Non-modal effects in holographic models

Benjamin Withers University of Southampton

Based on: 2406.06685 with J. Carballo 2503.05871 with J. Carballo & C. Pantelidou 2505.04696 with P. Arnaudo & J. Carballo

Foundations and Applications of Relativistic Hydrodynamics GGI, 16 May 2025

- Introduction
- Perturbations of Poiseuille flow
- Perturbations of black holes in AdS
- (QNM orthogonality relations)
- Summary

• Introduction

- Perturbations of Poiseuille flow
- Perturbations of black holes in AdS
- (QNM orthogonality relations)
- Summary

This talk is about some basic questions regarding perturbations of black holes

Through AdS/CFT: AdS black holes provide real-time, non-perturbative description of a strongly coupled plasma

Focus on linear perturbations around thermal equilibrium

$$\mathcal{H} = i\partial_t$$
$$\left(\sim e^{-i\omega t}\right)$$

$$\omega(k) = c_s k + \dots$$
 sound $\omega(k) = -iDk^2 + \dots$ shear

 $\omega(k) = -i\Gamma + \dots$

ar

non-hydrodynamic

These are **quasinormal modes** (QNMs) of the black hole

- Ingoing at the horizon (regularity)
- Normalisable at the AdS boundary •

For black holes $\ \mathcal{H}=i\partial_t$ is not Hermitian

This arises due to dissipation through the horizon

So, for black holes $\mathcal{H}
eq \mathcal{H}^{\dagger}$

Moreover the Hamiltonian is **non-normal**: $[\mathcal{H}, \mathcal{H}^{\dagger}] \neq 0$

This is important because there exists a complete, orthonormal basis made of (spectrate eigenfunctions iff $\left[\mathcal{H}, \mathcal{H}^{\dagger}\right] = 0$

(spectral theorem)

• QNMs are generically not orthogonal to each other

Leads to transient effects that a spectral analysis misses

- Introduction
- Perturbations of Poiseuille flow
- Perturbations of black holes in AdS
- (QNM orthogonality relations)
- Summary

Plane Poiseuille flow

$$\vec{u} = (1 - y^2, 0, 0)$$

Linear perturbations

$$\vec{u} = \left(1 - y^2 + \partial_y \Phi, -\partial_x \Phi, 0\right)$$
 Spectrum at Re = 5000

Eigenvalue analysis

$$\Phi = \phi(y)e^{-i\omega t + i\alpha x}$$
$$\alpha O_{\rm OS} \phi(y) = \omega \phi(y)$$

Evolution of linear perturbations

Kinetic energy
$$E = \int_{-1}^{1} \left(|\partial_y \phi|^2 + \alpha^2 |\phi|^2 \right) dy$$

For a single mode:

$$E \propto e^{2\Im \mathfrak{m}(\omega)t}$$

$$\begin{cases} \operatorname{Re} < \operatorname{Re}_c & \text{decay} \\ \operatorname{Re} > \operatorname{Re}_c & \text{growth} \end{cases}$$

For a sum of modes at $\operatorname{Re} < \operatorname{Re}_c$:

[Reddy, Schmid, Henningson] (1993)

Why?

 \exists natural inner-product associated to E

t associated to E

$$\begin{array}{l} \langle a,b\rangle = \int_{-1}^{1} \left(\partial_{y}a^{*}\partial_{y}b + \alpha^{2}a^{*}b\right)dy \\ \text{s.t.} \quad E[\phi] = \langle \phi,\phi\rangle \end{array}$$

& the Hamiltonian $\,O_{
m OS}\,$ is non-normal wrt to $\,\langle\cdot,\cdot
angle\,$

In particular,

$$\langle \phi_n, \phi_m \rangle \neq 0$$

So that
$$E\left[\sum_n c_n \phi_n\right] \neq \sum_n E\left[\phi_n\right]^{30} \int_{\mathbb{R}^{15} \times 10^{-10}} \int_{0}^{25} \int_{15^{-10} \times 10^{-10}} \int_{0}^{10} \int_{0}^$$

Phenomenological importance

Linear perts ultimately decay

Nonlinearities

 $\otimes y$

x

From 'Onset of turbulence in plane Poiseuille flow' C Paranjape, PhD Thesis (2019)

Sustained nonlinear structures can form, provided suitably large amplitude initial data

- Introduction
- Perturbations of Poiseuille flow
- Perturbations of black holes in AdS
- (QNM orthogonality relations)
- Summary

Holographic QFT at finite temperature

Analytic example (BTZ)

$$\phi_n(\tau, z) = e^{-(2n+\Delta)\tau} (z+1)^{-n-\frac{\Delta}{2}} {}_2F_1\left(-n, -n; 1-2n-\Delta; 1-z^2\right)$$

$$\omega_n = -i(\Delta + 2n),$$

$$\frac{E(\tau)}{E(0)} = 1 - 24 \frac{|a_1 + a_2|^2}{6|a_1|^2 + 4(a_1^*a_2 + a_1a_2^*) + 3|a_2|^2} \tau + O(\tau)^2$$

- More modes allows for longer periods of sustained E $\tau \sim \log M$
- States which take an arbitrarily long time to thermalise
- Non-hydrodynamic in nature
- Holds for Schwarzschild-AdS_{d+1}, dS_{d+1}, Schwarzschild

Optimal perturbations: Schwarzschild-AdS $_{d+1}$

But what about growth?

Energy growth from superradiance

Physical mechanism

Classical wave analogue of pair production

- $T < T_c$ Runaway process (to broken phase)
- $T > T_c$ Process still occurs, but transiently

"Transient superradiance"

Even when $T < T_c$ the non-modal instability is faster than the QNM

- Introduction
- Perturbations of Poiseuille flow
- Perturbations of black holes in AdS
- (QNM orthogonality relations)
- Summary

Aside: QNM orthogonality relations

Constructions: de Sitter [Jafferis, Lupsasca, Lysov, Ng, Strominger] (2013) Kerr [Green, Hollands, Sberna, Toomani, Zimmerman] (2022) AdS black holes [Arnaudo, Carballo, BW] (2025)

Main ingredients:

• Discrete symmetry operators: $\langle a, b \rangle_{
m ortho.} \equiv \langle \mathcal{CPT}a, b \rangle_{
m KG}$

Orthogonality... but with respect to a bilinear (not inner product)

- Introduction
- Perturbations of Poiseuille flow
- Perturbations of black holes in AdS
- (QNM orthogonality relations)
- Summary

Summary

- In non-normal systems, eigenvalue analysis misses transient effects
- Perturbations of BHs are non-normal
- Govern perturbations of strongly coupled plasmas
- We identified transient effects:
 - States which take an arbitrarily long time to thermalise
 - Holographic superconductors are non-modally unstable for $T>T_c$ (just like transition to turbulence for water in a pipe)

Thank you for your attention!