Neutrino Transport in Holography

Edwan PREAU

Utrecht

University

arXiv:2306.00192, arXiv:2409.04630

Outline

- 1) Motivation
- 2) Introduction : Formalism for neutrino transport
- 3) Holographic Set-up
- 4) Holographic calculation of the chiral current correlators
- 5) Towards isospin asymmetry
- 6) Summary

Motivation

- Neutrino (v) radiation is the main mechanism for Neutron Star (NS) cooling
- Requires the knowledge of v
 interaction with dense QCD matter in
 the core
- Simulations need an input from

particle physics : $\mathbf{j} \& \alpha \leftrightarrow \langle J_{L/R} J_{L/R} \rangle^{R}$

Motivation

- Computing $\langle J_{L/R} J_{L/R} \rangle^R$ in the dense strongly-coupled QCD matter is a difficult problem
- We consider the holographic approach

Problem : compute $\langle J_{L/R} J_{L/R} \rangle^R$ in holographic QCD at finite T and n_B \rightarrow This work : simplest toy model (conformal quark matter)

Formalism for neutrino transport

<u>Exercice</u> : compute the (exact) propagator $G_{\nu}(\vec{x}_1, t_1; \vec{x}_2, t_2)$ of ν 's in a dense QCD medium

<u>Quasi-particle approximation :</u>

 G_{ν} is described by the ν distribution function $f_{\nu}(\vec{x}, t; k_{\nu})$

The transport of neutrinos is described by the Boltzmann equation obeyed by f_{ν}

$$(k_{\nu} \cdot \partial) f_{\nu} \equiv j(E_{\nu})(1 - f_{\nu}) - \alpha(E_{\nu}) f_{\nu} \equiv j(E_{\nu}) - \kappa(E_{\nu}) f_{\nu}$$

Emissivity Absorptivity Opacity
 $\kappa = j + \alpha$

Schwinger-Dyson equation

The kinetic equation can be derived from the finite temperature Schwinger-Dyson equation

The self-energy Σ is expanded at order $\mathcal{O}(G_F^2)$ in the weak interaction

 $\nu + n \leftrightarrow e^- + p$

It is fully **non-perturbative** in the **strong** interaction

Schwinger-Dyson equation

The kinetic equation can be derived from the finite temperature Schwinger-Dyson equation

The holographic set-up

The holographic correspondence

- The boundary of the 5D space (bulk) is the 4D space-time on which the quantum theory is defined
- The additional dimension r is called the holographic coordinate and identified with the length scale

The Holographic Set-up

Simplest holographic toy model with chiral currents $J_{L/R}^{\mu}$

$$T_{\mu\nu} \qquad \longleftrightarrow \qquad g_{MN}$$

$$N_c \to \infty, \frac{N_f}{N_c} \text{ finite}$$

$$U(N_f)_L \times U(N_f)_R : \partial_\mu J_{L/R}^{\mu} = 0 \qquad \Longleftrightarrow \qquad U(N_f)_L \times U(N_f)_R : A_{L/R}^{M}$$

$$S = M_{Pl}^3 N_c^2 \int dx^5 \sqrt{-g} \left(R + \frac{12}{\ell^2} - \frac{\kappa}{N_c} \operatorname{Tr} \left\{ F_{MN}^{(L)} F_{(L)}^{MN} + F_{MN}^{(R)} F_{(R)}^{MN} \right\} \right),$$

Background solution

We want to compute $\langle J_{\lambda}^{-}J_{\sigma}^{+}\rangle^{R}$ in an equilibrium state at finite (T, μ_{q}) = dense strongly-coupled quark matter

 \rightarrow Charged AdS black hole, with charge $Q \propto \mu_q$

Summary of parameters

Parameters of the model	M _{Pl} ℓ κ	Fitted to lattice quark- gluon thermodynamics
Environmental parameters	$\frac{\mu_q}{T}$	Varied
Neutrino properties	$\frac{E_{\nu}}{T}$	Varied

Holographic calculation of the chiral current 2-point function

The boundary plasma has an SO(3) rotational invariance

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}(\omega,\vec{k}) = P_{\lambda\sigma}^{\perp}(\omega,\vec{k})i\Pi^{\perp}(\omega,\vec{k}) + P_{\lambda\sigma}^{\parallel}(\omega,\vec{k})i\Pi^{\parallel}(\omega,\vec{k})$$

Hydrodynamic approximation

The long-range behavior of a system near equilibrium is described by hydrodynamics

- → Equilibrium correlators follow a universal long-range structure :
- **Expansion** in $(\omega/T, k/T)$, with transport coefficients
- The hydro modes appear as poles at leading order

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}(\omega,\vec{k}) = \sigma \left(P_{\lambda\sigma}^{\perp} \omega + P_{\lambda\sigma}^{\parallel} \frac{\omega^{2} - k^{2}}{\omega + i\mathbf{D}k^{2}} \right) \left(1 + \mathcal{O}\left(\frac{\omega}{T},\frac{k^{2}}{T^{2}}\right) \right),$$

