverse expansion:
Hydro applicable for opacities 4 = 3
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Applicability of hydrodynamics in real collisions

in practice: using an initial state model, can estimate
4 2 3 = central 04+0

problem: Parameters not experimentally accessible,
different models give different predictions!

"But hydro works in small system simulations”:

®)
°)

Flow results from dynamical response to initial state

l‘)

e

geometry, which is poorly constrained in small systems

Un = Rnn * €n

- find observables that untangle effects of response and geometry on flow
- look for model-independent quantification of hydrodynamicity
- verify these in event-by-event simulations




Model and Setup: Kinetic Theory

e microscopic description in terms of phase-space distribution
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e time evolution: Boltzmann equation in conformal relaxation time
approximation
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TR
results will depend only on initial state and opacity

e dimensionless parameter: opacity ~ “total number of interaction”

Kurkela, Wiedemann, Wu EPJC 79 (2019) 965
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e encodes dependencies on viscosity, transverse size and energy scale




Model and Setup: Hydrodynamics

e 2nd order Miiller-Israel-Steward type hydrodynamics (VHLLE)
with RTA transport coefficients

Karpenko, Huovinen, Bleicher Comput. Phys. Commun. 185, 3016 (2014)

e How to define initial state? Hydro deviates at early times!
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e solution: hydro initial condition scaled according to attractor curve
prediction of early time behaviour

Ambrus, Schlichting, Werthmann PRD 107 (2023) 094013



Initial conditions and Observables

e initial conditions with event-by-event fluctuations (TR ENTo model)

Moreland, Bernhard, Bass PRC 92 (2015) 011901(R)

e pre-generated nucleon positions to account for correlations like a-clustering
e reasons for O+0:

e intermediate system size (4 ~ 3)
e same collision system ran at RHIC and LHC for the first time!

This time we focus on elliptic flow given by
e, et = f«u T =TV 20T
’ - [, T==+Twv
T

e measures flow of energy: less sensitive to particlization?
e directly accessible in hydro, no freezeout

e main difference to vs is a /sy n-dependent conversion factor

Kurkela, Wiedemann, Wu EPJC 79 (2019) 11, 965



Event-by-event flow responses
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e main difference between different systems is opacity scale
e variation in geometry introduces spread of flow response

e still mostly depends on 4 with sgyd“’ Va ESTA as before



Universal flow response curve

e mean flow responses in different systems perfectly line up along common

curve x(%)
e limiting behaviour: ideal hydrodynamics (constant) and opacity-linearized
description
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Flow cumulants in O4+0
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Cumulant ratios probe geometry (0O+0)

If {(ep)™) = K™ ((€2)™), then K cancels in ratios:
cep {4} _ {(n)) = 2((ep)*)?  {(e2)") = 2((e2)")? _ cer{4}
ce, {2} ((ep)?)? ((e2)?)? ce {212

= ratio sensitive mostly to geometry

Bhalerao, Luzum, Ollitrault PRC 84 (2011) 034910

simulations in agreement with fit to LHC data for cumulants
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How to extract flow response strength?
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but how do we get at the absolute response coefficient?
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Hydrodynamization observable: definition

Idea: set change in & in relation to hydrodynamization observable

change in ¥
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Hydrodynamization observable: Proof of principle

2. Alog(c., {2})/Alog(dE, /dn)
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crosscheck of W-observable:

e compute

dlos % from extracted x(%): smooth monotonous transition

dlog ¥

= one-to-one correspondence between W and 4!

e compare with simulation data for proposed observable: agreement!
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Hydrodynamization observable: real data

e first test with LHC data: results agree with theory
(¥ from Trento initial conditions, 1/s chosen s.t. dE /dn matches)
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e centrality dependence off for v2{2} (nonflow?), but accurate for v2{4}

previous hydrodynamization criterion

4 ~ 3 corresponds to W ~ 0.5
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Non-conformal effects

e probing non-conformal effects in hydro simulations with chiral eos

e losing theoretical control
e mostly relative factor ~ 0.8, but centrality dependence at RHIC

e predictions deviate from conformal case, but still captured by
adjusted calibration curve
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e applicability of hydrodynamics can be assessed by comparing to
kinetic theory, but uncertainties in initial state obscure results

e can untangle effects of initial state and dynamical response on
flow using appropriate observables:
- cumulant ratios for initial state geometry
- W-observable for hydrodynamization via variation of strength
of flow response

W Alog(c,{2})  dlogk
" “Alog(dE, /dy) ~ dlog#

e verified discriminative power in event-by-event simulations

e criterion for hydrodynamic behaviour in experiment: W < 0.5
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Backup



Early time longitudinal cooling and scaled hydro

evolution of Te:
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Hydrodynamics in real collision systems

Taking the criterion of 4 2 3 seriously, what does this mean for the
applicability of hydrodynamics to “real-life” collisions?

30— 40% 1 1/4 (0 /4 70_80% 0-5%
. A /s R dEY"/ /dn
Pb+Pb: i ~57 (2) (5im) (1285(;6\,) ~ 27 — 90

hydrodynamic behaviour in all but peripheral collisions

0.16 1.13 fm 55 GeV

30—40% 1 1/4 (0) /4 70_80% 0-5%
O+o:&~2.2("/5) (L) <M> ~ 14 — 31

probes transition region to hydrodynamic behaviour

min.bias —il 1/4 (0) 1/4 high mult.
p+Pb: §UTE (22) 7 (o) (i/> <o7

0.81 fm 24 GeV
very high multiplicity events approach regime of applicability, but do not reach
it

min.bias -1 1/4 (0) e
- / " de® /dn
p+p:y~07 ((;7.156) (0412fm) ( TiGeV )

far from hydrodynamic behaviour
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Hydrodynamization in viscosity and centrality dependence
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e transverse expansion sets in at 7, ~ 0.2R, independent of opacity

e Hydro appicable when Re™" < Re_ ' ~ 0.75 after timescale
Thyaso/ R~ 153 47/% [(Rez!) ™2 — 1.21(Re; )]

e hydrodynamization before transv. Expansion for 4 2> 3
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Universal work functions

R dE, /dn(T
fwork(’Y) = <%>

1 T
fwork(§) ——
Padé - - - -
0.9 1 /s =024 —e—i 7
% n/s=0.12 —e—
0s |} n/s=0.08 —e— |
. % 7]/5 =0.04 —eo—
\ /s = 0.024 —o—s
R 0.7 + OO LHC o g
eds % OO RHIC .
g % PbPb LHC o
106} AuAuRHIC  +
=05 |
04 +
0.3 r
0.2 ‘ : : ‘ ‘
0 5 10 15 20 25 30

21