Conductivity $\partial_{t}J^{0} = D\Delta J^{0}$

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}(\omega,\vec{k}) = \sigma \left(P_{\lambda\sigma}^{\perp} \omega + P_{\lambda\sigma}^{\parallel} \frac{\omega^{2} - k^{2}}{\omega + i\mathbf{D}k^{2}} \right) \left(1 + \mathcal{O}\left(\frac{\omega}{T},\frac{k^{2}}{T^{2}}\right) \right),$$

Hydro a priori breaks down at ω , $k \gg T$

AdS-RN : the LO hydro approximation remains valid as long as $\omega, k \ll \mu_q$ $\rightarrow \nu$ transport in a NS: $E_{\nu}, \mu_e, \mu_\nu \ll \mu_q$ [Davison & Parnachev '13] [Moitra, Sake & Trivedi '21]

At
$$\mu_q \gg T$$
, we have μ_e , $\mu_v \simeq 0.7 \ \mu_q$

 The scale where hydrodynamics breaks down is identified by analyzing the poles of the correlator ↔ QNM's of AdS-RN

- When k is increased, the poles collide, but a diffusive pole effectively remains
- For hydrodynamics to remain valid : $Res(\omega_n) \rightarrow 0$ as $T/\mu \rightarrow 0$

 $\circ~$ The line of poles coalesces with a line of <code>zeroes</code>

Numerical results

Charged current correlators

Opacities : comparison with hydro

22/31

Different parameter dependence: e.g. at $T \rightarrow 0$:

$$\kappa_e^{pQCD}(0) \sim G_F^2 \mu^2 \mu_v^3 , \qquad \kappa_e^{holo}(0) \sim G_F^2 \mu \mu_v^4 .$$

Towards isospin asymmetry

Phase diagram at finite μ_3

- $\circ \mu_3$ is introduced as a source for $L_0^3 + R_0^3$
- AdS RN is still a solution of the Einstein-Yang-Mills equations (with $Q_3 \propto \mu_3$), but other solutions exist : p-wave superconductors (SC), with $U(1)_3$ spontaeously broken [Gubser '08], [Gubser, Pufu, '08]

- $\circ~$ Gubser and Pufu considered specific cases :
 - **General ansatz** but probe ($\kappa \rightarrow 0$)
 - \succ **Back-reacted** but for a **specific ansatz** (κ finite)
- First step for our purpose: derive the full 3-dimensional phase diagram $(\kappa, \mu_3/T, \mu_q/T)$

Phase diagram at finite μ_3

General ansatz for SC solutions

• At $T \neq 0$ and $\mu_3 \neq 0$, the theory has $SO(3) \times U(1)_3$ symmetry (d = 3 + 1)

→The most general SC ansatz for the gauge fields is

$$L = R = \frac{1}{2} \Phi(r) dt \, \mathbb{I}_2 + \frac{1}{2} \Phi_3(r) dt \, \sigma^3 + \frac{1}{2} A_z^1(r) dz \, \sigma^1 + \frac{1}{2} A_x^2(r) dx \, \sigma^2 ,$$

- We expect a discrete set of solutions, labeled by the number of nodes (n, m)
- The dominant solutions should be the nodeless solutions (0,1) and (1,1):
 - > $(0,1): A_x^2(r) = 0$, p-wave [Gubser, Pufu, '08]
 - > (1,1): $A_z^1(r) = A_x^2(r) \neq 0$, (p+ip)-wave [Gubser '08]
- Both preserve $U(1) \subset SO(3) \times U(1)$, so the metric ansatz can be chosen as

$$ds^{2} = e^{2A(r)}(-f(r)dt^{2} + f(r)^{-1}dr^{2} + dx^{2} + dy^{2} + h(r)dz^{2})$$

A plane at fixed $\kappa < \kappa_c$ with $\mu_q \neq 0$

The full 3d phase diagram

Summary and outlook

First step towards the description of holographic **neutrino transport** : toy model of **strongly-coupled quark matter**

- Hydrodynamic behavior
- **Opacity suppressed** compared with the weak coupling result
- More work is needed to corroborate these results

Several directions of improvement :

- Transport in an isospin asymmetric medium
- Neutrino rates from neutral current interactions
- More realistic model of holographic QCD

Thank you !

arXiv:2306.00192 [astro-ph.HE] arXiv:2409.04630 [hep-th]

Appendix

Phases of QCD

H. Details about the perturbations of AdS-RN

Perturbations of AdS-RN

[Son & Starinets '02] [Skenderis & van Rees '08]

 $\langle J_{\lambda}J_{\sigma}\rangle^{R}$ is obtained by considering **perturbations** of the fields on top of **AdS-RN**

$$A_{L/R}^M \to \bar{A}_{L/R}^M + \delta A_{L/R}^M$$
, $g_{MN} \to \bar{g}_{MN} + \delta g_{MN}$,

$$\forall \boldsymbol{\varphi}, \ \delta \varphi = \int \frac{d^4 k}{(2\pi)^4} e^{ik.x} C_k(z) \delta \varphi_0(k) , \quad \text{At } z \sim z_H : C_k(z) \sim (z_H - z)^{-\frac{ik^0 z_H}{4}}$$

Infalling boundary condition

\circ Only $\delta T_{MN} \propto \delta A_B$ couples to δg

 \circ The charged current gauge fields decouple from δg

Perturbations : Symmetries

The boundary plasma has an SO(3) rotational invariance

$$\langle J_{\lambda}J_{\sigma}\rangle^{R}(\omega,\vec{k}) = P^{\perp}(\omega,\vec{k})_{\lambda\sigma}i\Pi^{\perp}(\omega,\mathbf{k}) + P^{\parallel}(\omega,\vec{k})_{\lambda\sigma}i\Pi^{\parallel}(\omega,\mathbf{k})$$

 $\vec{k} = k\vec{e}_3$

37/231

For a given mode (ω, \vec{k}) , it reduces to an SO(2) subgroup

The perturbations are divided into helicity sectors that decouple

Helicity	Gauge field	Metric
h = 0	δA_0 , δA_3	δg^0_0 , δg^3_0 , δg^3_3 , $\delta g^1_1 + \delta g^2_2$
h = 1	$\delta A_{1,2}$	$\delta g_0^{1,2}$, $\delta g_3^{1,2}$
h = 2	_	δg_2^1 , $\delta g_1^1 - \delta g_2^2$

Sector decoupled from the metric

Consider δA_{μ} that decouples from $\delta g_{\mu\nu}$

The modes are organized in terms of the gauge-invariants under $U(1): \delta A \rightarrow \delta A + d\delta \lambda$

$m{h}=m{1}$	$oldsymbol{h} = oldsymbol{0}$
δA_1 , δA_2	$E^{\parallel} \equiv \omega \delta A_3 + k \delta A_0$

The linearized Maxwell equations in each helicity sector can be written in terms of the gauge-invariants

The Π 's are extracted from the solutions near the boundary $(z \rightarrow 0)$

$$\Pi^{\perp} \propto -\frac{\ell}{z} \frac{\partial_z \delta A_1}{\delta A_1} \bigg|_{z \to 0} , \qquad \Pi^{\parallel} \propto -\frac{\ell}{z} \frac{\partial_z \delta E^{\parallel}}{\delta E^{\parallel}} \bigg|_{z \to 0} .$$

^{38/28} 38/31

Sector coupled to the metric

 $\delta T_{MN} \propto \delta A_B$ couples to $\delta g_{\mu\nu}$

Again, organize the modes in terms of the gauge-invariants under : $O U(1) : \delta X \rightarrow \delta X + d\delta \lambda$ O Diffeomorphisms :

$$\begin{split} \delta X_M &\to \delta X_M + \delta \xi^N \partial_N \bar{X}_M + \bar{X}_N \partial_M \delta \xi^N \\ \delta g_{MN} &\to \delta g_{MN} + \nabla_M \delta \xi_N + \nabla_N \delta \xi_M \end{split}$$

h = 1	h = 0	
$\delta X_{1,2}$	$\delta S_1 \equiv \omega \delta X_3 + k \delta X_0 + a(z) \mu k(\delta g_1^1 + \delta g_2^2)$	
$\delta Y^{1,2} \equiv k \delta g_0^{1,2} + \omega \delta g_3^{1,2}$	$\delta S_2 \equiv 2\omega k \delta g_0^3 + \omega^2 \delta g_z^z - f(z) k^2 \delta g_0^0 + b(z, \omega/k) k^2 (\delta g_1^1 + \delta g_2^2)$	

Sector coupled to the metric

The linearized **Einstein-Maxwell equations** in each helicity sector can be written in terms of the **gauge-invariants** :

- h = 1:2 coupled 2nd order ODE's for $\delta X_{1,2}$ and $\delta Y^{1,2}$
- \circ **h** = **0** : 2 coupled 2nd order ODE's for δS_1 and δS_2

The Π 's are extracted from the solutions near the boundary $(z \rightarrow 0)$

$$h = 1: \qquad \delta X_1 = \delta \hat{X}_1 + z^2 \delta \Pi_{X_1} + \cdots, \qquad \delta \Pi_{X_1} \equiv \Pi_{XX}^{\perp} \delta \hat{X}_1 + \Pi_{XY}^{\perp} \delta \hat{Y}^1,$$

Compute **2** solutions and invert the linear relation

$$\left(\Pi_{XX}^{\perp} \Pi_{XY}^{\perp}\right) = \left(\delta\Pi_{X_{1}}^{(1)} \delta\Pi_{X_{1}}^{(2)}\right) \left(\begin{array}{cc}\delta\hat{X}_{1}^{(1)} & \delta\hat{X}_{1}^{(2)}\\\delta\hat{Y}_{1}^{1} & \delta\hat{Y}_{1}^{1}\\\delta\hat{Y}_{(1)}^{1} & \delta\hat{Y}_{(2)}^{1}\end{array}\right)^{-1}$$